Journal articles on the topic 'Clouds Australia, Northern'

To see the other types of publications on this topic, follow the link: Clouds Australia, Northern.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Clouds Australia, Northern.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pope, Mick, Christian Jakob, and Michael J. Reeder. "Convective Systems of the North Australian Monsoon." Journal of Climate 21, no. 19 (October 1, 2008): 5091–112. http://dx.doi.org/10.1175/2008jcli2304.1.

Full text
Abstract:
Abstract The climatology of convection over northern Australia and the surrounding oceans, based on six wet seasons (September–April), is derived from the Japanese Meteorological Agency Geostationary Meteorological Satellite-5 (GMS-5) IR1 channel for the years from 1995/96 to 2000/01. This is the first multiyear study of this kind. Clouds are identified at two cloud-top temperature thresholds: 235 and 208 K. The annual cycle of cloudiness over northern Australia shows an initial (October–November) buildup over the Darwin region before widespread cloudiness develops over the entire region during the monsoon months (December–February), followed by a northward contraction during March and April. Tracking mesoscale convective systems (MCSs) reveals that both the size of the cloud systems and their lifetimes follow power-law distributions. For short-lived MCSs (less than 12 h), the initial expansion of the cloudy area is related to the lifetime, with mergers important for long-lived MCSs (greater than 24 h). During periods of deep zonal flow, which coincide with the active phase of the monsoon, the number of convective elements in the Darwin region peaks in the early afternoon, which is characteristic of the diurnal cycle over land. In contrast, when the zonal flow is deep and easterly and the monsoon is in a break phase, the areal extent of the convective elements in the Darwin region is greatest in the late morning, which is more typical of maritime convection.
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, Xiping, Wei-Kuo Tao, Scott W. Powell, Robert A. Houze, Paul Ciesielski, Nick Guy, Harold Pierce, and Toshihisa Matsui. "A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences 70, no. 2 (February 1, 2013): 487–503. http://dx.doi.org/10.1175/jas-d-12-050.1.

Full text
Abstract:
Abstract Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive observations of mesoscale convective systems (MCSs) near a desert and a tropical coast, respectively. Under the constraint of their observations, three-dimensional cloud-resolving model simulations are carried out and presented in this paper to replicate the basic characteristics of the observed MCSs. All of the modeled MCSs exhibit a distinct structure having deep convective clouds accompanied by stratiform and anvil clouds. In contrast to the approximately 100-km-scale MCSs observed in TWP-ICE, the MCSs in AMMA have been successfully simulated with a scale of about 400 km. These modeled AMMA and TWP-ICE MCSs offer an opportunity to understand the structure and mechanism of MCSs. Comparing the water budgets between AMMA and TWP-ICE MCSs suggests that TWP-ICE convective clouds have stronger ascent while the mesoscale ascent outside convective clouds in AMMA is stronger. A case comparison, with the aid of sensitivity experiments, also suggests that vertical wind shear and ice crystal (or dust aerosol) concentration can significantly impact stratiform and anvil clouds (e.g., their areas) in MCSs. In addition, the obtained water budgets quantitatively describe the transport of water between convective, stratiform, and anvil regions as well as water sources/sinks from microphysical processes, providing information that can be used to help determine parameters in the convective and cloud parameterizations in general circulation models (GCMs).
APA, Harvard, Vancouver, ISO, and other styles
3

Protat, A., J. Delanoë, P. T. May, J. Haynes, C. Jakob, E. O'Connor, M. Pope, and M. C. Wheeler. "The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia." Atmospheric Chemistry and Physics Discussions 10, no. 8 (August 25, 2010): 20069–124. http://dx.doi.org/10.5194/acpd-10-20069-2010.

Full text
Abstract:
Abstract. The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden–Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived. The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is found to be large, producing mean differences of up to a factor of 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes, a factor of 3 to 4 for the ISCCP regimes and the MJO phases, and mean differences of a factor of 2 typically in all microphysical properties analysed in the present paper between large-scale atmospheric regimes or MJO phases. Large differences in occurrence (up to 60–80%) are also found in the main patterns of the cloud fraction distribution of ice clouds (fractions smaller than 0.3 and larger than 0.9). Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (almost no detectable diurnal cycle) to values in excess of 2.0 (very large diurnal amplitude).
APA, Harvard, Vancouver, ISO, and other styles
4

Notaro, Michael, Guangshan Chen, Yan Yu, Fuyao Wang, and Ahmed Tawfik. "Regional Climate Modeling of Vegetation Feedbacks on the Asian–Australian Monsoon Systems." Journal of Climate 30, no. 5 (February 9, 2017): 1553–82. http://dx.doi.org/10.1175/jcli-d-16-0669.1.

Full text
Abstract:
Abstract This study explores the hypothesis that subtropical and tropical monsoon regions exhibit unique responses to vegetation feedbacks. Using the Community Climate System Model (CCSM), M. Notaro et al. concluded that reduced vegetation cover led to an earlier subtropical Chinese monsoon and a delayed, weaker tropical Australian monsoon, yet significant climate and leaf area index (LAI) biases obfuscated the hypothesis’s reliability. To address these concerns, the Regional Climate Model, version 4 (RegCM4), likewise coupled to the Community Land Model but with “observed” LAI boundary conditions, is applied across China and Australia. The model matches the observed dominance of crops, grass, and evergreen trees in southern China and grass and shrubs in northern Australia. The optimal model configuration is determined and applied in control runs for 1960–2013. Monsoon region LAI is modified in a RegCM4 ensemble, aimed at contrasting vegetation feedbacks between tropical and subtropical regions. Greater LAI supports reductions in albedo, temperature, wind speed, boundary layer height, ascending motion, and midlevel clouds and increases in diurnal temperature range (DTR), wind stress, evapotranspiration (ET), specific humidity, and low clouds. In response to greater LAI, rainfall is enhanced during Australia’s pre-to-midmonsoon season but not for China. Modified LAI leads to dramatic changes in the temporal distribution and intensity of Australian rain events. Heterogeneous responses to biophysical feedbacks include amplified impacts (e.g., increased ET and DTR) across China’s croplands and Australia’s shrublands. Inconsistencies between China’s monsoonal responses in the present RegCM4 study and prior CCSM study of M. Notaro et al. are attributed to CCSM’s excessive forest cover and LAI, exaggerated roughness mechanism, and deficient ET response.
APA, Harvard, Vancouver, ISO, and other styles
5

Warren, Stephen G., Ryan M. Eastman, and Carole J. Hahn. "A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 1971–96." Journal of Climate 20, no. 4 (February 15, 2007): 717–38. http://dx.doi.org/10.1175/jcli4031.1.

Full text
Abstract:
Abstract From a dataset of weather observations from land stations worldwide, about 5400 stations were selected as having long periods of record with cloud-type information; they cover all continents and many islands. About 185 million synoptic reports were analyzed for total cloud cover and the amounts of nine different cloud types, for the 26-yr period 1971–96. Monthly and seasonal averages were formed for day and night separately. Time series of total-cloud-cover anomalies for individual continents show a large decrease for South America, small decreases for Eurasia and Africa, and no trend for North America. The largest interannual variations (2.7%) are found for Australia, which is strongly influenced by ENSO. The zonal average trends of total cloud cover are positive in the Arctic winter and spring, 60°–80°N, but negative in all seasons at most other latitudes. The global average trend of total cloud cover over land is small, −0.7% decade−1, offsetting the small positive trend that had been found for the ocean, and resulting in no significant trend for the land–ocean average. Significant regional trends are found for many cloud types. The night trends agree with day trends for total cloud cover and for all cloud types except cumulus. Cirrus trends are generally negative over all continents. A previously reported decline in total cloud cover over China and its neighbors appears to be largely attributable to high and middle clouds. Global trends of the cloud types exhibit trade-offs, with convective cloud types increasing at the expense of stratiform clouds, in both the low and middle levels. Interannual variations over Europe, particularly of nimbostratus, are well correlated with the North Atlantic Oscillation; significant correlations are also found across northern Asia. Interannual variations in many parts of the Tropics are well correlated with an ENSO index. Little correlation was found with an index of smoke aerosol, in seven regions of seasonal biomass burning. In the middle latitudes of both hemispheres, seasonal anomalies of cloud cover are positively correlated with surface temperature in winter and negatively correlated in summer, as expected if the direction of causality is from clouds to temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

Frey, W., S. Borrmann, F. Fierli, R. Weigel, V. Mitev, R. Matthey, F. Ravegnani, N. M. Sitnikov, A. Ulanovsky, and F. Cairo. "Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations." Atmospheric Chemistry and Physics Discussions 14, no. 8 (May 12, 2014): 11815–53. http://dx.doi.org/10.5194/acpd-14-11815-2014.

Full text
Abstract:
Abstract. The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km) though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible cirrus formation, and with this the amount of water vapour that is transported into the stratosphere.
APA, Harvard, Vancouver, ISO, and other styles
7

Frey, W., S. Borrmann, F. Fierli, R. Weigel, V. Mitev, R. Matthey, F. Ravegnani, N. M. Sitnikov, A. Ulanovsky, and F. Cairo. "Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations." Atmospheric Chemistry and Physics 14, no. 23 (December 11, 2014): 13223–40. http://dx.doi.org/10.5194/acp-14-13223-2014.

Full text
Abstract:
Abstract. The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at least 6 h. Thus, the anvils of these high-reaching deep convective clouds have a high potential for affecting the tropical tropopause layer by modifying the humidity and radiative budget, as well as for providing favourable conditions for subvisible cirrus formation. The involved processes may also influence the amount of water vapour that ultimately reaches the stratosphere in the tropics.
APA, Harvard, Vancouver, ISO, and other styles
8

Heymann, J., O. Schneising, M. Reuter, M. Buchwitz, V. V. Rozanov, V. A. Velazco, H. Bovensmann, and J. P. Burrows. "SCIAMACHY WFM-DOAS XCO<sub>2</sub>: comparison with CarbonTracker XCO<sub>2</sub> focusing on aerosols and thin clouds." Atmospheric Measurement Techniques Discussions 5, no. 2 (April 17, 2012): 2887–931. http://dx.doi.org/10.5194/amtd-5-2887-2012.

