Academic literature on the topic 'Cluster analysis – Data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cluster analysis – Data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cluster analysis – Data processing"
Zanev, Vladimir, Stanislav Topalov, and Veselin Christov. "Analysis and Data Mining of Lead-Zinc Ore Data." Serdica Journal of Computing 7, no. 3 (April 23, 2014): 271–80. http://dx.doi.org/10.55630/sjc.2013.7.271-280.
Full textKarlashevych, Ivan, and Volodymyr Pravda. "Use of Cluster Analysis Method to Increase the Efficiency and Accuracy of Radar Data Processing." Computational Problems of Electrical Engineering 7, no. 1 (March 14, 2017): 33–36. http://dx.doi.org/10.23939/jcpee2017.01.033.
Full textOcampo, Daniel Morin, and Luiz Caldeira Brant de Tolentino-Neto. "Cluster Analysis for Data Processing in Educational Research." Acta Scientiae 21, no. 4 (September 4, 2019): 34–48. http://dx.doi.org/10.17648/acta.scientiae.v21iss4id5119.
Full textTkachev, Ivan, Roman Vasilyev, and Elena Belousova. "Cluster analysis of lightning discharges: based on Vereya-MR network data." Solar-Terrestrial Physics 7, no. 4 (December 20, 2021): 85–92. http://dx.doi.org/10.12737/stp-74202109.
Full textMelnikov, B. F., P. I. Averin, and E. A. Melnikova. "Intelligent processing of acoustic emission data based on cluster analysis." Journal of Physics: Conference Series 1236 (June 2019): 012044. http://dx.doi.org/10.1088/1742-6596/1236/1/012044.
Full textRose, Rodrigo L., Tejas G. Puranik, and Dimitri N. Mavris. "Natural Language Processing Based Method for Clustering and Analysis of Aviation Safety Narratives." Aerospace 7, no. 10 (September 28, 2020): 143. http://dx.doi.org/10.3390/aerospace7100143.
Full textJung, Se-Hoon, Jong-Chan Kim, and Chun-Bo Sim. "Prediction Data Processing Scheme using an Artificial Neural Network and Data Clustering for Big Data." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 1 (February 1, 2016): 330. http://dx.doi.org/10.11591/ijece.v6i1.9334.
Full textJung, Se-Hoon, Jong-Chan Kim, and Chun-Bo Sim. "Prediction Data Processing Scheme using an Artificial Neural Network and Data Clustering for Big Data." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 1 (February 1, 2016): 330. http://dx.doi.org/10.11591/ijece.v6i1.pp330-336.
Full textSusanty, Aries, Bambang Purwanggono, Nia Budi Puspitasari, and Chellsy Allison. "Conjoint Analysis for Evaluation of Customer’s Preference of Analgesic Generic Medicines under Non-proprietary Names." E3S Web of Conferences 202 (2020): 12022. http://dx.doi.org/10.1051/e3sconf/202020212022.
Full textHaryono Setiadi, Safira Nuri Safitri, and Esti Suryani. "Educational Data Mining Menggunakan Metode Analysis Cluster dan Decision Tree berdasarkan Log Mining." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, no. 3 (July 1, 2022): 448–56. http://dx.doi.org/10.29207/resti.v6i3.3935.
Full textDissertations / Theses on the topic "Cluster analysis – Data processing"
Zhang, Yiqun. "Advances in categorical data clustering." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/658.
Full textJia, Hong. "Clustering of categorical and numerical data without knowing cluster number." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1495.
Full textYang, Bin, and 杨彬. "A novel framework for binning environmental genomic fragments." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45789344.
Full textLi, Junjie. "Some algorithmic studies in high-dimensional categorical data clustering and selection number of clusters." HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/1011.
Full textLee, King-for Foris, and 李敬科. "Clustering uncertain data using Voronoi diagram." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224131.
Full textPtitsyn, Andrey. "New algorithms for EST clustering." Thesis, University of the Western Cape, 2000. http://etd.uwc.ac.za/index.php?module=etd&.
