Dissertations / Theses on the topic 'Cluster analysis][Geographical data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Cluster analysis][Geographical data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eslava-Gomez, Guillermina. "Projection pursuit and other graphical methods for multivariate data." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236118.
Full textNgai, Wang-kay, and 倪宏基. "Cluster analysis on uncertain data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4218261X.
Full textNgai, Wang-kay. "Cluster analysis on uncertain data." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B4218261X.
Full textBusse, Ludwig M. Orbanz Peter Buhmann Joachim M. Buhmann Joachim M. Buhmann Joachim M. "Cluster analysis of heterogeneous rank data." Zurich : ETH Department of Computer Science, Institute of Computational Sciences, 2007. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=350.
Full textYeung, Ka Yee. "Cluster analysis of gene expression data /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6986.
Full textMolin, Felix. "Cluster analysis of European banking data." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219597.
Full textKreditinstituten utgör en central del av livet som det ser ut idag och har gjort det under en lång tid. Ett fel inom banksystemet kan orsaka enorma skador för individer likväl som länder. Ett nutida och minnesvärt fel är den globala finanskrisen 2007-2009. Den har påverkat millioner människor på olika vis ända sedan den slog till. Vad som orsakade den är en komplex fråga som inte kan besvaras med lätthet. Men vad har gjorts för att förebygga att något liknande händer igen? Hur har affärsmodellerna för kreditinstituten ändrats sedan krisen? Klusteranalys används i denna rapport för att adressera dessa frågor. Bankdata processerades med Calinski-Harabasz Kriteriet and Wards metod och detta resulterade i att två kluster hittades. Ett kluster är en samling observationer med liknande karakteristik eller affärsmodell i detta fall. De affärsmodeller som klustrena representerar är universella banker med retail fokus samt universella banker med wholessale fokus. Dessa affärsmodeller har analyserats över tid, vilket har avslöjat att kreditinstituten har utvecklats i en hälsosam riktning. Kreditinstituten var mer finansiellt pålitliga 2016 jämfört med 2007. Enligt trender i datan så är det troligt att denna utveckling forsätter.
Jarvis, Paul S. "Determining geographical causal relationships through the development of spatial cluster detection and feature selection techniques." Thesis, University of South Wales, 2006. https://pure.southwales.ac.uk/en/studentthesis/determining-geographical-casual-relationships-through-the-development-of-spatial-cluster-detection-and-feature-selection-techniques(7a882804-5565-44d7-8635-e59c66e2e9bc).html.
Full textTakahashi, Atsushi. "Hierarchical Cluster Analysis of Dense GNSS Data and Interpretation of Cluster Characteristics." Kyoto University, 2019. http://hdl.handle.net/2433/244510.
Full textSpringuel, R. Padraic. "Applying Cluster Analysis to Physics Education Research Data." Fogler Library, University of Maine, 2010. http://www.library.umaine.edu/theses/pdf/SpringuelRP2010.pdf.
Full textHegazy, Yasser Ali. "Delineating geostratigraphy by cluster analysis of piezocone data." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/20506.
Full textLi, Hao. "Feature cluster selection for high-dimensional data analysis." Diss., Online access via UMI:, 2007.
Find full textHobbs, Mike. "Genetic algorithms for spatial data analysis in geographical information systems." Thesis, University of Kent, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262636.
Full textSoon, Shih Chung. "On detection of extreme data points in cluster analysis." Connect to resource, 1987. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1262886219.
Full textWindridge, David. "A fluctuation analysis for optical cluster galaxies." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302173.
Full textBolton, Richard John. "Multivariate analysis of multiproduct market research data." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302542.
Full textVALE, MARCOS NEVES DO. "DATA CLUSTERING: ANALYSIS OF METHODS AND DEVELOPMENT OF APPLICATION FOR CLUSTER ANALYSIS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7975@1.