Full text
Abstract:
Abstract. Carbon dioxide (CO2) is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1) using the latest version of CarbonTracker (version 2010). We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%). Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa). Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with aerosol are typically low. For the spatial correlations the picture is less clear. They are typically low for both aerosols and clouds, but dependent on region and season, they may exceed 30% (the maximum value of 46% has been found for Darwin during September to November). Overall we find that the presence of thin clouds can potentially explain a significant fraction of the difference between SCIAMACHY WFMDv2.1 XCO2 and CarbonTracker over the Southern Hemisphere. Aerosols appear to be less of a problem. Our study indicates that the quality of the satellite derived XCO2 will significantly benefit from a reduction of scattering related retrieval errors at least for the Southern Hemisphere.
APA, Harvard, Vancouver, ISO, and other styles
9

Heymann, J., O. Schneising, M. Reuter, M. Buchwitz, V. V. Rozanov, V. A. Velazco, H. Bovensmann, and J. P. Burrows. "SCIAMACHY WFM-DOAS XCO<sub>2</sub>: comparison with CarbonTracker XCO<sub>2</sub> focusing on aerosols and thin clouds." Atmospheric Measurement Techniques 5, no. 8 (August 13, 2012): 1935–52. http://dx.doi.org/10.5194/amt-5-1935-2012.

Full text
Abstract:
Abstract. Carbon dioxide (CO2) is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy) algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1) using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%). Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa). Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with aerosol are typically low. For the spatial correlations the picture is less clear. They are typically low for both aerosols and clouds, but depending on region and season, they may exceed 30% (the maximum value of 46% has been found for Darwin during September to November). Overall we find that the presence of thin clouds can potentially explain a significant fraction of the difference between SCIAMACHY WFMDv2.1 XCO2 and CarbonTracker over the Southern Hemisphere. Aerosols appear to be less of a problem. Our study indicates that the quality of the satellite derived XCO2 will significantly benefit from a reduction of scattering related retrieval errors at least for the Southern Hemisphere.
APA, Harvard, Vancouver, ISO, and other styles
10

Fotheringham, M., and D. R. Paudyal. "COMBINING TERRESTRIAL SCANNED DATASETS WITH UAV POINT CLOUDS FOR MINING OPERATIONS." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-4-2021 (June 17, 2021): 129–38. http://dx.doi.org/10.5194/isprs-annals-v-4-2021-129-2021.

Full text
Abstract:
Abstract. Surveyors of open cut mining operations employ multiple data acquisition techniques such as the use of Unmanned Aerial Vehicles (UAV), Terrestrial Laser Scanning (TLS) and GNSS positioning for creating 3D surface models. Surveyors, mine planners and geologists are increasingly combining point cloud datasets to achieve more detailed surface models for the use of material reconciliation and volume calculations. Terrestrial Laser Scanning and UAV photogrammetry have enabled large, accurate and time effective data collection and increased computing capacity enables geospatial professionals to create 3D virtual surfaces, through merging UAV point clouds and TLS data combing with GNSS positioning. This research paper investigates the effects of combining data sets for creating 3D surface models from independent spatial data collection methods such as UAV, TLS and GNSS and assess their accuracy for the purpose of volume calculations in mining operation. 3D surface models provide important information for mining operations, planning of resources, material volumes calculation and financial calculations. A case study of two rehabilitation mine sites in Northern Victoria, Australia was selected for this study. Field data were collected using Terrestrial Laser Scanner and UAV. After each dataset was processed and filtered, the data were merged to create surface models. The accuracy of the combined model was assessed comparing height (Z) values using a fishnet point grid of the surfaces. Volumes between surfaces were calculated, and a cost applied to the results based on the current bulk cubic meter (BCM) haulage rates. The outputs from this study will provide scientific contributions to civil and mining industries where the computation of stockpile values is required.
APA, Harvard, Vancouver, ISO, and other styles
11

Boesch, H., N. M. Deutscher, T. Warneke, K. Byckling, A. J. Cogan, D. W. T. Griffith, J. Notholt, R. J. Parker, and Z. Wang. "HDO/H<sub>2</sub>O ratio retrievals from GOSAT." Atmospheric Measurement Techniques 6, no. 3 (March 7, 2013): 599–612. http://dx.doi.org/10.5194/amt-6-599-2013.

Full text
Abstract:
Abstract. We report a new shortwave infrared (SWIR) retrieval of the column-averaged HDO/H2O ratio from the Japanese Greenhouse Gases Observing Satellite (GOSAT). From synthetic simulation studies, we have estimated that the inferred δD values will typically have random errors between 20‰ (desert surface and 30° solar zenith angle) and 120‰ (conifer surface and 60° solar zenith angle). We find that the retrieval will have a small but significant sensitivity to the presence of cirrus clouds, the HDO a priori profile shape and atmospheric temperature, which has the potential of introducing some regional-scale biases in the retrieval. From comparisons to ground-based column observations from the Total Carbon Column Observing Network (TCCON), we find differences between δD from GOSAT and TCCON of around −30‰ for northern hemispheric sites which increase up to −70‰ for Australian sites. The bias for the Australian sites significantly reduces when decreasing the spatial co-location criteria, which shows that spatial averaging contributes to the observed differences over Australia. The GOSAT retrievals allow mapping the global distribution of δD and its variations with season, and we find in our global GOSAT retrievals the expected strong latitudinal gradients with significant enhancements over the tropics. The comparisons to the ground-based TCCON network and the results of the global retrieval are very encouraging, and they show that δD retrieved from GOSAT should be a useful product that can be used to complement datasets from thermal-infrared sounder and ground-based networks and to extend the δD dataset from SWIR retrievals established from the recently ended SCIAMACHY mission.
APA, Harvard, Vancouver, ISO, and other styles
12

Boesch, H., N. M. Deutscher, T. Warneke, K. Byckling, A. J. Cogan, D. W. T. Griffith, J. Notholt, R. J. Parker, and Z. Wang. "HDO/H<sub>2</sub>O ratio retrievals from GOSAT." Atmospheric Measurement Techniques Discussions 5, no. 5 (September 13, 2012): 6643–77. http://dx.doi.org/10.5194/amtd-5-6643-2012.

Full text
Abstract:
Abstract. We report a new shortwave infrared (SWIR) retrieval of the column-averaged HDO/H2O ratio from the Japanese Greenhouse Gases Observing SATellite (GOSAT). From synthetic simulation studies, we have estimated that the inferred δD values will typically have random errors between 20‰ (desert surface and 30° solar zenith angle) and 120‰ (conifer surface and 60° solar zenith angle). We find that the retrieval will have a small, but significant sensitivity to the presence of cirrus clouds, the HDO a priori profile shape and atmospheric temperature, which has the potential for introducing some regional-scale biases in the retrieval. From comparisons to ground-based column observations from the Total Carbon Column Observing Network (TCCON) we find differences between δD from GOSAT and TCCON of around −30‰ for northern-hemispheric sites which increase up to −70‰ for Australian sites. The bias for the Australian sites significantly reduces when decreasing the spatial co-location criteria, which shows that spatial averaging contributes to the observed differences over Australia. The GOSAT retrievals allow mapping the global distribution of δD and its variations with season and we find in our global GOSAT retrievals the expected strong latitudinal gradients with significant enhancements over the tropics. The comparisons to the ground-based TCCON network and the results of the global retrieval are very encouraging and they show that δD retrieved from GOSAT should be a useful product that can be used to complement datasets from thermal-infrared sounder and ground-based networks and to extend the δD dataset from SWIR retrievals established from the recently ended SCIAMACHY mission.
APA, Harvard, Vancouver, ISO, and other styles
13

Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, M. Zöger, et al. "A microphysics guide to cirrus clouds – Part 1: Cirrus types." Atmospheric Chemistry and Physics Discussions 15, no. 21 (November 11, 2015): 31537–86. http://dx.doi.org/10.5194/acpd-15-31537-2015.

Full text
Abstract:
Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e. in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from seventeen aircraft campaigns, conducted in the last fifteen years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as Southern and Northern America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated cirrus guide. For example, high/low IWCs are found together with high/low ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type is rather thin with lower IWCs and forms directly as ice (in-situ origin cirrus). The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e. via freezing of liquid droplets – liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, in-situ origin cirrus occur frequently at slow updrafts in low and high pressure systems, but also in conjunction with faster updrafts. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
APA, Harvard, Vancouver, ISO, and other styles
14

Jackson, Robert C., Scott M. Collis, Valentin Louf, Alain Protat, and Leon Majewski. "A 17 year climatology of the macrophysical properties of convection in Darwin." Atmospheric Chemistry and Physics 18, no. 23 (December 13, 2018): 17687–704. http://dx.doi.org/10.5194/acp-18-17687-2018.

Full text
Abstract:
Abstract. The validation of convective processes in global climate models (GCMs) could benefit from the use of large datasets that provide long-term climatologies of the spatial statistics of convection. To that regard, echo top heights (ETHs), convective areas, and frequencies of mesoscale convective systems (MCSs) from 17 years of data from a C-band polarization (CPOL) radar are analyzed in varying phases of the Madden–Julian Oscillation (MJO) and northern Australian monsoon in order to provide ample validation statistics for GCM validation. The ETHs calculated using velocity texture and reflectivity provide similar results, showing that the ETHs are insensitive to various techniques that can be used. Retrieved ETHs are correlated with those from cloud top heights retrieved by Multifunctional Transport Satellites (MTSATs), showing that the ETHs capture the relative variability in cloud top heights over seasonal scales. Bimodal distributions of ETH, likely attributable to the cumulus congestus clouds and mature stages of convection, are more commonly observed when the active phase of the MJO is over Australia due to greater mid-level moisture during the active phase of the MJO. The presence of a convectively stable layer at around 5 km altitude over Darwin inhibiting convection past this level can explain the position of the modes at around 2–4 km and 7–9 km. Larger cells were observed during break conditions compared to monsoon conditions, but only during the inactive phase of the MJO. The spatial distributions show that Hector, a deep convective system that occurs almost daily during the wet season over the Tiwi Islands, and sea-breeze convergence lines are likely more common in break conditions. Oceanic MCSs are more common during the night over Darwin. Convective areas were generally smaller and MCSs more frequent during active monsoon conditions. In general, the MJO is a greater control on the ETHs in the deep convective mode observed over Darwin, with higher distributions of ETH when the MJO is active over Darwin.
APA, Harvard, Vancouver, ISO, and other styles
15

Gallagher, M. W., P. J. Connolly, I. Crawford, A. Heymsfield, K. N. Bower, T. W. Choularton, G. Allen, M. J. Flynn, G. Vaughan, and J. Hacker. "Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions." Atmospheric Chemistry and Physics 12, no. 14 (July 26, 2012): 6609–28. http://dx.doi.org/10.5194/acp-12-6609-2012.

