Contents
Academic literature on the topic 'Clustering de trajectoires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clustering de trajectoires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Clustering de trajectoires"
Coquet, Jean. "Étude exhaustive de voies de signalisation de grande taille par clustering des trajectoires et caractérisation par analyse sémantique." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S073/document.
Full textSignaling pathways describe the extern stimuli responses of a cell. They are indispensable in biological processes such as differentiation, proliferation or apoptosis. The Systems Biology tries to study exhaustively the signalling pathways using static or dynamic models. The number of solutions which explain a biological phenomenon (for example the stimulus reaction of cell) can be very high in large models. First, this thesis proposes some different strategies to group the solutions describing the stimulus signalling with clustering methods and Formal Concept Analysis. Then, it presents the cluster characterization with semantic web methods. Those strategies have been applied to the TGF-beta signaling network, an extracellular stimulus playing an important role in the cancer growing, which helped to identify 5 large groups of trajectories characterized by different biological processes. Next, this thesis confronts the problem of heterogeneous data translation from different bases to a unique formalism. The goal is to be able to generalize the previous study. It proposes a strategy to group signaling pathways of a database to an unique model, then to calculate every signaling trajectory of the stimulus
Richard, Jérémy. "De la capture de trajectoires de visiteurs vers l’analyse interactive de comportement après enrichissement sémantique." Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS012.
Full textThis thesis focuses on the behavioral study of tourist activity using a generic and interactive analysis approach. The developed analytical process concerns the tourist trajectory in the city and museums as the study field. Experiments were conducted to collect movement data in the tourist city using GPS signals, thus enabling the acquisition of a movement trajectory. However, the study primarily focuses on reconstructing a visitor’s trajectory in museums using indoor positioning equipment, i.e., in a constrained environment. Then, a generic multi-aspect semantic enrichment model is developed to supplement an individual’s trajectory using multiple context data such as the names of neighborhoods the individual passed through in the city, museum rooms, weather outside, and indoor mobile application data. The enriched trajectories, called semantic trajectories, are then analyzed using formal concept analysis and the GALACTIC platform, which enables the analysis of complex and heterogeneous data structures as a hierarchy of subgroups of individuals sharing common behaviors. Finally, attention is paid to the "ReducedContextCompletion" algorithm that allows for interactive navigation in a lattice of concepts, allowing the data analyst to focus on the aspects of the data they wish to explore
Nuemi, Tchathouang Gilles Eric. "Identification des profils de changement sur données longitudinales, illustrée par deux exemples : étude des trajectoires hopsitalières de prise en charge d'un cancer. Construction des profils évolutifs de qualité de vie lors d'un essai thérapeutique pour un cancer avancé." Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOMU02/document.
Full textContext In healthcare domain, data mining for knowledge discovery represent a growing issue. Questions about the organisation of healthcare system and the study of the relation between treatment and quality of life (QoL) perceived could be addressed that way. The evolution of technologies provides us with efficient data mining tools and statistical packages containing advanced methods available for non-experts. We illustrate this approach through two issues: 1 / What organisation of healthcare system for cancer diseases management? 2 / Exploring in patients suffering from metastatic cancer, the relationship between health-related QoL perceived and treatment received as part of a clinical trial. Materials and methods Today we have large databases. Some are dedicated to gather together all hospital stays, as is the case for the national medico-administrative DRG-type database. Others are used to store information about QoL perceived by patients, routinely collected in clinical trials. The analysis of these data was carried out following three main steps: In the first step, data are prepared to be useable according to a defined concept of data analysis. For example, a classical database (patient-centered) was converted to a new database organised around a new defined entity which was different from the patient (eg. Care trajectory). Then in the second step, we applied data mining methods for knowledge discovery: we used the formal analysis of concepts method and unsupervised clustering techniques. And finally the results were presented in a graphical form. Results Concerning the question of the organisation of healthcare system, we constructed a typology of hospital care trajectories. We were able then to describe current practice in the management of cancers from the first cancer related surgical operation until one year of follow-up. In the case of breast cancer, we’ve described a typology of care on the basis of hospital costs over a one year follow up. Concerning the second question, we have also constructed a typology of QoL change patterns. This comprised three groups: Improvement, stability and degradation group.Conclusion The main interest of this work was to highlight new thoughts, which advances understanding and, contributing in appropriate solutions building
Legrand, Karim. "Correction and Optimization of 4D aircraft trajectories by sharing wind and temperature information." Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0011/document.
