Academic literature on the topic 'CMOS 65 nm, 45 nm and 32 nm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CMOS 65 nm, 45 nm and 32 nm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CMOS 65 nm, 45 nm and 32 nm"
Wilk, Seth J., William Lepkowski, and Trevor J. Thornton. "32 dBm Power Amplifier on 45 nm SOI CMOS." IEEE Microwave and Wireless Components Letters 23, no. 3 (March 2013): 161–63. http://dx.doi.org/10.1109/lmwc.2013.2245413.
Full textYadav, Vinamrata, Nikhil Saxena, and Amit Rajput. "Process Variation and Optimization of Two Stage CMOS Operational Amplifier at 45 nm and 32 nm Technology." Journal of Computational and Theoretical Nanoscience 14, no. 8 (August 1, 2017): 3653–56. http://dx.doi.org/10.1166/jctn.2017.6999.
Full textHE, Xun, Xin JIN, Minghui WANG, Dajiang ZHOU, and Satoshi GOTO. "A 98 GMACs/W 32-Core Vector Processor in 65 nm CMOS." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E94-A, no. 12 (2011): 2609–18. http://dx.doi.org/10.1587/transfun.e94.a.2609.
Full textEngland, Troy D., Rajan Arora, Zachary E. Fleetwood, Nelson E. Lourenco, Kurt A. Moen, Adilson S. Cardoso, Dale McMorrow, et al. "An Investigation of Single Event Transient Response in 45-nm and 32-nm SOI RF-CMOS Devices and Circuits." IEEE Transactions on Nuclear Science 60, no. 6 (December 2013): 4405–11. http://dx.doi.org/10.1109/tns.2013.2289368.
Full textSathishkumar, Arumugam, and Siddhan Saravanan. "A Low-Noise Dynamic Comparator with Offset Calibration for CMOS Image Sensor Architecture." Journal of Circuits, Systems and Computers 28, no. 02 (November 12, 2018): 1950022. http://dx.doi.org/10.1142/s0218126619500221.
Full textWei, Jiaju, and Zhigong Wang. "Characterization of on-chip balun with patterned floating shield in 65 nm CMOS." Journal of Semiconductors 32, no. 10 (October 2011): 104008. http://dx.doi.org/10.1088/1674-4926/32/10/104008.
Full textThakkar, Chintan, Lingkai Kong, Kwangmo Jung, Antoine Frappe, and Elad Alon. "A 10 Gb/s 45 mW Adaptive 60 GHz Baseband in 65 nm CMOS." IEEE Journal of Solid-State Circuits 47, no. 4 (April 2012): 952–68. http://dx.doi.org/10.1109/jssc.2012.2184651.
Full textMagnone, Paolo, Felice Crupi, Nicole Wils, Ruchil Jain, Hans Tuinhout, Pietro Andricciola, Gino Giusi, and Claudio Fiegna. "Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies." IEEE Transactions on Electron Devices 58, no. 8 (August 2011): 2347–53. http://dx.doi.org/10.1109/ted.2011.2156414.
Full textSeifert, Norbert, Balkaran Gill, Jonathan A. Pellish, Paul W. Marshall, and Kenneth A. LaBel. "The Susceptibility of 45 and 32 nm Bulk CMOS Latches to Low-Energy Protons." IEEE Transactions on Nuclear Science 58, no. 6 (December 2011): 2711–18. http://dx.doi.org/10.1109/tns.2011.2171004.
Full textRoshan-Zamir, Ashkan, Osama Elhadidy, Hae-Woong Yang, and Samuel Palermo. "A Reconfigurable 16/32 Gb/s Dual-Mode NRZ/PAM4 SerDes in 65-nm CMOS." IEEE Journal of Solid-State Circuits 52, no. 9 (September 2017): 2430–47. http://dx.doi.org/10.1109/jssc.2017.2705070.
Full textDissertations / Theses on the topic "CMOS 65 nm, 45 nm and 32 nm"
Quémerais, Thomas. "Conception et étude de la fiabilité des amplificateurs de puissance fonctionnant aux fréquences millimétriques en technologies CMOS avancées." Grenoble INPG, 2010. http://www.theses.fr/2010INPG0158.
Full textWith the emergence of millimeter-wave applications such as automotive radar or WHDMI, the reliability became a very important issue for the industry. In a radio transceiver, the main reliability problems concern the MOS transistors used in the power amplifiers, due to the high power level. These devices are subject to deterioration by the hot carrier phenomenon. This impacts heavily the power amplifiers performances. This thesis work concerns the design and the study of the reliability of millimeter-wave power amplifiers in advanced CMOS technologies. The manuscript is divided into four chapters. The two first one concern the study, the design, the modeling and the characterization of integrated active and passive elements on silicon and used into power amplifiers at millimeter wave frequencies. The third chapter describes the three power amplifiers designed and realized for reliability tests. The final chapter provides a comprehensive study of the reliability of these circuits to calculate their lifetime
Quémerais, Thomas. "Conception et Etude de la Fiabilité des Amplificateurs de Puissance Fonctionnant aux Fréquences Millimétriques en Technologies CMOS Avancées." Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00558711.