Full text
Abstract:
Abstract. Aircraft measurements of the microphysics of a tropical convective anvil (at temperatures ~−60 °C) forming above the Hector storm, over the Tiwi Islands, Northern Australia, have been conducted with a view to determining ice crystal aggregation efficiencies from in situ measurements. The observed microphysics have been compared to an explicit bin-microphysical model of the anvil region, which includes crystal growth by vapour diffusion and aggregation and the process of differential sedimentation. It has been found in flights made using straight and level runs perpendicular to the storm that the number of ice crystals initially decreased with distance from the storm as aggregation took place resulting in larger crystals, followed by their loss from the cloud layer due to sedimentation. The net result was that the mass (i.e. Ice Water Content) in the anvil Ci cloud decreased, but also that the average particle size (weighted by number) remained relatively constant along the length of the anvil outflow. Comparisons with the explicit microphysics model showed that the changes in the shapes of the ice crystal spectra as a function of distance from the storm could be explained by the model if the aggregation efficiency was set to values of Eagg~0.5 and higher. This result is supported by recent literature on aggregation efficiencies for complex ice particles and suggests that either the mechanism of particle interlocking is important to the aggregation process, or that other effects are occuring, such as enhancement of ice-aggregation by high electric fields that arise as a consequence of charge separation within the storm. It is noteworthy that this value of the ice crystal aggregation efficiency is much larger than values used in cloud resolving models at these temperatures, which typically use E~0.0016. These results are important to understanding how cold clouds evolve in time and for the treatment of the evolution of tropical Ci in numerical models.
APA, Harvard, Vancouver, ISO, and other styles
16

D’hont, Barbara, Kim Calders, Harm Bartholomeus, Tim Whiteside, Renee Bartolo, Shaun Levick, Sruthi M. Krishna Moorthy, Louise Terryn, and Hans Verbeeck. "Characterising Termite Mounds in a Tropical Savanna with UAV Laser Scanning." Remote Sensing 13, no. 3 (January 29, 2021): 476. http://dx.doi.org/10.3390/rs13030476.

Full text
Abstract:
Termite mounds are found over vast areas in northern Australia, delivering essential ecosystem services, such as enhancing nutrient cycling and promoting biodiversity. Currently, the detection of termite mounds over large areas requires airborne laser scanning (ALS) or high-resolution satellite data, which lack precise information on termite mound shape and size. For detailed structural measurements, we generally rely on time-consuming field assessments that can only cover a limited area. In this study, we explore if unmanned aerial vehicle (UAV)-based observations can serve as a precise and scalable tool for termite mound detection and morphological characterisation. We collected a unique data set of terrestrial laser scanning (TLS) and UAV laser scanning (UAV-LS) point clouds of a woodland savanna site in Litchfield National Park (Australia). We developed an algorithm that uses several empirical parameters for the semi-automated detection of termite mounds from UAV-LS and used the TLS data set (1 ha) for benchmarking. We detected 81% and 72% of the termite mounds in the high resolution (1800 points m−2) and low resolution (680 points m−2) UAV-LS data, respectively, resulting in an average detection of eight mounds per hectare. Additionally, we successfully extracted information about mound height and volume from the UAV-LS data. The high resolution data set resulted in more accurate estimates; however, there is a trade-off between area and detectability when choosing the required resolution for termite mound detection Our results indicate that UAV-LS data can be rapidly acquired and used to monitor and map termite mounds over relatively large areas with higher spatial detail compared to airborne and spaceborne remote sensing.
APA, Harvard, Vancouver, ISO, and other styles
17

Kacenelenbogen, Meloë S., Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, et al. "Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors." Atmospheric Chemistry and Physics 19, no. 7 (April 12, 2019): 4933–62. http://dx.doi.org/10.5194/acp-19-4933-2019.

Full text
Abstract:
Abstract. All-sky direct aerosol radiative effects (DARE) play a significant yet still uncertain role in climate. This is partly due to poorly quantified radiative properties of aerosol above clouds (AAC). We compute global estimates of shortwave top-of-atmosphere DARE over opaque water clouds (OWCs), DAREOWC, using observation-based aerosol and cloud radiative properties from a combination of A-Train satellite sensors and a radiative transfer model. There are three major differences between our DAREOWC calculations and previous studies: (1) we use the depolarization ratio method (DR) on CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) Level 1 measurements to compute the AAC frequencies of occurrence and the AAC aerosol optical depths (AODs), thus introducing fewer uncertainties compared to using the CALIOP standard product; (2) we apply our calculations globally, instead of focusing exclusively on regional AAC “hotspots” such as the southeast Atlantic; and (3) instead of the traditional look-up table approach, we use a combination of satellite-based sensors to obtain AAC intensive radiative properties. Our results agree with previous findings on the dominant locations of AAC (south and northeast Pacific, tropical and southeast Atlantic, northern Indian Ocean and northwest Pacific), the season of maximum occurrence and aerosol optical depths (a majority in the 0.01–0.02 range and that can exceed 0.2 at 532 nm) across the globe. We find positive averages of global seasonal DAREOWC between 0.13 and 0.26 W m−2 (i.e., a warming effect on climate). Regional seasonal DAREOWC values range from −0.06 W m−2 in the Indian Ocean offshore from western Australia (in March–April–May) to 2.87 W m−2 in the southeast Atlantic (in September–October–November). High positive values are usually paired with high aerosol optical depths (>0.1) and low single scattering albedos (<0.94), representative of, for example, biomass burning aerosols. Because we use different spatial domains, temporal periods, satellite sensors, detection methods and/or associated uncertainties, the DAREOWC estimates in this study are not directly comparable to previous peer-reviewed results. Despite these differences, we emphasize that the DAREOWC estimates derived in this study are generally higher than previously reported. The primary reasons for our higher estimates are (i) the possible underestimate of the number of dust-dominated AAC cases in our study; (ii) our use of Level 1 CALIOP products (instead of CALIOP Level 2 products in previous studies) for the detection and quantification of AAC aerosol optical depths, which leads to larger estimates of AOD above OWC; and (iii) our use of gridded 4∘×5∘ seasonal means of aerosol and cloud properties in our DAREOWC calculations instead of simultaneously derived aerosol and cloud properties from a combination of A-Train satellite sensors. Each of these areas is explored in depth with detailed discussions that explain both the rationale for our specific approach and the subsequent ramifications for our DARE calculations.
APA, Harvard, Vancouver, ISO, and other styles
18

Xi, Baike, Xiquan Dong, Xiaojian Zheng, and Peng Wu. "Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign." Atmospheric Measurement Techniques 15, no. 12 (June 23, 2022): 3761–77. http://dx.doi.org/10.5194/amt-15-3761-2022.

Full text
Abstract:
Abstract. To investigate the cloud phase and macrophysical properties over the Southern Ocean (SO), the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) was installed on the Australian icebreaker research vessel (R/V) Aurora Australis during the Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) field campaign (41 to 69∘ S, 60 to 160∘ E) from October 2017 to March 2018. To examine cloud properties over the midlatitude and polar regions, the study domain is separated into the northern (NSO) and southern (SSO) parts of the SO, with a demarcation line of 60∘ S. The total cloud fractions (CFs) were 77.9 %, 67.6 %, and 90.3 % for the entire domain, NSO and SSO, respectively, indicating that higher CFs were observed in the polar region. Low-level clouds and deep convective clouds are the two most common cloud types over the SO. A new method was developed to classify liquid, mixed-phase, and ice clouds in single-layered, low-level clouds (LOW), where mixed-phase clouds dominate with an occurrence frequency (Freq) of 54.5 %, while the Freqs of the liquid and ice clouds were 10.1 % (most drizzling) and 17.4 % (least drizzling). The meridional distributions of low-level cloud boundaries are nearly independent of latitude, whereas the cloud temperatures increased by ∼8 K, and atmospheric precipitable water vapor increased from ∼5 mm at 69∘ S to ∼18 mm at 43∘ S. The mean cloud liquid water paths over NSO were much larger than those over SSO. Most liquid clouds occurred over NSO, with very few over SSO, whereas more mixed-phase clouds occurred over SSO than over NSO. There were no significant differences for the ice cloud Freq between NSO and SSO. The ice particle sizes are comparable to cloud droplets and drizzle drops and well mixed in the cloud layer. These results will be valuable for advancing our understanding of the meridional and vertical distributions of clouds and can be used to improve model simulations over the SO.
APA, Harvard, Vancouver, ISO, and other styles
19

PORTER, ANNE, and NOEL F. SMYTH. "Modelling the morning glory of the Gulf of Carpentaria." Journal of Fluid Mechanics 454 (March 10, 2002): 1–20. http://dx.doi.org/10.1017/s0022112001007455.

Full text
Abstract:
The morning glory is a meteorological phenomenon which occurs in northern Australia and takes the form of a series of roll clouds. The morning glory is generated by the interaction of nocturnal seabreezes over Cape York Peninsula and propagates in a south-westerly direction over the Gulf of Carpentaria. In the present work, it is shown that the morning glory can be modelled by the resonant flow of a two-layer fluid over topography, the topography being the mountains of Cape York Peninsula. In the limit of a deep upper layer, the equations of motion reduce to a forced Benjamin–Ono equation. In this context, resonant means that the underlying flow velocity of the seabreezes is near a linear long-wave velocity for one of the long-wave modes. The morning glory is then modelled by the undular bore (simple wave) solution of the modulation equations for the Benjamin–Ono equation. This modulation solution is compared with full numerical solutions of the forced Benjamin–Ono equation and good agreement is found when the wave amplitudes are not too large. The reason for the difference between the numerical and modulation solutions for large wave amplitude is also discussed. Finally, the predictions of the modulation solution are compared with observational data on the morning glory and good agreement is found for the pressure jump due to the lead wave of the morning glory, but not for the speed and half-width of this lead wave. The reasons for this are discussed.
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Xingchuan, Chuanfeng Zhao, Yikun Yang, and Hao Fan. "Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia." Atmospheric Chemistry and Physics 21, no. 5 (March 15, 2021): 3803–25. http://dx.doi.org/10.5194/acp-21-3803-2021.