Full textVan, Der Linde Byron-Mahieu. "A comparative analysis of the singer’s formant cluster." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85563.
Full textENGLISH ABSTRACT: It is widely accepted that the singer’s formant cluster (Fs) – perceptual correlates being twang and ring, and pedagogically referred to as head resonance – is the defining trait of a classically trained voice. Research has shown that the spectral energy a singer harnesses in the Fs region can be measured quantitatively using spectral indicators Short-Term Energy Ratio (STER) and Singing Power Ratio (SPR). STER is a modified version of the standard measurement tool Energy Ratio (ER) that repudiates dependency on the Long-Term Average Spectrum (LTAS). Previous studies have shown that professional singers produce more Fs spectral energy when singing in ensemble mode than in solo mode; however for amateur singers, the opposite trend was noticed. Little empirical evidence in this regard is available concerning undergraduate vocal performance majors. This study was aimed at investigating the resonance tendencies of individuals from the latter target group, as evidenced when singing in two performance modes: ensemble and solo. Eight voice students (two per SATB voice part) were selected to participate. Subjects were recorded singing their parts individually, as well as in full ensemble. By mixing the solo recordings together, comparisons of the spectral content could be drawn between the solo and ensemble performance modes. Samples (n=4) were extracted from each piece for spectral analyses. STER and SPR means were highly proportional for both pieces. Results indicate that the singers produce significantly higher levels of spectral energy in the Fs region in ensemble mode than in solo mode for one piece (p<0.05), whereas findings for the other piece were insignificant. The findings of this study could inform the pedagogical approach to voice-training, and provides empirical bases for discussions about voice students’ participation in ensemble ventures.
AFRIKAANSE OPSOMMING: Dit word algemeen aanvaar dat die singer’s formant cluster (Fs) – die perseptuele korrelate is die Engelse “twang” en “ring”, en waarna daar in die pedagogie verwys word as kopresonansie – die bepalende eienskap is van ’n Klassiek-opgeleide stem. Navorsing dui daarop dat die spektrale energie wat ’n sanger in die Fs omgewing inspan kwantitatief gemeet kan word deur die gebruik van Short-Term Energy Ratio (STER) en Singing Power Ratio (SPR) as spektrale aanwysers. STER is ’n gewysigde weergawe van die standaard maatstaf vir energie in die Fs, naamlik Energy Ratio (ER), wat afhanklikheid van die Long-Term Average Spectrum (LTAS) verwerp. Vorige studies het getoon dat professionele sangers meer Fs energie produseer in ensemble konteks as in solo konteks, in teenstelling met amateur sangers waar die teenoorgestelde die norm is. Min empiriese data in hierdie verband is beskikbaar, m.b.t. voorgraadse uitvoerende sangstudente. Hierdie studie is daarop gemik om die tendense in resonansie by individue uit die laasgenoemde groep te ondersoek, soos dit blyk in die twee uitvoerende kontekste: ensemble en solo. Agt sangstudente (twee per SATB stemgroep) is geselekteer om aan die studie deel te neem. Die deelnemers het hul stempartye individueel en in volle ensemble gesing, en is by beide geleenthede opgeneem. Deur die soloopnames te meng, kon vergelykings van die spektrale inhoud gemaak word tussen die solo en ensemble konteks. ’n Steekproef (n=4) is uit elke stuk onttrek vir spektrale analise. Die STER en SPR gemiddeldes was eweredig vir beide stukke. Resultate toon dat die sangers beduidend hoër vlakke van spektrale energie in die Fs omgewing produseer in ensemble konteks as in solo konteks vir een stuk (p<0.05), terwyl die bevindinge vir die tweede stuk nie beduidend was nie. Die bevindinge van hierdie studie kan belangrik wees vir die pedagogiese benadering tot stemopleiding, en lewer empiriese basis vir gesprekke oor die betrokkenheid van sangstudente in die ensemble bedryf.
Ramirez, Jon. "Analysis of compute cluster nodes with varying memory hierarchy distributions." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textCole, Rowena Marie. "Clustering with genetic algorithms." University of Western Australia. Dept. of Computer Science, 1998. http://theses.library.uwa.edu.au/adt-WU2003.0008.
