Dissertations / Theses on the topic 'Clustering spectral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Clustering spectral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Shortreed, Susan. "Learning in spectral clustering /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8977.
Full textLarson, Ellis, and Nelly Åkerblom. "Spectral clustering for Meteorology." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297760.
Full textGaertler, Marco. "Clustering with spectral methods." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10101213.
Full textMasum, Mohammad. "Vertex Weighted Spectral Clustering." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3266.
Full textLarsson, Johan, and Isak Ågren. "Numerical Methods for Spectral Clustering." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275701.
Full textRossi, Alfred Vincent III. "Temporal Clustering of Finite Metric Spaces and Spectral k-Clustering." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500033042082458.
Full textDarke, Felix, and Blomkvist Linus Below. "Categorization of songs using spectral clustering." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297763.
Full textMarotta, Serena. "Alcuni metodi matriciali per lo Spectral Clustering." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14122/.
Full textAlshammari, Mashaan. "Graph Filtering and Automatic Parameter Selection for Efficient Spectral Clustering." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24091.
Full textAzam, Nadia Farhanaz. "Spectral clustering: An explorative study of proximity measures." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28238.
Full textKong, Tian Fook. "Multilevel spectral clustering : graph partitions and image segmentation." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45275.
Full textIncludes bibliographical references (p. 145-146).
While the spectral graph partitioning method gives high quality segmentation, segmenting large graphs by the spectral method is computationally expensive. Numerous multilevel graph partitioning algorithms are proposed to reduce the segmentation time for the spectral partition of large graphs. However, the greedy local refinement used in these multilevel schemes has the tendency of trapping the partition in poor local minima. In this thesis, I develop a multilevel graph partitioning algorithm that incorporates the inverse powering method with greedy local refinement. The combination of the inverse powering method with greedy local refinement ensures that the partition quality of the multilevel method is as good as, if not better than, segmenting the large graph by the spectral method. In addition, I present a scheme to construct the adjacency matrix, W and degree matrix, D for the coarse graphs. The proposed multilevel graph partitioning algorithm is able to bisect a graph (k = 2) with significantly shorter time than segmenting the original graph without the multilevel implementation, and at the same time achieving the same normalized cut (Ncut) value. The starting eigenvector, obtained by solving a generalized eigenvalue problem on the coarsest graph, is close to the Fiedler vector of the original graph. Hence, the inverse iteration needs only a few iterations to converge the starting vector. In the k-way multilevel graph partition, the larger the graph, the greater the reduction in the time needed for segmenting the graph. For the multilevel image segmentation, the multilevel scheme is able to give better segmentation than segmenting the original image. The multilevel scheme has higher success of preserving the salient part of an object.
(cont.) In this work, I also show that the Ncut value is not the ultimate yardstick for the segmentation quality of an image. Finding a partition that has lower Ncut value does not necessary means better segmentation quality. Segmenting large images by the multilevel method offers both speed and quality.
by Tian Fook Kong.
S.M.
Aven, Matthew. "Daily Traffic Flow Pattern Recognition by Spectral Clustering." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/cmc_theses/1597.
Full textGan, Sonny. "The application of spectral clustering in drug discovery." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4839/.
Full textGhafoory, Jones. "p-Laplacian Spectral Clustering Applied in Software Testing." Thesis, KTH, Numerisk analys, NA, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260255.