Full text
Abstract:
Abstract. The spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of major aerosol types over Australia, are investigated based on multi-year Aerosol Robotic Network (AERONET) observations at nine sites, the Moderate Resolution Imaging Spectroradiometer (MODIS), Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and back-trajectory analysis from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). During the observation period from 2001–2020, the annual aerosol optical depth (AOD) at most sites showed increasing trends (0.002–0.029 yr−1), except for that at three sites, Canberra, Jabiru, and Lake Argyle, which showed decreasing trends (−0.004 to −0.014 yr−1). In contrast, the annual Ångström exponent (AE) showed decreasing tendencies at most sites (−0.045 to −0.005 yr−1). The results showed strong seasonal variations in AOD, with high values in the austral spring and summer and relatively low values in the austral fall and winter, and weak seasonal variations in AE, with the highest mean values in the austral spring at most sites. Monthly average AOD increases from August to December or the following January and decreases during March–July. Spatially, the MODIS AOD showed obvious spatial heterogeneity, with high values appearing over the Australian tropical savanna regions, Lake Eyre Basin, and southeastern regions of Australia, while low values appeared over the arid regions in western Australia. MERRA-2 showed that carbonaceous aerosol over northern Australia, dust over central Australia, sulfate over densely populated northwestern and southeastern Australia, and sea salt over Australian coastal regions are the major types of atmospheric aerosols. The nine ground-based AERONET sites over Australia showed that the mixed type of aerosols (biomass burning and dust) is dominant in all seasons. Moreover, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed that polluted dust is the dominant aerosol type detected at heights 0.5–5 km over the Australian continent during all seasons. The results suggested that Australian aerosol has similar source characteristics due to the regional transport over Australia, especially for biomass burning and dust aerosols. However, the dust-prone characteristic of aerosol is more prominent over central Australia, while the biomass-burning-prone characteristic of aerosol is more prominent in northern Australia.
APA, Harvard, Vancouver, ISO, and other styles
21

Rudge, Mitchel L. M., Shaun R. Levick, Renee E. Bartolo, and Peter D. Erskine. "Modelling the Diameter Distribution of Savanna Trees with Drone-Based LiDAR." Remote Sensing 13, no. 7 (March 26, 2021): 1266. http://dx.doi.org/10.3390/rs13071266.

Full text
Abstract:
The diameter distribution of savanna tree populations is a valuable indicator of savanna health because changes in the number and size of trees can signal a shift from savanna to grassland or forest. Savanna diameter distributions have traditionally been monitored with forestry techniques, where stem diameter at breast height (DBH) is measured in the field within defined sub-hectare plots. However, because the spatial scale of these plots is often misaligned with the scale of variability in tree populations, there is a need for techniques that can scale-up diameter distribution surveys. Dense point clouds collected from uncrewed aerial vehicle laser scanners (UAV-LS), also known as drone-based LiDAR (Light Detection and Ranging), can be segmented into individual tree crowns then related to stem diameter with the application of allometric scaling equations. Here, we sought to test the potential of UAV-LS tree segmentation and allometric scaling to model the diameter distributions of savanna trees. We collected both UAV-LS and field-survey data from five one-hectare savanna woodland plots in northern Australia, which were divided into two calibration and three validation plots. Within the two calibration plots, allometric scaling equations were developed by linking field-surveyed DBH to the tree metrics of manually delineated tree crowns, where the best performing model had a bias of 1.8% and the relatively high RMSE of 39.2%. A segmentation algorithm was then applied to segment individual tree crowns from UAV-LS derived point clouds, and individual tree level segmentation accuracy was assessed against the manually delineated crowns. 47% of crowns were accurately segmented within the calibration plots and 68% within the validation plots. Using the site-specific allometry, DBH was modelled from crown metrics within all five plots, and these modelled results were compared to field-surveyed diameter distributions. In all plots, there were significant differences between field-surveyed and UAV-LS modelled diameter distributions, which became similar at two of the plots when smaller trees (<10 cm DBH) were excluded. Although the modelled diameter distributions followed the overall trend of field surveys, the non-significant result demonstrates a need for the adoption of remotely detectable proxies of tree size which could replace DBH, as well as more accurate tree detection and segmentation methods for savanna ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
22

Labrador, L., G. Vaughan, W. Heyes, D. Waddicor, A. Volz-Thomas, H. W. Pätz, and H. Höller. "Lightning-produced NO<sub>x</sub> during the Northern Australian monsoon; results from the ACTIVE campaign." Atmospheric Chemistry and Physics Discussions 9, no. 3 (May 4, 2009): 10647–73. http://dx.doi.org/10.5194/acpd-9-10647-2009.

Full text
Abstract:
Abstract. Measurements of nitrogen oxides onboard a high altitude aircraft were carried out for the first time during the Northern Australian monsoon in the framework of the Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign, in the area around Darwin, Australia. During one flight on 22 January 2006, average NOx mixing ratios (mrs) of 723 and 984 parts per trillion volume (pptv) were recorded for both in and out of cloud conditions, respectively. The in-cloud measurements were made in the convective outflow region of a storm 56 km south-west of Darwin, whereas those out of cloud were made due south of Darwin and upwind from the storm sampled. This storm produced a total of only 8 lightning strokes, as detected by an in-situ lightning detection network, ruling out significant lightning-NOx production. 5-day backward trajectories suggest that the sampled airmasses had travelled over convectively-active land in Northern Australia during that period. The low stroke count of the sampled storm, along with the high out-of-cloud NOx concentration, suggest that, in the absence of other major NOx sources during the monsoon season, a combination of processes including regional transport patterns, convective vertical transport and entrainment may lead to accretion of lightning-produced NOx, a situation that contrasts with the pre-monsoon period in Northern Australia, where the high NOx values occur mainly in or in the vicinity of storms. These high NOx concentrations may help start ozone photochemistry and OH radical production in an otherwise NOx-limited environment.
APA, Harvard, Vancouver, ISO, and other styles
23

Labrador, L., G. Vaughan, W. Heyes, D. Waddicor, A. Volz-Thomas, H. W. Pätz, and H. Höller. "Lightning-produced NO<sub>x</sub> during the Northern Australian monsoon; results from the ACTIVE campaign." Atmospheric Chemistry and Physics 9, no. 19 (October 5, 2009): 7419–29. http://dx.doi.org/10.5194/acp-9-7419-2009.

Full text
Abstract:
Abstract. Measurements of nitrogen oxides onboard a high altitude aircraft were carried out for the first time during the Northern Australian monsoon in the framework of the Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign, in the area around Darwin, Australia. During one flight on 22 January 2006, average NOx volume mixing ratios (vmr) of 984 and 723 parts per trillion (ppt) were recorded for both in and out of cloud conditions, respectively. The in-cloud measurements were made in the convective outflow region of a storm 56 km south-west of Darwin, whereas those out of cloud were made due south of Darwin and upwind from the storm sampled. This storm produced a total of only 8 lightning strokes, as detected by an in-situ lightning detection network, ruling out significant lightning-NOx production. 5-day backward trajectories suggest that the sampled airmasses had travelled over convectively-active land in Northern Australia during that period. The low stroke count of the sampled storm, along with the high out-of-cloud NOx concentration, suggest that, in the absence of other major NOx sources during the monsoon season, a combination of processes including regional transport patterns, convective vertical transport and entrainment may lead to accumulation of lightning-produced NOx, a situation that contrasts with the pre-monsoon period in Northern Australia, where the high NOx values occur mainly in or in the vicinity of storms. These high NOx concentrations may help start ozone photochemistry and OH radical production in an otherwise NOx-limited environment.
APA, Harvard, Vancouver, ISO, and other styles
24

Mallet, Marc D., Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic. "Composition, size and cloud condensation nuclei activity of biomass burning aerosol from northern Australian savannah fires." Atmospheric Chemistry and Physics 17, no. 5 (March 14, 2017): 3605–17. http://dx.doi.org/10.5194/acp-17-3605-2017.

Full text
Abstract:
Abstract. The vast majority of Australia's fires occur in the tropical north of the continent during the dry season. These fires are a significant source of aerosol and cloud condensation nuclei (CCN) in the region, providing a unique opportunity to investigate the biomass burning aerosol (BBA) in the absence of other sources. CCN concentrations at 0.5 % supersaturation and aerosol size and chemical properties were measured at the Australian Tropical Atmospheric Research Station (ATARS) during June 2014. CCN concentrations reached over 104 cm−3 when frequent and close fires were burning – up to 45 times higher than periods with no fires. Both the size distribution and composition of BBA appeared to significantly influence CCN concentrations. A distinct diurnal trend in the proportion of BBA activating to cloud droplets was observed, with an activation ratio of 40 ± 20 % during the night and 60 ± 20 % during the day. BBA was, on average, less hygroscopic during the night (κ = 0. 04 ± 0.03) than during the day (κ = 0.07 ± 0.05), with a maximum typically observed just before midday. Size-resolved composition of BBA showed that organics comprised a constant 90 % of the aerosol volume for aerodynamic diameters between 100 and 200 nm. While this suggests that the photochemical oxidation of organics led to an increase in the hygroscopic growth and an increase in daytime activation ratios, it does not explain the decrease in hygroscopicity after midday. Modelled CCN concentrations assuming typical continental hygroscopicities produced very large overestimations of up to 200 %. Smaller, but still significant, overpredictions up to ∼ 100 % were observed using aerosol mass spectrometer (AMS)- and hygroscopicity tandem differential mobility analyser (H-TDMA)-derived hygroscopicities as well as campaign night and day averages. The largest estimations in every case occurred during the night, when the small variations in very weakly hygroscopic species corresponded to large variations in the activation diameters. Trade winds carry the smoke generated from these fires over the Timor Sea, where aerosol–cloud interactions are likely to be sensitive to changes in CCN concentrations, perturbing cloud albedo and lifetime. Dry season fires in northern Australia are therefore potentially very important in cloud processes in this region.
APA, Harvard, Vancouver, ISO, and other styles
25

Goler, Robert, Michael J. Reeder, Roger K. Smith, Harald Richter, Sarah Arnup, Tom Keenan, Peter May, and Jorg Hacker. "Low-Level Convergence Lines over Northeastern Australia. Part I: The North Australian Cloud Line." Monthly Weather Review 134, no. 11 (November 1, 2006): 3092–108. http://dx.doi.org/10.1175/mwr3239.1.