Full textA enorme massa de dados que é gerada pelas diversas empresas diariamente pode conter informações importantes que não são fáceis de serem extraídas. Com isso advém a necessidade de analisá-los automaticamente, de forma adequada, extraindo informação útil que pode agregar algum tipo de conhecimento. Uma das formas de se analisar os dados automaticamente é através da análise de agrupamentos. Ela procura encontrar grupos de dados semelhantes entre si. As técnicas de análise de agrupamentos revelam como os dados estão estruturados e resultam em um melhor entendimento sobre o negócio. Existe ainda hoje uma escassez de ferramentas para esse fim. Em um problema real de agrupamento de dados convém analisar os dados através da utilização de diferentes métodos, a fim de buscar aquele que melhor se adapte ao problema. Porém, as ferramentas existentes hoje em dia não são integradas, onde cada ferramenta possui um subconjunto dos métodos existentes de agrupamento. Dessa forma o usuário fica limitado à utilização de uma ferramenta específica ou é obrigado a conhecer diversas ferramentas diferentes, de forma a melhor analisar os dados de sua empresa. Esta dissertação apresenta uma revisão detalhada de todo o processo de análise de agrupamentos e o desenvolvimento de um aplicativo que visa não apenas a atender as deficiências presentes na maioria das ferramentas com esse fim, mas também a auxiliar, de forma mais completa, todo o processo de análise dos grupos. O aplicativo desenvolvido é de fácil utilização e permite que a ele sejam incorporados outros métodos eventualmente desenvolvidos pelo usuário. O aplicativo foi avaliado em três estudos de casos, os quais visam demonstrar a facilidade de uso do aplicativo, assim como avaliar as vantagens do uso de métodos de natureza fuzzy em uma base de dados real.
The enormous data mass that is daily generated by several companies can contain critical information that might not be easily retrieved, considering that the amount of data is generally huge and/or the target information might be spread through different data bases. Taking that into consideration, it might be necessary to properly analyze the data in an automatic way, so useful and valuable information can be extracted. One way of automatically analyzing data is through cluster analysis. This type of analysis searches for related similar data. These clusters settle a data structure model and with proper analysis can reveal important information. The techniques used in cluster analysis disclose how data is structured and allow a better knowledge of the business. Still today there is a lack of tools for this purpose. On a real situation with a data cluster problem it is wise to analyze the data through different methods, so we can find the one that better fits the problem. However, today the existing tools are not integrated, and each tool has a subgroup of existing cluster methods. This way the user stays limited to use only one specific tool or is forced to be aware of a number of different tools, so he would be able to better analyze the company data. This study presents a detailed review of the whole group analysis process and develops an application that not only suggests how to cover the currently lack of tools for this purpose, but also to help the complete cluster analysis process in a more extended way. The application developed is user friendly and allows other methods developed by users to be incorporated. The application has been evaluated into three case studies with the purpose of demonstrating its user friendly, as well as evaluating the advantages of using fuzzy methods on a true data base.
Wang, Dali. "Adaptive Double Self-Organizing Map for Clustering Gene Expression Data." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/WangD2003.pdf.
Full textMcClelland, Robyn L. "Regression based variable clustering for data reduction /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9611.
Full textTavares, Nuno Filipe Ramalho da Cunha. "Multivariate analysis applied to clinical analysis data." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12288.