Full textImbert, Bruno. "ETUDE DE LA FORMATION DU SILICIURE DE NICKEL-PLATINE INTEGRE DANS LA FABRICATION DE TRANSISTORS CMOS POUR LES TECHNOLOGIES 65 ET 45 NM." Phd thesis, 2009. http://tel.archives-ouvertes.fr/tel-00421859.
Full textBook chapters on the topic "CMOS 65 nm, 45 nm and 32 nm"
Sahu, Anil Kumar, G. R. Sinha, and Sapna Soni. "Design of Sigma-Delta Converter Using 65 nm CMOS Technology for Nerves Organization in Brain Machine Interface." In Data Management, Analytics and Innovation, 413–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9949-8_28.
Full textKammari, Raviteja, and Vijaya Sankara Rao Pasupureddi. "A Widely Linear, Power Efficient, Charge Controlled Delay Element for Multi-phase Clock Generation in 1.2 V, 65 nm CMOS." In Communications in Computer and Information Science, 202–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9767-8_18.
Full textPang, Zhengbin, Fangxu Lv, Weiping Tang, Mingche Lai, Kaile Guo, Yuxuan Wu, Tao Liu, Miaomiao Wu, and Dechao Lu. "A 32 Gb/s Low Power Little Area Re-timer with PI Based CDR in 65 nm CMOS Technology." In Communications in Computer and Information Science, 31–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8135-9_3.
Full textConference papers on the topic "CMOS 65 nm, 45 nm and 32 nm"
Boyd, Sarah, David Dornfeld, Nikhil Krishnan, and Mehran Moalem. "Environmental Challenges for 45-nm and 32-nm node CMOS Logic." In 2007 IEEE International Symposium on Electronics and the Environment. IEEE, 2007. http://dx.doi.org/10.1109/isee.2007.369375.
Full textFang, Tong, Min Liu, Li-Yuan Liu, Zi-Teng Cai, Run-Jiang Dou, Peng Feng, Nan Qi, Zhao Zhang, Jian Liu, and Nan-Jian Wu. "A 32×32 Array Terahertz Sensor in 65-nm CMOS Technology." In 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2021. http://dx.doi.org/10.1109/icta53157.2021.9661999.
Full textLe Gratiet, Bertrand, Frank Sundermann, Jean Massin, Marianne Decaux, Nicolas Thivolle, Fabrice Baron, Alain Ostrovsky, et al. "Improved CD control for 45-40 nm CMOS logic patterning: anticipation for 32-28 nm." In SPIE Advanced Lithography, edited by Christopher J. Raymond. SPIE, 2010. http://dx.doi.org/10.1117/12.845987.
Full textTripathi, S. K., Mohd Samar Ansari, and Iqbal A. Khan. "Performance Comparison of a Current Conveyor in 0.35 μm & 65 nm CMOS and 32 nm CNFET." In 2014 International Conference on Devices, Circuits and Communications (ICDCCom). IEEE, 2014. http://dx.doi.org/10.1109/icdccom.2014.7024735.
Full textImai, Kiyotaka. "Low Standby Power CMOS Process Integration Scheme for 45-32 nm node." In 2007 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2007. http://dx.doi.org/10.7567/ssdm.2007.b-3-1.
Full textBanno, N., M. Tada, T. Sakamoto, K. Okamoto, M. Miyamura, N. Iguchi, T. Nohisa, and H. Hada. "Nonvolatile 32×32 crossbar atom switch block integrated on a 65-nm CMOS platform." In 2012 IEEE Symposium on VLSI Technology. IEEE, 2012. http://dx.doi.org/10.1109/vlsit.2012.6242450.
Full textShin, Donghyup, and Gabriel M. Rebeiz. "A 32-Gbps 4×4 passive cross-point switch in 45-nm SOI CMOS." In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2013. http://dx.doi.org/10.1109/rfic.2013.6569575.
Full textKuo, Tai-Yu, Yen-Ting Lin, Chun-Nien Chen, and Huei Wang. "A 40-GHz High Linearity Transmitter in 65-nm CMOS Technology with 32-dBm OIP3." In 2019 IEEE/MTT-S International Microwave Symposium - IMS 2019. IEEE, 2019. http://dx.doi.org/10.1109/mwsym.2019.8700795.
Full textShickova, A., T. Kauerauf, A. Rothschild, M. Aoulaiche, S. Sahhaf, B. Kaczer, A. Veloso, et al. "Addressing Key Concerns for Implementation of Ni FUSI into Manufacturing for 45/32 nm CMOS." In 2007 IEEE Symposium on VLSI Technology. IEEE, 2007. http://dx.doi.org/10.1109/vlsit.2007.4339765.
Full textTran, A. T., and B. M. Baas. "Design of an energy-efficient 32-bit adder operating at subthreshold voltages in 45-nm CMOS." In 2010 Third International Conference on Communications and Electronics (ICCE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icce.2010.5670687.
Full text