Full text
Abstract:
Abstract Observations of dry-season north Australian cloud lines (NACLs) that form in the Gulf of Carpentaria region of northern Australia and the sea-breeze circulations that initiate them are described. The observations were made during the 2002 Gulf Lines Experiment (GLEX) and include measurements made by an instrumented research aircraft. The observations are compared with numerical simulations made from a two-dimensional cloud-scale model. Particular emphasis is placed on the interaction between the east coast and west coast sea breezes near the west coast of Cape York Peninsula. The sea breezes are highly asymmetric due to the low-level easterly synoptic flow over the peninsula. The west coast sea breeze is well defined with a sharp leading edge since the opposing flow limits its inland penetration, keeping it close to its source of cold air. In contrast, the east coast sea breeze is poorly defined since it is aided by the easterly flow and becomes highly modified by daytime convective mixing as it crosses over the peninsula. Both the observations and the numerical model show that, in the early morning hours, the mature NACL forms at the leading edge of a gravity current. The numerical model simulations show that this gravity current arises as a westward-moving land breeze from Cape York Peninsula. Convergence at the leading edge of this land breeze is accompanied by ascent, which when strong enough produces cloud. Observations show that the decay of the NACL is associated with a decline in the low-level convergence and a weakening of the ascent.
APA, Harvard, Vancouver, ISO, and other styles
26

Stohl, A., P. Seibert, G. Wotawa, D. Arnold, J. F. Burkhart, S. Eckhardt, C. Tapia, A. Vargas, and T. J. Yasunari. "Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition." Atmospheric Chemistry and Physics 12, no. 5 (March 1, 2012): 2313–43. http://dx.doi.org/10.5194/acp-12-2313-2012.

Full text
Abstract:
Abstract. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2–18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137Cs, the inversion results give a total emission of 36.6 (20.1–53.1) PBq, or about 43% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude at the time when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions may not have originated only from the damaged reactor cores, but also from the spent-fuel pool of unit 4. This would also confirm that the spraying was an effective countermeasure. We explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. Radioactive clouds reached North America on 15 March and Europe on 22 March. By middle of April, 133Xe was fairly uniformly distributed in the middle latitudes of the entire Northern Hemisphere and was for the first time also measured in the Southern Hemisphere (Darwin station, Australia). In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement. Altogether, we estimate that 6.4 PBq of 137Cs, or 18% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 PBq, or 1.9% of the total fallout were deposited on land areas other than Japan.
APA, Harvard, Vancouver, ISO, and other styles
27

Petersen, Walter A., and Steven A. Rutledge. "Some characteristics of cloud-to-ground lightning in tropical northern Australia." Journal of Geophysical Research 97, no. D11 (1992): 11553. http://dx.doi.org/10.1029/92jd00798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pope, Mick, Christian Jakob, and Michael J. Reeder. "Objective Classification of Tropical Mesoscale Convective Systems." Journal of Climate 22, no. 22 (November 15, 2009): 5797–808. http://dx.doi.org/10.1175/2009jcli2777.1.

Full text
Abstract:
Abstract A cluster analysis is applied to the mesoscale convective systems (MCSs) that developed in northern Australia and the surrounding oceans during six wet seasons (September–April) from 1995/96 to 2000/01. During this period, 13 585 MCSs were identified and tracked using an infrared channel (IR1) on the Japanese Meteorological Agency Geostationary Meteorological Satellite 5 (GMS5). Based on the lifetimes of the MCSs, the area covered by cloud, the expansion rate of the cloud, the minimum cloud-top temperature, and their zonal direction of propagation, the MCSs are grouped objectively into four classes. One of the strengths of the analysis is that it objectively condenses a large dataset into a small number of classes, each with its own physical characteristics. MCSs in class 1 (short) are relatively short lived, with 95% having lifetimes less than 5 h, and they are found most frequently over the oceans during the early and late parts of the wet season. MCSs in classes 2 and 3 [long and intermediate west (Int-West)] are longer lived and propagate to the west, developing over continental northwest Australia in deep easterly flow during breaks in the monsoon. These two classes are distinguished principally by their lifetime, with 95% of MCSs in the long class having lifetimes exceeding 4 h. Class 4 (Int-East) comprises MCSs that form over the subtropical latitudes of eastern Australia and in the deep westerly flow over northern parts of the continent during the monsoon and active phases of the MJO.
APA, Harvard, Vancouver, ISO, and other styles
29

Yang, Xingchuan, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan. "Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia." Atmospheric Chemistry and Physics 21, no. 5 (March 15, 2021): 3833–53. http://dx.doi.org/10.5194/acp-21-3833-2021.

Full text
Abstract:
Abstract. Wildfires are an important contributor to atmospheric aerosols in Australia and could significantly affect the regional and even global climate. This study investigates the impact of fire events on aerosol properties along with the long-range transport of biomass-burning aerosol over Australia using multi-year measurements from Aerosol Robotic Network (AERONET) at 10 sites over Australia, a satellite dataset derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), and back-trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The fire count, fire radiative power (FRP), and aerosol optical depth (AOD) showed distinct and consistent interannual variations, with high values during September–February (biomass-burning period, BB period) and low values during March–August (non-biomass-burning period, non-BB period) every year. Strong correlation (0.62) was found between FRP and AOD over Australia. Furthermore, the correlation coefficient between AOD and fire count was much higher (0.63–0.85) during October–January than other months (−0.08 to 0.47). Characteristics of Australian aerosols showed pronounced differences between the BB period and non-BB period. AOD values significantly increased and fine-mode aerosol dominated during the BB period, especially in northern and southeastern Australia. Carbonaceous aerosol was the main contributor to total aerosols during the BB period, especially in September–December when carbonaceous aerosol contributed the most (30.08 %–42.91 %). Aerosol size distributions showed a bimodal character, with both fine and coarse aerosol particles generally increasing during the BB period. The megafires during the BB period of 2019/2020 further demonstrated the significant impact of wildfires on aerosol properties, such as the extreme increase in AOD for most of southeastern Australia, the dominance of fine particle aerosols, and the significant increase in carbonaceous and dust aerosols in southeastern and central Australia, respectively. Moreover, smoke was found to be the dominant aerosol type detected at heights from 2.5 to 12 km in southeastern Australia in December 2019 and at heights from roughly 6.2 to 12 km in January 2020. In contrast, dust was detected more frequently at heights from 2 to 5 km in November 2019 and January and February 2020. A case study emphasized that the transport of biomass-burning aerosols from wildfire plumes in eastern and southern Australia significantly impacted the aerosol loading, aerosol particle size, and aerosol type of central Australia.
APA, Harvard, Vancouver, ISO, and other styles
30

Xie, Shaocheng, Timothy Hume, Christian Jakob, Stephen A. Klein, Renata B. McCoy, and Minghua Zhang. "Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE." Journal of Climate 23, no. 1 (January 1, 2010): 57–79. http://dx.doi.org/10.1175/2009jcli3071.1.

Full text
Abstract:
Abstract This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. The diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.
APA, Harvard, Vancouver, ISO, and other styles
31

Magarey, R. C., J. I. Bull, W. A. Neilsen, J. R. Camilleri, and A. J. Magnanini. "Relating cultivar resistance to sugarcane yield using breeding selection trial analyses; orange rust and yellow spot." Australian Journal of Experimental Agriculture 44, no. 10 (2004): 1057. http://dx.doi.org/10.1071/ea02208.

Full text
Abstract:
Plant breeders in the Australian sugar industry conduct yield assessment trials each year to assess the yielding ability of clones in the sugarcane breeding programme. Several endemic diseases impinge on the yield of these clones and the tested clones vary greatly in disease susceptibility. In this study, resistance to the diseases orange rust and yellow spot was assessed in final stage trials in the Northern Queensland programme. Clonal yielding ability was related to disease resistance. The results indicate that both diseases, but particularly yellow spot, influenced the yield (tonnes cane/ha and tonnes sugar/ha) of clones in northern breeding trials in 2000. Yield loss estimates were calculated, as well as the relationship between resistance and yield. There was a high level of resistance to orange rust in clones in these trials but much less resistance to yellow spot; the resistance index or orange rust was 2.2 while for yellow spot it was 5.5. Yield loss resistance index values of 5.0 and above for orange rust suggest there is adequate resistance in clones to minimise losses from this disease. In contrast, the yield loss resistance index for yellow spot (tonnes cane/ha) was below 5.0, therefore, it is concluded that during the 2000 harvest season, there was inadequate resistance to minimise losses. The information gathered from this research will be used to determine the level of leaf disease resistance needed in commercial cultivars to optimise yielding ability. Such decisions should improve the efficiency of selection and the performance of commercial cultivars in the Australian sugar industry.
APA, Harvard, Vancouver, ISO, and other styles
32

Zeschke, B. "Identifying early morning fog and low cloud predictors for northern parts of the Northern Territory of Australia, utilising satellite-derived data." Australian Meteorological and Oceanographic Journal 60, no. 04 (December 2010): 249–64. http://dx.doi.org/10.22499/2.6004.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Edwards, A., P. Hauser, M. Anderson, J. McCartney, M. Armstrong, R. Thackway, G. Allan, C. Hempel, and J. Russell-Smith. "A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia." International Journal of Wildland Fire 10, no. 1 (2001): 79. http://dx.doi.org/10.1071/wf01002.