Full textFolate, vitamin B12, iron and hemoglobin are essential for metabolic functions in the body. The deficiency of these can be the cause of several known pathologies and, untreated, can be responsible for severe morbidity and even death. The objective of this study is to characterize a population, residing in the metropolitan area of Lisbon and Setubal, concerning serum levels of folate, vitamin B12, iron and hemoglobin, as well as finding evidence of correlations between these parameters and illnesses, mainly cardiovascular, gastrointestinal, neurological and anemia. Clinical analysis data was collected and submitted to multivariate analysis. First the data was screened with Spearman correlation and Kruskal-Wallis analysis of variance to study correlations and variability between groups. To characterize the population, we used cluster analysis with Ward’s linkage method. Finally a sensitivity analysis was performed to strengthen the results. A positive correlation between iron with, ferritin and transferrin, and with hemoglobin was observed with the Spearman correlation. Kruskal-Wallis analysis of variance test showed significant differences between these biomarkers in persons aged 0 to 29, 30 to 59 and over 60 years old. Cluster analysis proved to be a useful tool when characterizing a population based on its biomarkers, showing evidence of low folate levels for the population in general, and hemoglobin levels below the reference values. Iron and vitamin B12 were within the reference range for most of the population. Low levels of the parameters were registered mainly in patients with cardiovascular, gastrointestinal, and neurological diseases and anemia.
Zhang, Yiqun. "Advances in categorical data clustering." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/658.
Full textNunn, Martha E. "Influence diagnostics for correlated data /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/9590.
Full textSpanopoulos, Georgios. "Density Enhancements in the Solar Wind Plasma - Cluster Data Analysis." Thesis, KTH, Rymd- och plasmafysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121330.
Full textHammah, Reginald Edmund. "Intelligent delineation of rock discontinuity data using fuzzy cluster analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0012/NQ41436.pdf.
Full textCunningham, Gordon John. "Application of cluster analysis to high-throughput multiple data types." Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2715/.
Full textPavlou, M. "Analysis of clustered data when the cluster size is informative." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1357842/.
Full textRobson, Geoffrey. "Multiple outlier detection and cluster analysis of multivariate normal data." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53508.
Full textENGLISH ABSTRACT: Outliers may be defined as observations that are sufficiently aberrant to arouse the suspicion of the analyst as to their origin. They could be the result of human error, in which case they should be corrected, but they may also be an interesting exception, and this would deserve further investigation. Identification of outliers typically consists of an informal inspection of a plot of the data, but this is unreliable for dimensions greater than two. A formal procedure for detecting outliers allows for consistency when classifying observations. It also enables one to automate the detection of outliers by using computers. The special case of univariate data is treated separately to introduce essential concepts, and also because it may well be of interest in its own right. We then consider techniques used for detecting multiple outliers in a multivariate normal sample, and go on to explain how these may be generalized to include cluster analysis. Multivariate outlier detection is based on the Minimum Covariance Determinant (MCD) subset, and is therefore treated in detail. Exact bivariate algorithms were refined and implemented, and the solutions were used to establish the performance of the commonly used heuristic, Fast–MCD.
AFRIKAANSE OPSOMMING: Uitskieters word gedefinieer as waarnemings wat tot s´o ’n mate afwyk van die verwagte gedrag dat die analis wantrouig is oor die oorsprong daarvan. Hierdie waarnemings mag die resultaat wees van menslike foute, in welke geval dit reggestel moet word. Dit mag egter ook ’n interressante verskynsel wees wat verdere ondersoek benodig. Die identifikasie van uitskieters word tipies informeel deur inspeksie vanaf ’n grafiese voorstelling van die data uitgevoer, maar hierdie benadering is onbetroubaar vir dimensies groter as twee. ’n Formele prosedure vir die bepaling van uitskieters sal meer konsekwente klassifisering van steekproefdata tot gevolg hˆe. Dit gee ook geleentheid vir effektiewe rekenaar implementering van die tegnieke. Aanvanklik word die spesiale geval van eenveranderlike data behandel om noodsaaklike begrippe bekend te stel, maar ook aangesien dit in eie reg ’n area van groot belang is. Verder word tegnieke vir die identifikasie van verskeie uitskieters in meerveranderlike, normaal verspreide data beskou. Daar word ook ondersoek hoe hierdie idees veralgemeen kan word om tros analise in te sluit. Die sogenaamde Minimum Covariance Determinant (MCD) subversameling is fundamenteel vir die identifikasie van meerveranderlike uitskieters, en word daarom in detail ondersoek. Deterministiese tweeveranderlike algoritmes is verfyn en ge¨ımplementeer, en gebruik om die effektiwiteit van die algemeen gebruikte heuristiese algoritme, Fast–MCD, te ondersoek.
Kapp, Amy Virginia. "Cluster analysis of microarray data using the in-group proportion /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textCollin, Sara, and Ingrid Möllerberg. "Designing an Interactive tool for Cluster Analysis of Clickstream Data." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414237.
Full textStrehl, Alexander. "Relationship-based clustering and cluster ensembles for high-dimensional data mining." Thesis, Full text (PDF) from UMI/Dissertation Abstracts International, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3088578.
Full textHou, Jun. "Using Hadoop to Cluster Data in Energy System." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1430092547.
Full textJia, Hong. "Clustering of categorical and numerical data without knowing cluster number." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1495.
Full textPostigo, Smura Michel Alexander. "Cluster analysis on sparse customer data on purchase of insurance products." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249558.
Full textMålet med detta examensarbete är att utföra en klusteranalys på kunddata av försäkringsprodukter. Tre olika klusteralgoritmer undersöks. Dessa är Kmeans (center-based clustering), Two-Level clustering (SOM och Hierarchical clustering) och HDBSCAN (density-based clustering). Input till algoritmerna är ett högdimensionellt och glest dataset. Det innhåller information om kundernas tidigare köp, hur många produkter de har köpt och hur mycket de har betalat. Datasetet delas upp i fyra delmängder med kunskap inom området och förarbetas också genom att normaliseras respektive skalas innan klustringsalgoritmerna körs på det. En parametersökning utförs för dem tre olika algoritmerna och den bästa klustringen jämförs med de andra resultaten. Den bästa algoritmen bestäms genom att beräkna the högsta silhouette index-medelvärdet. Resultaten indikerar att alla tre algoritmerna levererar ungefärligt lika bra resultat, med enstaka undantag. Dock, kan det bekräftas att algoritmen som visar bäst resultat överlag är K-means på skalade dataset. De olika förberedelserna och uppdelningarna av datasetet påverkar resultaten på olika sätt och detta tyder på vikten av att förbereda input datat på flera sätt när en klusteranalys utförs.
Lee, King-for Foris. "Clustering uncertain data using Voronoi diagram." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224131.
Full textVan, Der Linde Byron-Mahieu. "A comparative analysis of the singer’s formant cluster." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85563.
Full textENGLISH ABSTRACT: It is widely accepted that the singer’s formant cluster (Fs) – perceptual correlates being twang and ring, and pedagogically referred to as head resonance – is the defining trait of a classically trained voice. Research has shown that the spectral energy a singer harnesses in the Fs region can be measured quantitatively using spectral indicators Short-Term Energy Ratio (STER) and Singing Power Ratio (SPR). STER is a modified version of the standard measurement tool Energy Ratio (ER) that repudiates dependency on the Long-Term Average Spectrum (LTAS). Previous studies have shown that professional singers produce more Fs spectral energy when singing in ensemble mode than in solo mode; however for amateur singers, the opposite trend was noticed. Little empirical evidence in this regard is available concerning undergraduate vocal performance majors. This study was aimed at investigating the resonance tendencies of individuals from the latter target group, as evidenced when singing in two performance modes: ensemble and solo. Eight voice students (two per SATB voice part) were selected to participate. Subjects were recorded singing their parts individually, as well as in full ensemble. By mixing the solo recordings together, comparisons of the spectral content could be drawn between the solo and ensemble performance modes. Samples (n=4) were extracted from each piece for spectral analyses. STER and SPR means were highly proportional for both pieces. Results indicate that the singers produce significantly higher levels of spectral energy in the Fs region in ensemble mode than in solo mode for one piece (p<0.05), whereas findings for the other piece were insignificant. The findings of this study could inform the pedagogical approach to voice-training, and provides empirical bases for discussions about voice students’ participation in ensemble ventures.