Full textThis thesis is related to air traffic management systems current changes. On the ground and in flight, trajectory calculation methods and available data differ. Wind and temperature are two ubiquitous parameters that are subject to and cause prediction bias. We propose a concept to limit this bias. Our "Wind and Temperature Networking" concept improves trajectory prediction, using wind and temperature information from neighboring aircraft. We detail the effects of temperature on the aircraft performances, allowing for temperature to be taken into account. The concept evaluation is done on 8000 flights. We discuss the calculation of optimal trajectories in the presence of predicted winds, to replace the current North Atlantic Tracks, and to provide optimized and robust groups of trajectories. The conclusion of this thesis presents other fields of wind sharing applications, and addresses the need for new telecommunications infrastructures and protocols
Bozdemir, Beyza. "Privacy-preserving machine learning techniques." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS323.
Full textMachine Learning as a Service (MLaaS) refers to a service that enables companies to delegate their machine learning tasks to single or multiple untrusted but powerful third parties, namely cloud servers. Thanks to MLaaS, the need for computational resources and domain expertise required to execute machine learning techniques is significantly reduced. Nevertheless, companies face increasing challenges with ensuring data privacy guarantees and compliance with the data protection regulations. Executing machine learning tasks over sensitive data requires the design of privacy-preserving protocols for machine learning techniques.In this thesis, we aim to design such protocols for MLaaS and study three machine learning techniques: Neural network classification, trajectory clustering, and data aggregation under privacy protection. In our solutions, our goal is to guarantee data privacy while keeping an acceptable level of performance and accuracy/quality evaluation when executing the privacy-preserving variants of these machine learning techniques. In order to ensure data privacy, we employ several advanced cryptographic techniques: Secure two-party computation, homomorphic encryption, homomorphic proxy re-encryption, multi-key homomorphic encryption, and threshold homomorphic encryption. We have implemented our privacy-preserving protocols and studied the trade-off between privacy, efficiency, and accuracy/quality evaluation for each of them
Guillouet, Brendan. "Apprentissage statistique : application au trafic routier à partir de données structurées et aux données massives." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30205/document.
Full textThis thesis focuses on machine learning techniques for application to big data. We first consider trajectories defined as sequences of geolocalized data. A hierarchical clustering is then applied on a new distance between trajectories (Symmetrized Segment-Path Distance) producing groups of trajectories which are then modeled with Gaussian mixture in order to describe individual movements. This modeling can be used in a generic way in order to resolve the following problems for road traffic : final destination, trip time or next location predictions. These examples show that our model can be applied to different traffic environments and that, once learned, can be applied to trajectories whose spatial and temporal characteristics are different. We also produce comparisons between different technologies which enable the application of machine learning methods on massive volumes of data
Gorin, Arseniy. "Structuration du modèle acoustique pour améliorer les performance de reconnaissance automatique de la parole." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0161/document.
Full textThis thesis focuses on acoustic model structuring for improving HMM-Based automatic speech recognition. The structuring relies on unsupervised clustering of speech utterances of the training data in order to handle speaker and channel variability. The idea is to split the data into acoustically similar classes. In conventional multi-Modeling (or class-Based) approach, separate class-Dependent models are built via adaptation of a speaker-Independent model. When the number of classes increases, less data becomes available for the estimation of the class-Based models, and the parameters are less reliable. One way to handle such problem is to modify the classification criterion applied on the training data, allowing a given utterance to belong to more than one class. This is obtained by relaxing the classification decision through a soft margin. This is investigated in the first part of the thesis. In the main part of the thesis, a novel approach is proposed that uses the clustered data more efficiently in a class-Structured GMM. Instead of adapting all HMM-GMM parameters separately for each class of data, the class information is explicitly introduced into the GMM structure by associating a given density component with a given class. To efficiently exploit such structured HMM-GMM, two different approaches are proposed. The first approach combines class-Structured GMM with class-Dependent mixture weights. In this model the Gaussian components are shared across speaker classes, but they are class-Structured, and the mixture weights are class-Dependent. For decoding an utterance, the set of mixture weights is selected according to the estimated class. In the second approach, the mixture weights are replaced by density component transition probabilities. The approaches proposed in the thesis are analyzed and evaluated on various speech data, which cover different types of variability sources (age, gender, accent and noise)
Fansi, Tchango Arsène. "Reconnaissance comportementale et suivi multi-cible dans des environnements partiellement observés." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0156/document.
Full textIn this thesis, we are interested in the problem of pedestrian behavioral tracking within a critical environment partially under sensory coverage. While most of the works found in the literature usually focus only on either the location of a pedestrian or the activity a pedestrian is undertaking, we stands in a general view and consider estimating both data simultaneously. The contributions presented in this document are organized in two parts. The first part focuses on the representation and the exploitation of the environmental context for serving the purpose of behavioral estimation. The state of the art shows few studies addressing this issue where graphical models with limited expressiveness capacity such as dynamic Bayesian networks are used for modeling prior environmental knowledge. We propose, instead, to rely on richer contextual models issued from autonomous agent-based behavioral simulators and we demonstrate the effectiveness of our approach through extensive experimental evaluations. The second part of the thesis addresses the general problem of pedestrians’ mutual influences, commonly known as targets’ interactions, on their respective behaviors during the tracking process. Under the assumption of the availability of a generic simulator (or a function) modeling the tracked targets' behaviors, we develop a yet scalable approach in which interactions are considered at low computational cost. The originality of the proposed approach resides on the introduction of density-based aggregated information, called "representatives’’, computed in such a way to guarantee the behavioral diversity for each target, and on which the filtering system relies for computing, in a finer way, behavioral estimations even in case of occlusions. We present the modeling choices, the resulting algorithms as well as a set of challenging scenarios on which the proposed approach is evaluated
Paul, Alexandre. "Application des méthodes de partitionnement de données fonctionnelles aux trajectoires de voiture." Thesis, 2020. http://hdl.handle.net/1866/25430.
Full textThe study of the clustering of functional data has made a lot of progress in the last couple of years. Multiple methods have been proposed and the respective analysis has shown their eÿciency with some benchmark studies. The objective of this Master’s thesis is to compare those clustering algorithms with datasets from traÿc at an intersection of Montreal. The idea behind this is that the manual classification of these data sets is time-consuming. We show that it is possible to obtain adequate clustering and prediction results with several algorithms. One of the methods that we discussed is distclust : a distance-based algorithm that uses a K-means approach. We will also use a Gaussian mixture density clustering method known as mclust. Although those two techniques are quite e˙ective, they are multi-purpose clustering methods, therefore not tailored to the functional case. With that in mind, we apply four functional clustering methods : fitfclust, funmbclust, funclust, and funHDDC. Our results show that there is no loss in the quality of the clustering between the afore-mentioned functional methods and the multi-purpose ones. We prefer to use the functional ones because they provide a detailed estimation of the functional structure of the trajectory curves. One notable detail is the impact of a dimension reduction done with multivari-ate functional principal components analysis. Furthermore, we can use objective selection criteria such as the AIC and the BIC, and avoid using cluster quality indices that use a pre-existing classification of the data.