Full text
Abstract:
Fires burn vast areas of the monsoonal savannas of northern Australia each year. This paper describes the contemporary fire regimes of two ecologically similar, relatively large national parks (Litchfield—1464 km2; Nitmiluk—2924 km2) in the Top End of the Northern Territory, over 8 and 9 years, respectively. Fire histories for both parks were derived from interpretation of LANDSAT TM imagery, supplemented with NOAA-AVHRR for cloudy periods at the end of the 7-month dry season (c. April–Oct). Data concerning seasonality, extent and frequency of burning were analysed with respect to digital coverages for the park as a whole, landscape units, vegetation types, infrastructure and tenure boundaries. Ground-truth data established that interpreted accuracy overall, for 2 assessment years, ranged between 82 and 91% for both parks. Over 50% of Litchfield and 40% of Nitmiluk was burnt on average over this period, with Litchfield being burnt substantially in the earlier, cooler, and moister, dry season, and Nitmiluk mostly in the parched late dry season, after August. On both parks the current frequency of burning in at least low open woodland / heath habitats is ecologically unsustainable. Both parks are prone to extensive fire incursions. The data support earlier regional assessments that the average fire return interval is around 2 years in at least some areas of northern Australia. Nevertheless, comparison of contemporary fire regimes operating in three major regional national parks shows distinct differences, particularly with respect to the extent and seasonality (hence intensity) of burning in relation to different landscape components. Management implications are considered in discussion.
APA, Harvard, Vancouver, ISO, and other styles
34

Stirling, GR, LL Vawdrey, and EL Shannon. "Options for controlling needle nematode (Paralongidorus australis) and preventing damage to rice in northern Queensland." Australian Journal of Experimental Agriculture 29, no. 2 (1989): 223. http://dx.doi.org/10.1071/ea9890223.

Full text
Abstract:
Options for the control of Paralongidorus australis on paddy rice in northern Queensland were evaluated in a series of field and pot experiments. Soil fumigation with 1,3-dichloropropene at 220 and 358 kglha gave excellent control in the field and increased grain yields by more than 40%. In pots, carbofuran (5, 10 and 20 kg a.i./ha) applied to soil prior to sowing or in water at the time of permanent flooding gave good control but fenamiphos and CuSO4 did not. These results suggested that the amounts of 1,3-dichloropropene or carbofuran needed to control the nematode were too high for annual treatment with nematicides to be economic. Carbofuran and oxamyl applied as seed dressings at 0.75% and 0.36% a.i. respectively were much cheaper treatments, but failed to control P. australis or reduce nematode damage to root tips. P. australis was eliminated from moist soil by air-drying, but this effect could not be reproduced in the field by deep ripping followed by cultivation to break up clods. Amendment of nematode-infested soil with straw and various sulfur-containing compounds and flooding for 6 or 12 weeks, failed to reduce nematode numbers in the subsequent rice crop, indicating that products of anaerobic decomposition did not control the nematode. However, there was a marked reduction in the percentage of root tips damaged by the nematode in the straw + sulphur treatment. Additional pot experiments investigated practices that reduced losses from P. australis but did not necessarily control the nematode. When rice was flooded 1, 2, 3, 5 or 7 weeks after sowing, the degree of nematode damage was reduced as flooding was delayed, possibly because P. australis remained inactive during the period prior to flooding. Of the 14 rice cultivars and breeding lines tested for tolerance to P. australis, several cultivars were more tolerant than Starbonnet and Lemont, the cultivars currently being grown commercially in northern Queensland. Both delayed flooding and the use of tolerant varieties showed enough promise to warrant further testing in the field.
APA, Harvard, Vancouver, ISO, and other styles
35

Galbally, Ian E., Sarah J. Lawson, Ian A. Weeks, Simon T. Bentley, Rob W. Gillett, Mick Meyer, and Allen H. Goldstein. "Volatile organic compounds in marine air at Cape Grim, Australia." Environmental Chemistry 4, no. 3 (2007): 178. http://dx.doi.org/10.1071/en07024.

Full text
Abstract:
Environmental context. Gaseous organic compounds fuel the production of ozone in the background lower atmosphere. There have been no measurements of many of these compounds in the temperate and polar latitudes of the Southern Hemisphere. Here some first results are presented that show in general much lower concentrations than the Northern Hemisphere, due in part to the lower land surfaces and biomass burning in the Southern Hemisphere. Abstract. Measurements were made of volatile organic compounds (VOCs) at Cape Grim using proton transfer reaction mass spectrometry (PTR-MS) during the Precursors to Particles (P2P) Campaign from 10 February to 1 March 2006. Approximately 14 days of clean air data were obtained along with 4 days of data from when polluted air, first from a smoke plume from a fire on Robbins Island adjacent to the station and then air from Victoria, was present. This paper deals with the results obtained in clean air, the focus of the P2P campaign. The protonated masses and probable VOCs measured in the clean marine air were: methanol, 33; acetonitrile, 42; acetaldehyde, 45; acetone, 59; isoprene, 69; methylvinyl ketone/methacrolein (MVK/MACR), 71; methylethyl ketone, 73; and benzene, 79. The measurements at Cape Grim were in some cases near the detection limit and an analytical challenge. The range of concentrations detected in clean maritime air, the relationship to the limited range of previous measurements in marine air in the Northern Hemisphere tropics, and the physical, chemical and biological processes controlling these compounds in the marine air are discussed. The methanol concentrations observed at Cape Grim are consistent with global modelling, incorporating sources that are mainly of vegetation origin. Isoprene has recently been implicated as a precursor to cloud condensation nuclei over the Southern Ocean. In this snapshot of observations at Cape Grim, Tasmania, isoprene and the isoprene oxidation products MVK and MACR appeared to be absent in air from the Southern Ocean. However, isoprene has a very short atmospheric lifetime and the spatial distribution of its emissions may be very heterogeneous. The concentrations of the other VOCs in marine air at Cape Grim, acetonitrile, acetaldehyde, acetone, methylethyl ketone and benzene, were typically a factor of four lower than that observed over the remote tropical ocean in the Northern Hemisphere. The lower concentrations of carbonyls and their precursor hydrocarbons may indicate a limitation on ozone production potential in the Southern Hemisphere compared with the Northern Hemisphere troposphere. Additional keywords: atmospheric composition, oxygenated volatile organic compounds, proton transfer reaction mass spectrometry, Southern Ocean, volatile organic compounds.
APA, Harvard, Vancouver, ISO, and other styles
36

Humphries, Ruhi S., Melita D. Keywood, Sean Gribben, Ian M. McRobert, Jason P. Ward, Paul Selleck, Sally Taylor, et al. "Southern Ocean latitudinal gradients of cloud condensation nuclei." Atmospheric Chemistry and Physics 21, no. 16 (August 30, 2021): 12757–82. http://dx.doi.org/10.5194/acp-21-12757-2021.

Full text
Abstract:
Abstract. The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol (condensation nuclei larger than 10 nm, CN10) and cloud condensation nuclei (CCN at various supersaturations) concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45∘ S), where continental and anthropogenic sources coexisted with background marine aerosol populations; the mid-latitude sector (45–65∘ S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70∘ S), south of the atmospheric polar front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically derived sulfur species with a significant history in the Antarctic free troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN10 and CCN0.5 concentrations of 681 (388–839) cm−3 and 322 (105–443) cm−3, respectively. Concentrations in the mid-latitudes were typically around 350 cm−3 and 160 cm−3 for CN10 and CCN0.5, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm−3 and 232 (186–271) cm−3 for CN10 and CCN0.5, respectively. The aerosol composition in this sector was marked by a distinct drop in sea salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN0.5/CN10 activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes; however this study highlighted the need for more long-term measurements in the region. CCN observations at Cape Grim (40∘39′ S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN10 observations only corresponded with observations from the northern sector. Measurements from a simultaneous 2-year campaign at Macquarie Island (54∘30′ S) were found to represent all aerosol species well. The southernmost latitudes differed significantly from both of these stations, and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Lei, Weiqing Han, Yuanlong Li, and Toshiaki Shinoda. "Mechanisms for Generation and Development of the Ningaloo Niño." Journal of Climate 31, no. 22 (November 2018): 9239–59. http://dx.doi.org/10.1175/jcli-d-18-0175.1.

Full text
Abstract:
Generation and development mechanisms of the Ningaloo Niño are investigated using ocean and atmospheric general circulation model experiments. Consistent with previous studies, northerly wind anomalies off the West Australian coast are critical in generating warm sea surface temperature (SST) anomalies of the Ningaloo Niño, which induce SST warming through reduced turbulent heat loss toward the atmosphere (by decreasing surface wind speed), enhanced Leeuwin Current heat transport, and weakened coastal upwelling. Our results further reveal that northerly wind anomalies suppress the cold dry air transport from the Southern Ocean to the Ningaloo Niño region, which also contributes to the reduced turbulent heat loss. A positive cloud–radiation feedback is also found to play a role. Low stratiform cloud is reduced by the underlying warm SSTAs and the weakened air subsidence, which further enhances the SST warming by increasing downward solar radiation. The enhanced Indonesian Throughflow also contributes to the Ningaloo Niño, but only when La Niña co-occurs. Further analysis show that northerly wind anomalies along the West Australian coast can be generated by both remote forcing from the Pacific Ocean (i.e., La Niña) and internal processes of the Indian Ocean, such as the positive Indian Ocean dipole (IOD). Approximately 40% of the Ningaloo Niño events during 1950–2010 co-occurred with La Niña, and 30% co-occurred with positive IOD. There are also ~30% of the events independent of La Niña and positive IOD, suggesting the importance of other processes in triggering the Ningaloo Niño.
APA, Harvard, Vancouver, ISO, and other styles
38

van den Hurk, Andrew F., Sonja Hall-Mendelin, Cheryl A. Johansen, David Warrilow, and Scott A. Ritchie. "Evolution of Mosquito-Based Arbovirus Surveillance Systems in Australia." Journal of Biomedicine and Biotechnology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/325659.