Full textMjukvarutestning har en viktig roll inom mjukvaruutveckling. Att ha en mer exakt och kostnadseffektiv testprocess är efterfrågad i industrin. Därför är testoptimering ett viktigt ämne inom forskning och i praktiken. Idag kan mjukvarutestning utföras manuellt, automatiskt eller halvautomatiskt. En manuell testprocess är fortfarande populär för att testa säkerhetskritiska system. För att testa en programvara manuellt så måste vi skapa en uppsättning specifikationer för testfall. Antalet testfall som behövs kan bero på bland annat produktens storlek, komplexitet, företagspolicys etc. Att generera och utföra testfall manuellt är ofta en tids- och resurskrävande process. För att minska testkostnader och för att potentiellt sett kunna släppa produkten till marknaden snabbare kan det därför vara av intresse att rangordna vilka test fall som borde utföras. För att göra rangordningen så måste testfallens särskiljas på något vis. Med andra ord så måste varje testfalls egenskaper upptäckas i förväg. En viktig egenskap att urskilja från testfallen är hur många krav testfallet omfattar. I det här projektet tar vi fram en metod baserad på $p$-Laplacian spektralklustring för att hitta en spårbarhetsmatris mellan manuella testfall och krav för att ta reda på vilka krav som omfattas av alla testfall. För att evaluera metodens lämplighet så jämförs den mot en tidigare empirisk studie av samma problem som gjordes på ett järnvägsbruk hos Bombardier Transportation i Sverige. Från de experiment som utfördes med vår framtagna metod så kunde ett $F_1$-Score på $4.4\%$ uppnås. Även om den metod som togs fram i detta projekt underpresterade för det här specifika problemet så kunde insikter om vilka begränsningar $p$-Laplacian spektralklustring har och hur de potentiellt sett kan behandlas för liknande problem.
Casaca, Wallace Correa de Oliveira. "Graph Laplacian for spectral clustering and seeded image segmentation." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24062015-112215/.
Full textSegmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
Barreira, Daniel, and Netterström Nazar Maksymchuk. "Recommend Songs With Data From Spotify Using Spectral Clustering." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297683.
Full textPihlström, Ralf. "On some Spectral Properties of Stochastic Similarity Matrices for Data Clustering." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396646.
Full textCarozza, Marina. "Matrici Laplaciane sui grafi, proprietà di interlacing ed applicazione allo spectral clustering." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18789/.
Full textKaratzoglou, Alexandros, and Ingo Feinerer. "Text Clustering with String Kernels in R." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/1002/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Mayer-Jochimsen, Morgan. "Clustering Methods and Their Applications to Adolescent Healthcare Data." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/scripps_theses/297.
Full textCresswell, Kellen Garrison. "Spectral methods for the detection and characterization of Topologically Associated Domains." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6100.
Full textBlakely, Logan. "Spectral Clustering for Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series." Thesis, Portland State University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10980011.
Full textThe increasing demand for and prevalence of distributed energy resources (DER) such as solar power, electric vehicles, and energy storage, present a unique set of challenges for integration into a legacy power grid, and accurate models of the low-voltage distribution systems are critical for accurate simulations of DER. Accurate labeling of the phase connections for each customer in a utility model is one area of grid topology that is known to have errors and has implications for the safety, efficiency, and hosting capacity of a distribution system. This research presents a methodology for the phase identification of customers solely using the advanced metering infrastructure (AMI) voltage timeseries. This thesis proposes to use Spectral Clustering, combined with a sliding window ensemble method for utilizing a long-term, time-series dataset that includes missing data, to group customers within a lateral by phase. These clustering phase predictions validate over 90% of the existing phase labels in the model and identify customers where the current phase labels are incorrect in this model. Within this dataset, this methodology produces consistent, high-quality results, verified by validating the clustering phase predictions with the underlying topology of the system, as well as selected examples verified using satellite and street view images publicly available in Google Earth. Further analysis of the results of the Spectral Clustering predictions are also shown to not only validate and improve the phase labels in the utility model, but also show potential in the detection of other types of errors in the topology of the model such as errors in the labeling of connections between customers and transformers, unlabeled residential solar power, unlabeled transformers, and locating customers with incomplete information in the model. These results indicate excellent potential for further development of this methodology as a tool for validating and improving existing utility models of the low-voltage side of the distribution system.
Reizer, Gabriella v. "Stability Selection of the Number of Clusters." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/math_theses/98.
Full textPassmoor, Sean Stuart. "Clustering studies of radio-selected galaxies." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7521_1332410859.
Full textWe investigate the clustering of HI-selected galaxies in the ALFALFA survey and compare results with those obtained for HIPASS. Measurements of the angular correlation function and the inferred 3D-clustering are compared with results from direct spatial-correlation measurements. We are able to measure clustering on smaller angular scales and for galaxies with lower HI masses than was previously possible. We calculate the expected clustering of dark matter using the redshift distributions of HIPASS and ALFALFA and show that the ALFALFA sample is somewhat more anti-biased with respect to dark matter than the HIPASS sample. We are able to conform the validity of the dark matter correlation predictions by performing simulations of the non-linear structure formation. Further we examine how the bias evolves with redshift for radio galaxies detected in the the first survey.