AFRIKAANSE OPSOMMING: Dit word algemeen aanvaar dat die singer’s formant cluster (Fs) – die perseptuele korrelate is die Engelse “twang” en “ring”, en waarna daar in die pedagogie verwys word as kopresonansie – die bepalende eienskap is van ’n Klassiek-opgeleide stem. Navorsing dui daarop dat die spektrale energie wat ’n sanger in die Fs omgewing inspan kwantitatief gemeet kan word deur die gebruik van Short-Term Energy Ratio (STER) en Singing Power Ratio (SPR) as spektrale aanwysers. STER is ’n gewysigde weergawe van die standaard maatstaf vir energie in die Fs, naamlik Energy Ratio (ER), wat afhanklikheid van die Long-Term Average Spectrum (LTAS) verwerp. Vorige studies het getoon dat professionele sangers meer Fs energie produseer in ensemble konteks as in solo konteks, in teenstelling met amateur sangers waar die teenoorgestelde die norm is. Min empiriese data in hierdie verband is beskikbaar, m.b.t. voorgraadse uitvoerende sangstudente. Hierdie studie is daarop gemik om die tendense in resonansie by individue uit die laasgenoemde groep te ondersoek, soos dit blyk in die twee uitvoerende kontekste: ensemble en solo. Agt sangstudente (twee per SATB stemgroep) is geselekteer om aan die studie deel te neem. Die deelnemers het hul stempartye individueel en in volle ensemble gesing, en is by beide geleenthede opgeneem. Deur die soloopnames te meng, kon vergelykings van die spektrale inhoud gemaak word tussen die solo en ensemble konteks. ’n Steekproef (n=4) is uit elke stuk onttrek vir spektrale analise. Die STER en SPR gemiddeldes was eweredig vir beide stukke. Resultate toon dat die sangers beduidend hoër vlakke van spektrale energie in die Fs omgewing produseer in ensemble konteks as in solo konteks vir een stuk (p<0.05), terwyl die bevindinge vir die tweede stuk nie beduidend was nie. Die bevindinge van hierdie studie kan belangrik wees vir die pedagogiese benadering tot stemopleiding, en lewer empiriese basis vir gesprekke oor die betrokkenheid van sangstudente in die ensemble bedryf.
Ma, Jingsheng. "Integrating GIS and spatial statistical tools for the spatial analysis of health-related data." Thesis, University of Sheffield, 2001. http://etheses.whiterose.ac.uk/14818/.
Full textSivertun, Åke. "Geographical Information Systems (GIS) as a tool for analysis and communications of multidimensional data." Doctoral thesis, Umeå universitet, Institutionen för geografi och ekonomisk historia, 1993. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100703.
Full textDiss. (sammanfattning) Umeå : Umeå universitet, 1993, härtill 6 uppsatser.
digitalisering@umu
Harrington, Justin. "Extending linear grouping analysis and robust estimators for very large data sets." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/845.
Full textBergström, Martin. "Feature extraction and cluster analysis of oil slicks using optical satellite data." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-181682.
Full textRamirez, Jon. "Analysis of compute cluster nodes with varying memory hierarchy distributions." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textLee, King-for Foris, and 李敬科. "Clustering uncertain data using Voronoi diagram." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224131.
Full textChan, Yat-ling, and 陳逸靈. "An optimization algorithm for clustering using weighted dissimilarity measures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26667009.
Full textLai, Yiu-ming, and 黎耀明. "Automatic identification of hot topics and user clusters from online discussion forums." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47849952.
Full textpublished_or_final_version
Computer Science
Master
Master of Philosophy
Al-Razgan, Muna Saleh. "Weighted clustering ensembles." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3212.
Full textVita: p. 134. Thesis director: Carlotta Domeniconi. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Information Technology. Title from PDF t.p. (viewed Oct. 14, 2008). Includes bibliographical references (p. 128-133). Also issued in print.
Fiero, Mallorie H. "Statistical Approaches for Handling Missing Data in Cluster Randomized Trials." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612860.
Full textPtitsyn, Andrey. "New algorithms for EST clustering." Thesis, University of the Western Cape, 2000. http://etd.uwc.ac.za/index.php?module=etd&.
Full textGeorgi, Benjamin [Verfasser]. "Context-specific independence mixture models for cluster analysis of biological data / Benjamin Georgi." Berlin : Freie Universität Berlin, 2009. http://d-nb.info/102366402X/34.
Full textALBUQUERQUE, Mácio Augusto de. "Estabilidade em análise de agrupamento (cluster analysis)." Universidade Federal Rural de Pernambuco, 2005. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5178.
Full textMade available in DSpace on 2016-08-03T17:35:12Z (GMT). No. of bitstreams: 1 Macio Augusto de Albuquerque.pdf: 1005283 bytes, checksum: b9e55eee4b0b853629358e6b2158ba81 (MD5) Previous issue date: 2005-02-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The main objective of this research was to propose a systematic to the study and interpretation of the stability of methods in cluster analysis through many cluster algorithms in vegetation data. The data set used came from a survey in the Silviculture Forest at Federal University of Viçosa – MG. To perform the cluster analysis the matrices of Mahalanobis distance were estimated based on the original data and by “bootstrap” resampling. Also the methods of single linkageage, complete linkageage, the average of the distances, the centroid, the medium and the Ward were used. For the detection of the association among the methods it was applied the chi-square test. For the various methods of clustering it was obtained a cofenetical correlation. The results of the associations of methods were very similar, indicating, in principle, that any algorithm of cluster studied is stabilized and exist, in fact, groups among the individuals analyzed. However, it was concluded that themethods coincide with themselves, except the methods of centroid and Ward. Also the centroid methods and average when compared to the Ward, respectively, based on the matrices of Mahalanobis starting from the original data set and “bootstrap”. The methodology proposed is promising to the study and interpretation of the stabilityof methods concerning the cluster analysis in vegetation data.
Objetivou-se propor uma sistemática para o estudo e a interpretação da estabilidade dos métodos em análise de agrupamento, através de vários algoritmos de agrupamento em dados de vegetação. Utilizou-se dados provenientes de um levantamento na Mata da Silvicultura, da Universidade Federal de Viçosa-MG. Para análise de agrupamento foram estimadas as matrizes de distância de Mahalanobis com base nos dados originais e via reamostragem “bootstrap” e aplicados os métodos da ligação simples, ligação completa, médias das distâncias, do centróide, da mediana e do Ward. Para a detecção de associação entre os métodos foi aplicado o teste qui-quadrado. Para os diversos métodos de agrupamento foi obtida a correlação cofenética. Os resultados de associação dos métodos foram semelhantes, indicando em princípio que qualquer algoritmo de agrupamento estudado está estabilizado e existem, de fato, grupos entre os indivíduos observados. No entanto, observou-se que os métodos são coincidentes, exceto osmétodos do centróide e Ward e os métodos do centróide e mediana quando comparados com o de Ward, respectivamente, com base nas matrizes de Mahalanobis a partir dos dados originais e “bootstrap”. A sistemática proposta é promissora para o estudo e a interpretação da estabilidade dos métodos de análise de agrupamento em dados de vegetação.
Li, Junjie. "Some algorithmic studies in high-dimensional categorical data clustering and selection number of clusters." HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/1011.
Full textFrench, Benjamin. "Analysis of aggregate longitudinal data with time-dependent exposure /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/9569.
Full textRanade, Sonia. "The application of cluster analysis to predicting the cellular uptake of foreign compounds." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284389.
Full text