Full text
Abstract:
Control of arboviral disease is dependent on the sensitive and timely detection of elevated virus activity or the identification of emergent or exotic viruses. The emergence of Japanese encephalitis virus (JEV) in northern Australia revealed numerous problems with performing arbovirus surveillance in remote locations. A sentinel pig programme detected JEV activity, although there were a number of financial, logistical, diagnostic and ethical limitations. A system was developed which detected viral RNA in mosquitoes collected by solar or propane powered CO2-baited traps. However, this method was hampered by trap-component malfunction, microbial contamination and large mosquito numbers which overwhelmed diagnostic capabilities. A novel approach involves allowing mosquitoes within a box trap to probe a sugar-baited nucleic-acid preservation card that is processed for expectorated arboviruses. In a longitudinal field trial, both Ross River and Barmah Forest viruses were detected numerous times from multiple traps over different weeks. Further refinements, including the development of unpowered traps and use of yeast-generated CO2, could enhance the applicability of this system to remote locations. New diagnostic technology, such as next generation sequencing and biosensors, will increase the capacity for recognizing emergent or exotic viruses, while cloud computing platforms will facilitate rapid dissemination of data.
APA, Harvard, Vancouver, ISO, and other styles
39

Bozzetto, L. M., M. D. Filipovic, D. Urosevic, and E. J. Crawford. "Radio-continuum observations of small, radially polarised Supernova Remnant J0519-6902 in the large Magellanic cloud." Serbian Astronomical Journal, no. 185 (2012): 25–33. http://dx.doi.org/10.2298/saj1285025b.

Full text
Abstract:
We report on new Australian Telescope Compact Array (ATCA) observations of SNR J0519-6902. The Supernova Remnant (SNR) is small in size (~8 pc) and exhibits a typical SNR spectrum with ? = -0.53?0.07, with steeper spectral indices towards the northern limb of the remnant. SNR J0519-6902 contains a low level of radially orientated polarisation at wavelengths of 3 and 6 cm, which is typical of younger SNRs. A fairly strong magnetic field was estimated to ~171?G. The remnant appears to be the result of a typical Type Ia supernova, sharing many properties with another small and young Type Ia LMC SNR, J0509-6731.
APA, Harvard, Vancouver, ISO, and other styles
40

Yates, Cameron, and Jeremy Russell-Smith. "Fire regimes and vegetation sensitivity analysis: an example from Bradshaw Station, monsoonal northern Australia." International Journal of Wildland Fire 12, no. 4 (2003): 349. http://dx.doi.org/10.1071/wf03019.

Full text
Abstract:
The fire-prone savannas of northern Australia comprise a matrix of mostly fire-resilient vegetation types, with embedded fire-sensitive species and communities particularly in rugged sandstone habitats. This paper addresses the assessment of fire-sensitivity at the landscape scale, drawing on detailed fire history and vegetation data assembled for one large property of 9100�km2, Bradshaw Station in the Top End of the Northern Territory, Australia. We describe (1) the contemporary fire regime for Bradshaw Station for a 10 year period; (2) the distribution and status of 'fire sensitive' vegetation; and (3) an assessment of fire-sensitivity at the landscape scale. Fire-sensitive species (FSS) were defined as obligate seeder species with minimum maturation periods of at least 3 years. The recent fire history for Bradshaw Station was derived from the interpretation of fine resolution Landsat MSS and Landsat TM imagery, supplemented with mapping from coarse resolution NOAA-AVHRR imagery where cloud had obstructed the use of Landsat images late in the fire season (typically October–November). Validation assessments of fire mapping accuracy were conducted in 1998 and 1999. On average 40% of Bradshaw burnt annually with about half of this, 22%, occurring after August (Late Dry Season LDS), and 65% of the property burnt 4 or more times, over the 10 year period; 89% of Bradshaw Station had a minimum fire return interval of less than 3 years in the study period. The derived fire seasonality, frequency and return interval data were assessed with respect to landscape units (landsystems). The largest landsystem, Pinkerton (51%, mostly sandstone) was burnt 41% on average, with about 70% burnt four times or more, over the 10 year period. Assessment of the fire-sensitivity of individual species was undertaken with reference to data assembled for 345 vegetation plots, herbarium records, and an aerial survey of the distribution of the long-lived obligate-seeder tree species Callitris intratropica. A unique list of 1310 plant species was attributed with regenerative characteristics (i.e. habit, perenniality, resprouting capability, time to seed maturation). The great majority of FSS species were restricted to rugged sandstone landforms. The approach has wider application for assessing landscape fire-sensitivity and associated landscape health in savanna landscapes in northern Australia, and elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
41

Humphries, R. S., R. Schofield, M. Keywood, J. Ward, J. R. Pierce, C. M. Gionfriddo, M. Tate, et al. "Boundary layer new particle formation over East Antarctic sea ice – possible Hg driven nucleation?" Atmospheric Chemistry and Physics Discussions 15, no. 14 (July 16, 2015): 19477–536. http://dx.doi.org/10.5194/acpd-15-19477-2015.

Full text
Abstract:
Abstract. Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on-board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air-mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with Total Gaseous Mercury (TGM) were found that, together with other data, suggest a mercury driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (~ 1.5 ng m−3 and &amp;geq; 600 W m−2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free-troposphere, particularly in the Northern Hemisphere.
APA, Harvard, Vancouver, ISO, and other styles
42

Humphries, R. S., R. Schofield, M. D. Keywood, J. Ward, J. R. Pierce, C. M. Gionfriddo, M. T. Tate, et al. "Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?" Atmospheric Chemistry and Physics 15, no. 23 (December 2, 2015): 13339–64. http://dx.doi.org/10.5194/acp-15-13339-2015.

Full text
Abstract:
Abstract. Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM) were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and &amp;geq; 600 W m−2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.
APA, Harvard, Vancouver, ISO, and other styles
43

Varghese, M., C. E. Harwood, R. Hegde, and N. Ravi. "Evaluation of Provenances of Eucalyptus camaldulensis and Clones of E. camaldulensis and E. tereticornis at Contrasting Sites in Southern India." Silvae Genetica 57, no. 1-6 (December 1, 2008): 170–79. http://dx.doi.org/10.1515/sg-2008-0026.

Full text
Abstract:
Abstract A total of 188 open-pollinated families of Eucalyptus camaldulensis Dehnh. from 18 Australian natural provenances and 15 selected Indian families of the “Mysore Gum” land race were evaluated in three provenance- family trials at contrasting sites in southern India. At two years of age, the fastest growth was recorded at the driest site in Tamil Nadu, where E. camaldulensis provenances from Queensland were superior to those from Northern Territory and Western Australia, and the Indian land race. Provenance differences were less pronounced at the two higher-rainfall sites in Andhra Pradesh and Kerala. Interaction of provenance performance with site was significant. Within- provenance individual-tree heritabilities for height and diameter at breast height (dbh) were low at the three individual sites, ranging from 0.08 ± 0.05 to 0.19 ± 0.05 for height and 0.10 ± 0.05 to 0.19 ± 0.04 for dbh. Across-site heritabilities, 0.07 ± 0.02 for both height and dbh, were lower than those at individual sites. Phenotypically superior trees were selected from these trials and seven other plantings of E. camaldulensis and Eucalyptus tereticornis Smith in southern India and cloned from basal coppice. A total of 78 E. camaldulensis and 27 E. tereticornis selections, together with thirteen commercially planted Eucalyptus clones and five superior natural provenance seedlots, were tested in clonal trials at three sites in southern India, the different individual treatments being tested at from one to three sites. Three years after planting, most clones selected from E. camaldulensis trials and the commercial Eucalyptus clones were superior in volume production to E. tereticornis clones and seedling controls at a dry site in Tamil Nadu. A smaller number of clones, particularly those of E. camaldulensis, were also superior to seedling controls at an intermediate-rainfall site in Andhra Pradesh. At a third high-rainfall site in Kerala, seedling controls were superior to all but four of 46 clones tested. Significant clone-by-site interaction was observed for growth traits. At the dry site in Tamil Nadu, clones varied widely in their wood basic density from 450 to 700 kg m-3, and there was no significant correlation of clonal values for growth and wood density. The results confirm that clones are best selected and tested in environments similar to those where they will be deployed.
APA, Harvard, Vancouver, ISO, and other styles
44

CARLISLE, J. B., M. GRATTEN, and A. J. LEACH. "Molecular epidemiology of multiple drug resistant type 6B Streptococcus pneumoniae in the Northern Territory and Queensland, Australia." Epidemiology and Infection 126, no. 1 (February 2001): 25–29. http://dx.doi.org/10.1017/s0950268801005106.

Full text
Abstract:
The emergence of type 6B Streptococcus pneumoniae resistant to five antibiotics (penicillin, chloramphenicol, trimethoprim–sulphamethoxazole, erythromycin and tetracycline) in both the Northern Territory and Queensland prompted an investigation of the genetic relatedness and patterns of migration of the isolates. Pulsed field gel electrophoresis of genomic DNA of 74 multiple drug-resistant (MDR) isolates cultured in both regions between August 1988 and June 1997 showed that 100% of MDR isolates from the Northern Territory and 96% of MDR strains from Queensland were genetically indistinguishable or closely related to the index strain. None of a further 65 type 6B isolates that were resistant to one or two, or susceptible to all of the above antibiotics, were clonally related to the MDR pneumococci. The geographical distribution of the MDR type 6B clone increased over time. The index strain, first isolated in Darwin in August 1988, was identified in Brisbane, 2900km distant, less than 4 years later and subsequently in other Queensland centres. Surveillance programmes are important to monitor the emergence and spread of potentially invasive MDR pneumococcal clones in countries that are well serviced by air and road transport.
APA, Harvard, Vancouver, ISO, and other styles
45

TONG, S. Y. C., L. VARRONE, M. D. CHATFIELD, M. BEAMAN, and P. M. GIFFARD. "Progressive increase in community-associated methicillin-resistant Staphylococcus aureus in Indigenous populations in northern Australia from 1993 to 2012." Epidemiology and Infection 143, no. 7 (October 10, 2014): 1519–23. http://dx.doi.org/10.1017/s0950268814002611.