Full textCui, Yingjie, and 崔英杰. "A study on privacy-preserving clustering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B4357225X.
Full textBooks on the topic "Cluster analysis – Data processing"
Analysis of longitudinal and cluster-correlated data. Beachwood, OH: Institute of Mathematical Statistics, 2004.
Find full textMoisl, Hermann. Cluster analysis for corpus linguistics. Berlin: De Gruyter, 2015.
Find full textC, Dubes Richard, ed. Algorithms for clustering data. Englewood Cliffs, N.J: Prentice Hall, 1988.
Find full textBacker, E. Computer-assisted reasoning in cluster analysis. New York: Prentice Hall, 1995.
Find full textMucha, Hans-Joachim. Clusteranalyse mit Mikrocomputern. Berlin: Akademie Verlag, 1992.
Find full textCluster dissection and analysis: Theory, FORTRAN programs, examples. Chichester: Horwood, 1985.
Find full textWillett, Peter. Parallel database processing: Text retrieval and cluster analysis using the DAP. London: Pitman, 1990.
Find full textKaufman, Leonard. Finding groups in data: An introduction to cluster analysis. Hoboken, N.J: Wiley, 2005.
Find full textKaufman, Leonard. Finding groups in data: An introduction to cluster analysis. New York: Wiley, 1990.
Find full textViattchenin, Dmitri A. A heuristic approach to possibilistic clustering: Algorithms and applications. Heidelberg: Springer, 2013.
Find full textBook chapters on the topic "Cluster analysis – Data processing"
Bezdek, James C., James Keller, Raghu Krisnapuram, and Nikhil R. Pal. "Cluster Analysis for Object Data." In Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, 11–136. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/0-387-24579-0_2.
Full textBezdek, James C., James Keller, Raghu Krisnapuram, and Nikhil R. Pal. "Cluster Analysis for Relational Data." In Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, 137–82. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/0-387-24579-0_3.
Full textGeweniger, Tina, Frank-Michael Schleif, Alexander Hasenfuss, Barbara Hammer, and Thomas Villmann. "Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity." In Advances in Neuro-Information Processing, 61–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03040-6_8.
Full textKlawonn, Frank. "Identifying Single Good Clusters in Data Sets." In Advances in Machine Vision, Image Processing, and Pattern Analysis, 160–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11821045_17.
Full textYu, Renwei, Mithila Nagendra, Parth Nagarkar, K. Selçuk Candan, and Jong Wook Kim. "Data-Utility Sensitive Query Processing on Server Clusters to Support Scalable Data Analysis Services." In Lecture Notes in Business Information Processing, 155–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19294-4_7.
Full textCaruso, Giulia, Adelia Evangelista, and Stefano Antonio Gattone. "Profiling visitors of a national park in Italy through unsupervised classification of mixed data." In Proceedings e report, 135–40. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-304-8.27.
Full textLi, Xianghua. "Simulation Analysis of the Life Cycle of the Tire Industry Cluster Based on the Complex Network." In Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 1645–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_196.
Full textShi, Xuan. "Parallelizing Affinity Propagation Using Graphics Processing Units for Spatial Cluster Analysis over Big Geospatial Data." In Advances in Geocomputation, 355–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22786-3_32.
Full textMcCreadie, Richard, John Soldatos, Jonathan Fuerst, Mauricio Fadel Argerich, George Kousiouris, Jean-Didier Totow, Antonio Castillo Nieto, et al. "Leveraging Data-Driven Infrastructure Management to Facilitate AIOps for Big Data Applications and Operations." In Technologies and Applications for Big Data Value, 135–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78307-5_7.
Full textDivjak, Dagmar, and Nick Fieller. "Cluster analysis." In Human Cognitive Processing, 405–41. Amsterdam: John Benjamins Publishing Company, 2014. http://dx.doi.org/10.1075/hcp.43.16div.
Full textConference papers on the topic "Cluster analysis – Data processing"
Cui, Guangcai, and Hongwei Gao. "Rough Set Processing Outliers in Cluster Analysis." In 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2019. http://dx.doi.org/10.1109/icccbda.2019.8725708.
Full textMoskvichev, V. V., U. S. Postnikova, and O. V. Taseiko. "Cluster analysis and individual anthropogenic risk." In Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021. Crossref, 2021. http://dx.doi.org/10.25743/sdm.2021.54.88.063.
Full textYu, Zhanwu, Bin Hu, Zhongmin Li, and Zeng Wu. "GlobeSIGht: a geospace information system based on double-cluster architecture." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.808592.
Full textPal, Amrit, and Sanjay Agrawal. "A Time Based Analysis of Data Processing on Hadoop Cluster." In 2014 International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2014. http://dx.doi.org/10.1109/cicn.2014.136.
Full textGiurcaneanu, C. D., I. Tabus, I. Shmulevich, and Wei Zhang. "Stability-based cluster analysis applied to microarray data." In Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isspa.2003.1224814.
Full textMa, Yingning. "Cluster analysis for cancer omics data using Neural Network with data augmentation." In SPML 2022: 2022 5th International Conference on Signal Processing and Machine Learning. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3556384.3556388.
Full textLi, Wei, Qiuqi Ruan, Gaoyun An, and Jun Wan. "Feature extraction of multimodal data by cluster-based correlation discriminative analysis." In 2012 11th International Conference on Signal Processing (ICSP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icosp.2012.6491702.
Full textCebeci, Zeynel, and Cagatay Cebeci. "kpeaks: An R Package for Quick Selection of K for Cluster Analysis." In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP). IEEE, 2018. http://dx.doi.org/10.1109/idap.2018.8620896.
Full textGodara, Hanuman, M. C. Govil, and E. S. Pilli. "Performance Factor Analysis and Scope of Optimization for Big Data Processing on Cluster." In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2018. http://dx.doi.org/10.1109/pdgc.2018.8745857.
Full textVats, Prashant, Manju Mandot, and Anjana Gosain. "A Comparative Analysis of Various Cluster Detection Techniques for Data Mining." In 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC). IEEE, 2014. http://dx.doi.org/10.1109/icesc.2014.67.
Full textReports on the topic "Cluster analysis – Data processing"
Chandar, Bharat, Ali Hortaçsu, John List, Ian Muir, and Jeffrey Wooldridge. Design and Analysis of Cluster-Randomized Field Experiments in Panel Data Settings. Cambridge, MA: National Bureau of Economic Research, October 2019. http://dx.doi.org/10.3386/w26389.
Full textFowler, Kimberly M., Alison H. A. Colotelo, Janelle L. Downs, Kenneth D. Ham, Jordan W. Henderson, Sadie A. Montgomery, Christopher R. Vernon, and Steven A. Parker. Simplified Processing Method for Meter Data Analysis. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1255411.
Full textJelski, Daniel A., Z. C. Wu, and Thomas F. George. An Inquiry into the Structure of the Si60 Cluster: Analysis of Fragmentation Data. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada215488.
Full textHodgkiss, W. S. Shallow Water Adaptive Array Processing and Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada306525.
Full textBoyd, Timothy J. Processing and Analysis of SCICEX-2000 CTD Data. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada628072.
Full textBoyd, Timothy. Processing and Analysis of SCICEX-2000 CTD Data. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626128.
Full textMayo, Jackson R., W. Philip, Jr Kegelmeyer, Matthew H. Wong, Philippe Pierre Pebay, Ann C. Gentile, David C. Thompson, Diana C. Roe, Vincent De Sapio, and James M. Brandt. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/992310.
Full textSpina, John F. Integrated RF Sensor Signal/Data Processing Information Analysis Center (IAC). Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada401075.
Full textKonovalov, Mikhail. Analysis of Industrial Software Solutions for Data Processing and Storage. Intellectual Archive, March 2019. http://dx.doi.org/10.32370/iaj.2071.
Full textCheng, Yi-Wen, and Christian L. Sargent. Data-reduction and analysis procedures used in NIST's thermomechanical processing research. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.3950.
Full text