Furuhashi, Takeshi, Tomohiro Yoshikawa, and Kazuto Inagaki. "A Study on Extraction of Minority Groups in Questionnaire Data based on Spectral Clustering." IEEE, 2014. http://hdl.handle.net/2237/20713.
Full textBellam, Venkata Pavan Kumar. "Efficient Community Detection for Large Scale Networks via Sub-sampling." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/81862.
Full textMaster of Science
Felizardo, Rui Miguel Meireles. "A study on parallel versus sequential relational fuzzy clustering methods." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/5663.
Full textRelational Fuzzy Clustering is a recent growing area of study. New algorithms have been developed,as FastMap Fuzzy c-Means (FMFCM) and the Fuzzy Additive Spectral Clustering Method(FADDIS), for which it had been obtained interesting experimental results in the corresponding founding works. Since these algorithms are new in the context of the Fuzzy Relational clustering community, not many experimental studies are available. This thesis comes in response to the need of further investigation on these algorithms, concerning a comparative experimental study from the two families of algorithms: the parallel and the sequential versions. These two families of algorithms differ in the way they cluster data. Parallel versions extract clusters simultaneously from data and need the number of clusters as an input parameter of the algorithms, while the sequential versions extract clusters one-by-one until a stop condition is verified, being the number of clusters a natural output of the algorithm. The algorithms are studied in their effectiveness on retrieving good cluster structures by analysing the quality of the partitions as well as the determination of the number of clusters by applying several validation measures. An extensive simulation study has been conducted over two data generators specifically constructed for the algorithms under study, in particular to study their robustness for data with noise. Results with benchmark real data are also discussed. Particular attention is made on the most adequate pre-processing on relational data, in particular on the pseudo-inverse Laplacian transformation.
Stephani, Henrike [Verfasser], Gabriele [Akademischer Betreuer] Steidl, and Erich Peter [Akademischer Betreuer] Klement. "Automatic Segmentation and Clustering of Spectral Terahertz Data / Henrike Stephani. Betreuer: Gabriele Steidl ; Erich Peter Klement." Kaiserslautern : Technische Universität Kaiserslautern, 2012. http://d-nb.info/1027625681/34.
Full textStephani, Henrike [Verfasser], Gabriele Akademischer Betreuer] Steidl, and Erich Peter [Akademischer Betreuer] [Klement. "Automatic Segmentation and Clustering of Spectral Terahertz Data / Henrike Stephani. Betreuer: Gabriele Steidl ; Erich Peter Klement." Kaiserslautern : Technische Universität Kaiserslautern, 2012. http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-31630.
Full textAmaduzzi, Alberto. "Enzymes' characterization via spectral analysis of the Laplacian associated to their relative contact maps." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23899/.
Full textBezek, Perit. "A Clustering Method For The Problem Of Protein Subcellular Localization." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607981/index.pdf.
Full texts functions. Function of a protein may be estimated from its sequence. Motifs or conserved subsequences are strong indicators of function. In a given sample set of protein sequences known to perform the same function, a certain subsequence or group of subsequences should be common
that is, occurrence (frequency) of common subsequences should be high. Our idea is to find the common subsequences through clustering and use these common groups (implicit motifs) to classify proteins. To calculate the distance between two subsequences, traditional string edit distance is modified so that only replacement is allowed and the cost of replacement is related to an amino acid substitution matrix. Based on the modified string edit distance, spectral clustering embeds the subsequences into some transformed space for which the clustering problem is expected to become easier to solve. For a given protein sequence, distribution of its subsequences over the clusters is the feature vector which is subsequently fed to a classifier. The most important aspect if this approach is the use of spectral clustering based on modified string edit distance.
Curado, Manuel. "Structural Similarity: Applications to Object Recognition and Clustering." Doctoral thesis, Universidad de Alicante, 2018. http://hdl.handle.net/10045/98110.
Full textMinisterio de Economía, Industria y Competitividad (Referencia TIN2012-32839 BES-2013-064482)
Brocklebank, Sean. "Inquiry into the nature and causes of individual differences in economics." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6281.
Full textFairbanks, James Paul. "Graph analysis combining numerical, statistical, and streaming techniques." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54972.
Full textHe, Guanlin. "Parallel algorithms for clustering large datasets on CPU-GPU heterogeneous architectures." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG062.
Full textClustering, which aims at achieving natural groupings of data, is a fundamental and challenging task in machine learning and data mining. Numerous clustering methods have been proposed in the past, among which k-means is one of the most famous and commonly used methods due to its simplicity and efficiency.Spectral clustering is a more recent approach that usually achieves higher clustering quality than k-means. However, classical algorithms of spectral clustering suffer from a lack of scalability due to their high complexities in terms of number of operations and memory space requirements. This scalability challenge can be addressed by applying approximation methods or by employing parallel and distributed computing.The objective of this thesis is to accelerate spectral clustering and make it scalable to large datasets by combining representatives-based approximation with parallel computing on CPU-GPU platforms. Considering different scenarios, we propose several parallel processing chains for large-scale spectral clustering. We design optimized parallel algorithms and implementations for each module of the proposed chains: parallel k-means on CPU and GPU, parallel spectral clustering on GPU using sparse storage format, parallel filtering of data noise on GPU, etc. Our various experiments reach high performance and validate the scalability of each module and the complete chains
Lee, Zed Heeje. "A graph representation of event intervals for efficient clustering and classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281947.
Full textSekvenser av händelsesintervall förekommer i flera applikationsdomäner, medan deras inneboende komplexitet hindrar skalbara lösningar på uppgifter som kluster och klassificering. I den här avhandlingen föreslår vi en ny spektral inbäddningsrepresentation av händelsens intervallsekvenser som förlitar sig på bipartitgrafer. Mer konkret representeras varje händelsesintervalsekvens av en bipartitgraf genom att följa tre huvudsteg: (1) skapa en hashtabell som snabbt kan konvertera en samling händelsintervalsekvenser till en bipartig grafrepresentation, (2) skapa och reglera en bi-adjacency-matris som motsvarar bipartitgrafen, (3) definiera en spektral inbäddning på bi-adjacensmatrisen. Dessutom visar vi att väsentliga förbättringar kan uppnås med avseende på klassificeringsprestanda genom beskärningsparametrar som fångar arten av relationerna som bildas av händelsesintervallen. Vi demonstrerar genom omfattande experimentell utvärdering på fem verkliga datasätt att vår strategi kan erhålla runtime-hastigheter på upp till två storlekar jämfört med andra modernaste metoder och liknande eller bättre kluster- och klassificerings- prestanda.
Gustavsson, Hanna. "Clustering Based Outlier Detection for Improved Situation Awareness within Air Traffic Control." Thesis, KTH, Optimeringslära och systemteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264215.
Full textSyftet med detta arbete är att undersöka huruvida klusterbaserad anomalidetektering kan upptäcka onormala händelser inom flygtrafik. En normalmodell är anpassad till data som endast innehåller flygturer som är märkta som normala. Givet denna normalmodell så anpassas en anomalidetekteringsfunktion så att data-punkter som är lika normalmodellen klassificeras som normala och data-punkter som är avvikande som anomalier. På grund av att strukturen av nomraldatan är okänd så är tre olika klustermetoder testade, K-means, Gaussian Mixture Model och Spektralklustering. Beroende på hur normalmodellen är modellerad så har olika metoder för anpassa en detekteringsfunktion används, så som baserat på avstånd, sannolikhet och slutligen genom One-class Support Vector Machine. Detta arbete kan dra slutsatsen att det är möjligt att detektera anomalier med hjälp av en klusterbaserad anomalidetektering. Den algoritm som presterade bäst var den som kombinerade spektralklustring med One-class Support Vector Machine. På test-datan så klassificerade algoritmen $95.8\%$ av all data korrekt. Av alla data-punkter som var märka som anomalier så klassificerade denna algoritm 89.4% rätt, och på de data-punkter som var märka som normala så klassificerade algoritmen 96.2% rätt.
Miti, Filippo. "Mathematical models for cellular aggregation: the chemotactic instability and clustering formation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12020/.
Full textHenley, Lisa. "The quantification and visualisation of human flourishing." Thesis, University of Canterbury. School of Mathematics and Statistics, 2015. http://hdl.handle.net/10092/10441.
Full textStorer, Jeremy J. "Computational Intelligence and Data Mining Techniques Using the Fire Data Set." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1460129796.
Full textSchuetter, Jared Michael. "Cairn Detection in Southern Arabia Using a Supervised Automatic Detection Algorithm and Multiple Sample Data Spectroscopic Clustering." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269567071.
Full textBenigni, Matthew Curran. "Detection and Analysis of Online Extremist Communities." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/949.
Full textFender, Alexandre. "Solutions parallèles pour les grands problèmes de valeurs propres issus de l'analyse de graphe." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV069/document.
Full textGraphs, or networks, are mathematical structures to represent relations between elements. These systems can be analyzed to extract information upon the comprehensive structure or the nature of individual components. The analysis of networks often results in problems of high complexity. At large scale, the exact solution is prohibitively expensive to compute. Fortunately, this is an area where iterative approximation methods can be employed to find accurate estimations. Historical methods suitable for a small number of variables could not scale to large and sparse matrices arising in graph applications. Therefore, the design of scalable and efficient solvers remains an essential problem. Simultaneously, the emergence of parallel architecture such as GPU revealed remarkable ameliorations regarding performances and power efficiency. In this dissertation, we focus on solving large eigenvalue problems a rising in network analytics with the goal of efficiently utilizing parallel architectures. We revisit the spectral graph analysis theory and propose novel parallel algorithms and implementations. Experimental results indicate improvements on real and large applications in the context of ranking and clustering problems
Mandrell, Christopher. "IMPROVING SPECTRAL ANALYSIS WITH THE APPLICATION OF MACHINE LEARNING: STUDY OF LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) AND RAMAN SPECTROSCOPY WITH CLASSIFICATION AND CLUSTERING TECHNIQUES." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2665.
Full textMouysset, Sandrine. "Contributions à l'étude de la classification spectrale et applications." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2010. http://tel.archives-ouvertes.fr/tel-00573433.
Full textWesterlund, Annie M. "Computational Study of Calmodulin’s Ca2+-dependent Conformational Ensembles." Licentiate thesis, KTH, Biofysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234888.
Full textQC 20180912
Nardoni, Chiara. "Diffusion maps in the Subriemannian motion group and perceptual grouping." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6971/.
Full textWitt, Walter G. "Quantifying the Structure of Misfolded Proteins Using Graph Theory." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3244.
Full textSaade, Alaa. "Spectral inference methods on sparse graphs : theory and applications." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE024/document.
Full textIn an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on he microscopic interactions between their elementary constituents. Statistical physics, precisely created to recover the macroscopic laws of thermodynamics from an idealized model of interacting particles, provides significant insight to tackle such complex networks.In this dissertation, we use methods derived from the statistical physics of disordered systems to design and study new algorithms for inference on graphs. Our focus is on spectral methods, based on certain eigenvectors of carefully chosen matrices, and sparse graphs, containing only a small amount of information. We develop an original theory of spectral inference based on a relaxation of various meanfield free energy optimizations. Our approach is therefore fully probabilistic, and contrasts with more traditional motivations based on the optimization of a cost function. We illustrate the efficiency of our approach on various problems, including community detection, randomized similarity-based clustering, and matrix completion
Voiron, Nicolas. "Structuration de bases multimédia pour une exploration visuelle." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAA036/document.
Full textThe large increase in multimedia data volume requires the development of effective solutions for visual exploration of multimedia databases. After reviewing the visualization process involved, we emphasis the need of data structuration. The main objective of this thesis is to propose and study clustering and classification of multimedia database for their visual exploration.We begin with a state of the art detailing the data and the metrics we can produce according to the nature of the variables describing each document. Follows a review of the projection and classification techniques. We also present in detail the Spectral Clustering method.Our first contribution is an original method that produces fusion of metrics using rank correlations. We validate this method on an animation movie database coming from an international festival. Then we propose a supervised classification method based on rank correlation. This contribution is evaluated on a multimedia challenge dataset. Then we focus on Spectral Clustering methods. We test a supervised Spectral Clustering technique and compare to state of the art methods. Finally we examine active semi-supervised Spectral Clustering methods. In this context, we propose and validate constraint propagation techniques and strategies to improve the convergence of these active methods