Full text
Abstract:
SUMMARYHospital-based studies have determined high rates of community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Indigenous populations. However, there is a paucity of community-based data. We obtained 20 years (1993–2012) of data on S. aureus isolates (N = 20 210) collected from community clinics that provide services for Indigenous communities in the Northern Territory, Australia. Methicillin resistance increased from 7% to 24%, resistance to macrolides remained stable at ~25%, and there was a slight increase in resistance to trimethoprim-sulfamethoxazole. The increase in methicillin resistance is concerning for the Indigenous communities represented by this data, but it is also of significance if virulent MRSA clones emerge and spread more widely from such settings.
APA, Harvard, Vancouver, ISO, and other styles
46

Poddar, Shukla, Jason P. Evans, Merlinde Kay, Abhnil Prasad, and Stephen Bremner. "Estimation of future changes in photovoltaic potential in Australia due to climate change." Environmental Research Letters 16, no. 11 (November 1, 2021): 114034. http://dx.doi.org/10.1088/1748-9326/ac2a64.

Full text
Abstract:
Abstract Solar photovoltaic (PV) energy is one of the fastest growing renewable energy sources globally. However, the dependency of PV generation on climatological factors such as the intensity of radiation, temperature, wind speed, cloud cover, etc can impact future power generation capacity. Considering the future large-scale deployment of PV systems, accurate climate information is essential for PV site selection, stable grid regulation, planning and energy output projections. In this study, the long-term changes in the future PV potential are estimated over Australia using regional climate projections for the near-future (2020–2039) and far-future (2060–2079) periods under a high emission scenario that projects 3.4 °C warming by 2100. The effects of projected changes in shortwave downwelling radiation, temperature and wind speed on the future performance of PV systems over Australia is also examined. Results indicate decline in the future PV potential over most of the continent due to reduced insolation and increased temperature. Northern coastal Australia experiences negligible increase in PV potential during the far future period due to increase in radiation and wind speed in that region. On further investigation, we find that the cell temperatures are projected to increase in the future under a high emission scenario (2.5 °C by 2079), resulting in increased degradation and risks of failure. The elevated cell temperatures significantly contribute to cell efficiency losses, that are expected to increase in the future (6–13 d yr−1 for multi-crystalline silicon cells) mostly around Western and central Australia indicating further reductions in PV power generation. Therefore, long-term PV power projections can help understand the variations in future power generation and identify regions where PV systems will be highly susceptible to losses in Australia.
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Lin, Jianping Guo, Wen Chen, Renguang Wu, Lin Wang, Hainan Gong, Weitao Xue, and Jian Li. "Large-Scale Pattern of the Diurnal Temperature Range Changes over East Asia and Australia in Boreal Winter: A Perspective of Atmospheric Circulation." Journal of Climate 31, no. 7 (April 2018): 2715–28. http://dx.doi.org/10.1175/jcli-d-17-0608.1.

Full text
Abstract:
The present study applies the empirical orthogonal function (EOF) method to investigate the large-scale pattern and the plausible dynamic processes of the boreal winter diurnal temperature range (DTR) changes in the East Asia (EA)–Australia (AUS) region based on the CRU Time Series version 4.00 (TS4.00) and NCEP–NCAR reanalysis datasets. Results show that the DTR changes during 1948–2015 are dominated by two distinct modes. The first mode, characterized by a same-sign variation over most regions of EA–AUS, represents a declining trend of DTR. The second mode, featuring an opposite-sign variation, represents the interannual variations in DTR. The two modes are both closely associated with the changes in cloud cover (CLT) caused by atmospheric circulation anomalies in EA–AUS. For the trend mode, anomalous southerly and northerly winds over EA and AUS, respectively, bring warm and wet air from low latitudes to EA–AUS, inducing an increase in CLT and thereby reducing DTR in most areas of EA–AUS. The changes of circulation are mainly due to the thermodynamic responses of atmosphere to the nonuniform warming in EA–AUS. In addition, the second mode of DTR is largely forced by the ENSO variability. The weakened Walker circulation associated with warm ENSO events triggers a pair of anomalous low-level anticyclones (south and north of the equator) over the western Pacific. The AUS region is under control of the southern anticyclone, thereby reducing the CLT and increasing the DTR in AUS as a result of anomalous descending motion. In contrast, the EA region is controlled by anomalous southerlies to the west of the northern anticyclone. The northward transports of moistures from the warm ocean increase the CLT, reducing DTR in EA.
APA, Harvard, Vancouver, ISO, and other styles
48

Fiddes, Sonya L., Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield. "Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide." Atmospheric Chemistry and Physics 18, no. 14 (July 17, 2018): 10177–98. http://dx.doi.org/10.5194/acp-18-10177-2018.

Full text
Abstract:
Abstract. Natural aerosol emission represents one of the largest uncertainties in our understanding of the radiation budget. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one-fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. This study evaluates the Australian Community Climate and Earth System Simulator (ACCESS) United Kingdom Chemistry and Aerosol (UKCA) model in terms of cloud fraction, radiation and precipitation, and then quantifies the role of DMS in the chemistry–climate system. We find that ACCESS-UKCA has similar cloud and radiation biases to other global climate models. By removing all DMS, or alternatively significantly enhancing marine DMS, we find a top of the atmosphere radiative effect of 1.7 and −1.4 W m−2 respectively. The largest responses to these DMS perturbations (removal/enhancement) are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low cloud (-9/+6 %), surface incoming shortwave radiation (+7/-5 W m−2) and large-scale rainfall (+15/-10 %). We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions due to DMS, coupled with an increase in low cloud fraction. The difference in low cloud fraction is an example of the aerosol lifetime effect. Globally, we find a sensitivity of temperature to annual DMS flux of 0.027 and 0.019 K per Tg yr−1 of sulfur, respectively. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. We highlight the need for greater understanding of the DMS–climate cycle within the context of uncertainties and biases of climate models as well as those of DMS–climate observations.
APA, Harvard, Vancouver, ISO, and other styles
49

Gould, NS, DCI Peake, and NP Dalgliesh. "No-tillage planters for heavy-textured Alfisols in the semi-arid tropics of Australia." Australian Journal of Experimental Agriculture 36, no. 8 (1996): 957. http://dx.doi.org/10.1071/ea9960957.

Full text
Abstract:
This paper provides key information on 4 no-tillage planters to facilitate adoption by fanners in northern Australia. Four commercial planters (Buffalo All-Flex Convertible slot planter, Buffalo All-Flex Compact slot planter, John Deere Max-Emerge planter and Mason Spring Release (SR) Integral planter) of contrasting design were tested in various configurations under 5 different moisture regimes during drying of a heavy-textured Alfisol at Katherine Research Station, Northern Territory, Australia (14�20'S, 132�20�E, 108 m altitude) at the end of the 1982-83 wet season. Significant differences in emergence were measured between planters and between configurations under most moisture regimes. Seedling emergence was greatest in Buffalo-Compact planter treatments, less for Buffalo-Convertible and Mason SR Integral treatments and lowest for John Deere Max-Emerge treatments. The Buffalo planters, each with an effective trash cutting coulter and narrow tine slot opener, produced consistently better results under all moisture regimes than the other 2 planters. The Mason SR Integral, with its wide tine opener, created a high incidence of clods which restricted emergence and led to increased occurrence of unimbibed seeds. Generally, for the 3 tine opener planters, the looser the soil in the furrow, the poorer the emergence. The John Deere Max-Emerge double-disc opener, whilst performing well under moist conditions, generally performed poorly when soil conditions were dry. This planter was on most occasions unable to maintain effective depth control under excessively wet or dry conditions, resulting in lower in-furrow soil moisture and significantly poorer and slower emergence than occurred with the other planters. In-furrow seed-firming presswheels, applying a contact pressure of approximately 4-5 kg/cm of presswheel tyre width, ensured better seed-soil contact and higher emergence levels than twin-inclined overfurrow presswheels. The over-furrow presswheels fitted to the John Deere Max-Emerge planter were often unable to close the slot effectively, resulting in the creation of voids and caps with resultant high seedling mortality.
APA, Harvard, Vancouver, ISO, and other styles
50

Nguyen, Hiep Duc, Matt Riley, John Leys, and David Salter. "Dust Storm Event of February 2019 in Central and East Coast of Australia and Evidence of Long-Range Transport to New Zealand and Antarctica." Atmosphere 10, no. 11 (October 28, 2019): 653. http://dx.doi.org/10.3390/atmos10110653.

Full text
Abstract:
Between 11 and 15 February 2019, a dust storm originating in Central Australia with persistent westerly and south westerly winds caused high particle concentrations at many sites in the state of New South Wales (NSW); both inland and along the coast. The dust continued to be transported to New Zealand and to Antarctica in the south east. This study uses observed data and the WRF-Chem Weather Research Forecast model based on GOCART-AFWA (Goddard Chemistry Aerosol Radiation and Transport–Air Force and Weather Agency) dust scheme and GOCART aerosol and gas-phase MOZART (Model for Ozone And Related chemical Tracers) chemistry model to study the long-range transport of aerosols for the period 11 to 15 February 2019 across eastern Australia and onto New Zealand and Antarctica. Wildfires also happened in northern NSW at the same time, and their emissions are taken into account in the WRF-Chem model by using the Fire Inventory from NCAR (FINN) as the emission input. Modelling results using the WRF-Chem model show that for the Canterbury region of the South Island of New Zealand, peak concentration of PM10 (and PM2.5) as measured on 14 February 2019 at 05:00 UTC at the monitoring stations of Geraldine, Ashburton, Timaru and Woolston (Christchurch), and about 2 h later at Rangiora and Kaiapoi, correspond to the prediction of high PM10 due to the intrusion of dust to ground level from the transported dust layer above. The Aerosol Optical Depth (AOD) observation data from MODIS 3 km Terra/Aqua and CALIOP LiDAR measurements on board CALIPSO (Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations) satellite also indicate that high-altitude dust ranging from 2 km to 6 km, originating from this dust storm event in Australia, was located above Antarctica. This study suggests that the present dust storms in Australia can transport dust from sources in Central Australia to the Tasman sea, New Zealand and Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography