Dissertations / Theses on the topic 'Cloud aerosol'

To see the other types of publications on this topic, follow the link: Cloud aerosol.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Cloud aerosol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Grandey, Benjamin Stephen. "Investigating aerosol-cloud interactions." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:8b48c02b-3d43-4b04-ae55-d9885960103d.

Full text
Abstract:
Microphysical and dynamical interactions between aerosols and clouds are associated with some of the largest uncertainties in projections of future climate. Many possible aerosol effects on clouds have been suggested, but large uncertainties remain. In order to improve model projections of future climate, it is essential that we improve our quantitative understanding of anthropogenic aerosol effects. Several studies investigating interactions between satellite-observed aerosol and cloud properties have been published in recent years. However, the observed relationships are not necessarily due to aerosol effects on clouds. They may be due to cloud and precipitation effects on aerosol, meteorological covariation, observational data errors or methodological errors. An analysis of methodological errors arising through climatological spatial gradients is performed. For region sizes larger than 4°×4°, commonly used in the literature, spurious spatial variations in retrieved cloud and aerosol properties are found to introduce widespread significant errors to calculations of aerosol-cloud relationships. Small scale analysis prior to error-weighted aggregation to larger region sizes is recommended. Appropriate ways of quantifying relationships between aerosol optical depth (τ) and cloud properties are considered, and results are presented for three satellite datasets. There is much disagreement in observed relationships between τ and liquid cloud droplet number concentration and between τ and liquid cloud droplet effective radius, particularly over land. However, all three satellite datasets are in agreement about strong positive relationships between τ and cloud top height and between τ and cloud fraction (f_c). Using reanalysis τ data, which are less affected by retrieval artifacts, it is suggested that a large part of the observed f_c-τ signal may be due to cloud contamination of τ. General circulation model simulations further demonstrate that positive f_c-τ relationships may primarily arise due to covariation with relative humidity, and that negative f_c-τ relationships may arise due to scavenging of aerosol by precipitation. A new method of investigating the contribution of meteorological covariation to the observed relationships is introduced. Extratropical cyclone storm-centric composites of retrieved aerosol and cloud properties are investigated. A storm-centric description of the synoptics is found to be capable of explaining spurious f_c-τ relationships, although the spurious relationships explained are considerably smaller than observed relationships.
APA, Harvard, Vancouver, ISO, and other styles
2

Gryspeerdt, Edward. "Aerosol-cloud-precipitation interactions." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:3d1210b0-2ada-403c-8fdf-2bef1724fcd8.

Full text
Abstract:
Aerosols are thought to have a large effect on the climate, especially through their interactions with clouds. The magnitude and in some cases the sign of aerosol effects on cloud and precipitation are highly uncertain. Part of the uncertainty comes from the multiple competing effects that aerosols have been proposed to have on cloud properties. In addition, covariation of clouds and aerosol properties with changing meteorological conditions has the ability to generate spurious correlations between cloud and aerosol properties. This work presents a new way to investigate aerosol-cloud-precipitation interactions while accounting for the influence of meteorology on cloud and aerosol. The clouds are separated into cloud regimes, which have similar retrieved cloud properties, to investigate the regime dependence of aerosol-cloud-precipitation interactions. The strong aerosol optical depth (AOD)- cloud fraction (CF) correlation is shown to have the ability to generate spurious correlations. The AOD-CF correlation is accounted for by investigating the frequency of transitions between cloud regimes in different aerosol environments. This time-dependent analysis is also extended to investigate the development of precipitation from each of the regimes as a function of their aerosol environment. A modification of the regime transition frequencies consistent with an increase in stratocumulus persistence over ocean is found with increasing AI (aerosol index). Increases in transitions into the deep convective regime and in the precipitation rate consistent with an aerosol invigoration effect are also found over land. Comparisons to model output suggest that a large fraction of the observed effect on the stratocumulus persistence may be due to aerosol indirect effects. The model is not able to reproduce the observed effects on convective cloud, most likely due to the lack of parametrised effects of aerosol on convection. The magnitude of these effects is considerably smaller than correlations found by previous studies, emphasising the importance of meteorological covariation on observed aerosol-cloud-precipitation interactions.
APA, Harvard, Vancouver, ISO, and other styles
3

Duong, Hanh To. "Studies of Organic Aerosol and Aerosol-Cloud Interactions." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311585.

Full text
Abstract:
Atmospheric aerosols can influence society and the environment in many ways including altering the planet's energy budget, the hydrologic cycle, and public health. However, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change indicates that the anthropogenic radiative forcing associated with aerosol effects on clouds has the highest uncertainty in the future climate predictions. This thesis focuses on the nature of the organic fraction of ambient particles and how particles interact with clouds using a combination of tools including aircraft and ground measurements, models, and satellite data. Fine aerosol particles typically contain between 20 - 90% organic matter by mass and a major component of this fraction includes water soluble organic carbon (WSOC). Consequently, water-soluble organic species can strongly influence aerosol water-uptake and optical properties. However, the chemical composition of this fraction is not well-understood. PILS-TOC was used to characterize WSOC in ambient aerosol in Los Angeles, California. The spatial distribution of WSOC was found to be influenced by (i) a wide range of aerosol sources within this urban metropolitan area, (ii) transport of pollutants by the characteristic daytime sea breeze trajectory, (iii) topography, and (iv) secondary production during transport. Meteorology is linked with the strength of many of these various processes. Many methods and instruments have been used to study aerosol-cloud interactions. Each observational platform is characterized by different temporal/spatial resolutions and operational principles, and thus there are disagreements between different studies for the magnitude of mathematical constructs used to represent the strength of aerosol-cloud interactions. This work points to the sensitivity of the magnitude of aerosol-cloud interactions to cloud lifetime and spatial resolution of measurements and model simulations. Failure to account for above-cloud aerosol layers and wet scavenging are also shown to cause biases in the magnitude of aerosol-cloud interaction metrics. Air mass source origin and meteorology are also shown to be important factors that influence aerosol-cloud interactions. The results from this work contribute towards a better understanding of atmospheric aerosols and are meant to improve parameterizations that can be embedded in models that treat aerosol affects on clouds, precipitation, air quality, and public health.
APA, Harvard, Vancouver, ISO, and other styles
4

Hsieh, Wei-Chun. "Representing droplet size distribution and cloud processes in aerosol-cloud-climate interaction studies." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29619.

Full text
Abstract:
Thesis (Ph.D)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2009.
Committee Chair: Athanasios Nenes; Committee Member: Andrew G. Stack; Committee Member: Irina N. Sokolik; Committee Member: Judith A. Curry; Committee Member: Mike Bergin; Committee Member: Rodney J. Weber. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Barahona, Donifan. "On the representation of aerosol-cloud interactions in atmospheric models." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41169.

Full text
Abstract:
Anthropogenic atmospheric aerosols (suspended particulate matter) can modify the radiative balance (and climate) of the Earth by altering the properties and global distribution of clouds. Current climate models however cannot adequately account for many important aspects of these aerosol-cloud interactions, ultimately leading to a large uncertainty in the estimation of the magnitude of the effect of aerosols on climate. This thesis focuses on the development of physically-based descriptions of aerosol-cloud processes in climate models that help to address some of such predictive uncertainty. It includes the formulation of a new analytical parameterization for the formation of ice clouds, and the inclusion of the effects of mixing and kinetic limitations in existing liquid cloud parameterizations. The parameterizations are analytical solutions to the cloud ice and water particle nucleation problem, developed within a framework that considers the mass and energy balances associated with the freezing and droplet activation of aerosol particles. The new frameworks explicitly account for the impact of cloud formation dynamics, the aerosol size and composition, and the dominant freezing mechanism (homogeneous vs. heterogeneous) on the ice crystal and droplet concentration and size distribution. Application of the new parameterizations is demonstrated in the NASA Global Modeling Initiative atmospheric and chemical and transport model to study the effect of aerosol emissions on the global distribution of ice crystal concentration, and, the effect of entrainment during cloud droplet activation on the global cloud radiative properties. The ice cloud formation framework is also used within a parcel ensemble model to understand the microphysical structure of cirrus clouds at very low temperature. The frameworks developed in this work provide an efficient, yet rigorous, representation of cloud formation processes from precursor aerosol. They are suitable for the study of the effect of anthropogenic aerosol emissions on cloud formation, and can contribute to the improvement of the predictive ability of atmospheric models and to the understanding of the impact of human activities on climate.
APA, Harvard, Vancouver, ISO, and other styles
6

Rosenfeld, Daniel, Meinrat O. Andreae, Ari Asmi, Mian Chin, Leeuw Gerrit de, David P. Donovan, Ralph Kahn, et al. "Global observations of aerosol-cloud-precipitation-climate interactions: Global observations of aerosol-cloud-precipitation-climateinteractions." American Geophysical Union (AGU), 2014. https://ul.qucosa.de/id/qucosa%3A13459.

Full text
Abstract:
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
APA, Harvard, Vancouver, ISO, and other styles
7

Pringle, Kirsty Jane. "Aerosol - cloud interactions in a global model of aerosol microphysics." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Partridge, Daniel. "Inverse Modeling of Cloud – Aerosol Interactions." Doctoral thesis, Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-60454.

Full text
Abstract:
The role of aerosols and clouds is one of the largest sources of uncertainty in understanding climate change. The primary scientific goal of this thesis is to improve the understanding of cloud-aerosol interactions by applying inverse modeling using Markov Chain Monte Carlo (MCMC) simulation. Through a set of synthetic tests using a pseudo-adiabatic cloud parcel model, it is shown that a self adaptive MCMC algorithm can efficiently find the correct optimal values of meteorological and aerosol physiochemical parameters for a specified droplet size distribution and determine the global sensitivity of these parameters. For an updraft velocity of 0.3 m s-1, a shift towards an increase in the relative importance of chemistry compared to the accumulation mode number concentration is shown to exist somewhere between marine (~75 cm-3) and rural continental (~450 cm-3) aerosol regimes. Examination of in-situ measurements from the Marine Stratus/Stratocumulus Experiment (MASE II) shows that for air masses with higher number concentrations of accumulation mode (Dp = 60-120 nm) particles (~450 cm-3), an accurate simulation of the measured droplet size distribution requires an accurate representation of the particle chemistry. The chemistry is relatively more important than the accumulation mode particle number concentration, and similar in importance to the particle mean radius. This result is somewhat at odds with current theory that suggests chemistry can be ignored in all except for the most polluted environments. Under anthropogenic influence, we must consider particle chemistry also in marine environments that may be deemed relatively clean. The MCMC algorithm can successfully reproduce the observed marine stratocumulus droplet size distributions. However, optimising towards the broadness of the measured droplet size distribution resulted in a discrepancy between the updraft velocity, and mean radius/geometric standard deviation of the accumulation mode. This suggests that we are missing a dynamical process in the pseudo-adiabatic cloud parcel model.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhong, Weiguo. "Characteristics of the Pinatubo aerosol cloud." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290573.

Full text
Abstract:
Optical depths at visible and infrared wavelengths obtained in Tucson, Arizona before and after the Pinatubo eruption in June 1991 have been used to investigate the characteristics of the stratospheric aerosols due to the Pinatubo eruption. The intrusion of the Pinatubo aerosols over Tucson first occurred on July 26, 1991 when the spectral optical depth values rose to two to four times their normal values. In general, there was a pattern of increase between June 1991 and April 1992, and a gradual decrease after April 1992. The stratospheric Pinatubo aerosol in April 1992 was characterized by a typical columnar total number density on the order of 8.78 x 106 in the size range of 0.2-0.7 μm. The total number density decreased to the order of 9.28 x 105 by April 1994. Simulations of the size distribution using a simple polydisperse coagulation and fallout model showed that both of the processes played a very important role in the evolution and transport of the particles in the interval from April 1992 to March 1993. A strong seasonal variation was observed in the aerosol optical depth data. The values are higher in the winter and spring and lower in the summer and fall. This variation is explained by more effective transport of particles from the tropics poleward in the winter and spring than in the summer and fall. We also observed that there was a reduction in stratospheric ozone associated with the Pinatubo aerosols, possibly because of the extra sites available for heterogeneous chemical reactions. The reduction was more noticeable in the spring and summer than in other seasons. The magnitude of the ozone reduction was in a good agreement with other studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Deaconu, Lucia-Timea. "Study on multi-layer "aerosol" situations and of "aerosol-cloud" interactions." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10165.

Full text
Abstract:
Le premier objectif de cette étude est d’analyser la cohérence entre les restitutions d’aérosols au-dessus des nuages (AAC) réalisées à partir de mesures spatiales passive et active. Nous avons considéré la méthode basée sur les mesures polarisées de POLDER, la méthode développée pour le lidar spatial CALIOP et la méthode basée sur le rapport de dépolarisation CALIOP (DRM), pour laquelle nous proposons une version calibrée. Nos analyses régionale et pluriannuelle globale mettent en évidence un bon accord statistique entre les restitutions DRM et POLDER AOT (R2=0,68 - échelle globale), qui donne confiance dans notre capacité à mesurer les propriétés de l'AAC. Des différences se produisent lors du contact entre les couches d'aérosols et de nuages. La méthode opérationnelle de CALIOP sous-estime l’AOT, comparé aux deux autres méthodes. Le second objectif est d'étudier l'impact des aérosols sur les propriétés des nuages et leur forçage radiatif, sur l'océan Atlantique Sud. Nous avons considéré une synergie entre les restitutions CALIOP et POLDER avec des paramètres météorologiques colocalisés. Nous réalisons des calculs de transfert radiatif dans les domaines visible et infrarouge, et analysons l'effet de la charge en aérosol sur les propriétés des nuages et la météorologie. Nous avons trouvé que les aérosols et le contenu en vapeur d’eau pourraient impacter la convection des nuages. Nos résultats montrent que sous de fortes charges de AAC, les nuages deviennent optiquement plus épais, avec une augmentation du contenu en eau liquide de 20 g.m-2 et des altitudes plus basses du sommet du nuage (~200 m); indiquant un potentiel effet semi-direct des aérosols au-dessus des nuages
One of the main objectives of this study is to analyze the consistency between the aerosol above clouds (AAC) retrievals from passive and active satellite measurements. We consider the method based on the passive polarization measurements provided by the POLDER instrument, the operational method developed for the space borne lidar CALIOP, and the CALIOP-based depolarization ratio method (DRM), for which we also propose a calibrated version. We perform a regional analysis and a global multi-annual analysis to provide robust statistics results. Our findings show good agreement between DRM and POLDER AOT retrievals (R2=0.68 at global scale). This result gives confidence in our ability to measure the properties of AAC. Differences occur when the aerosol and cloud layers are in contact. CALIOP operational method is largely underestimating the above cloud AOT, compared to the other two methods.The second objective is to study the impact of aerosols on the cloud properties and their radiative forcing, over the South Atlantic Ocean. We perform a synergy between CALIOP vertical profiles and POLDER retrievals, with collocated meteorological parameters. We performed radiative transfer calculations in the short- and longwave domains, and analyzed the effect of aerosol loading on the cloud properties and meteorology. We found that aerosols and water vapor effects could impact the cloud convection. Our results show that under large loads of AACs, clouds become optically thicker, with an increase in liquid water path of 20 g.m-2 and their cloud top altitudes are lower by 200 m, which may indicate a potential semi-direct effect of aerosols above clouds
APA, Harvard, Vancouver, ISO, and other styles
11

Merk, Daniel. "Uncertainties in the Quantification of Aerosol-Cloud Interactions." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-225523.

Full text
Abstract:
Aerosole dienen als Kondensationskerne (CCN) und verändern die Wolkentropfenkonzentration (Nd) und weitere Wolkeneigenschaften. Nd ist daher ein Schlüsselparameter von Aerosol-Wolken-Wechselwirkungen (ACI). ACI sind bezüglich ihrer Klimarelevanz nur unzureichend bestimmt. ACI wurden auf verschiedenen Skalen und mit unterschiedlichen Methoden von unterschiedlichen Perspektiven aus untersucht, was zu einer großen Variabilität von ACI Metriken in der Literatur führt. Für eine genauere Quantifizierung von ACI, wurden in dieser Arbeit damit verbundene, entscheidende Unsicherheiten diskutiert, u.a. das Einmischen trockener Luft, Unsicherheiten von Retrieval-Methoden und die Konsistenz von Schlüsselparametern auf verschiedenen Skalen. Um Nd und weitere Wolkeneigenschaften aus passiven Satellitenbeobachtungen für Flüssigwasserwolken abzuleiten, wird oft das adiabatische Modell herangezogen. Es wurde untersucht, inwiefern dieses Modell reale Bedingungen wiedergibt. Es wurde gezeigt, dass Wolken typischerweise subadiabatisch sind, mit stark reduziertem Flüssigwassergehalt nahe der Wolkenoberkante. Der Einmischprozess variiert zeitlich stark und erschwert die Quantizierung von ACI. Für unterschiedliche Cloudnet-Stationen variieren die Medianwerte des subadiabatischen Faktors von 0.35+/-0.12 bis 0.48+/-0.22. Dieser hängt stark von der geometrischen Wolkendicke ab, wobei dickere Wolken subadiabatischer sind. Die Ableitung von Nd aus bodenbasierten Radar-Radiometer-Beobachtungen ist sehr sensitiv gegenüber a-priori Annahmen. Um zusätzliche Beobachtungen und Unsicherheiten berücksichtigen zu können, wurde ein neuartiges Optimal Estimation (OE) Retrieval entwickelt und mittels synthetischer Wolkenprofile evaluiert. Mittels einer Sensitivitätsstudie konnte die Verbesserung der Retrieval-Genauigkeit für die OE Methode gezeigt werden, wenn die Beobachtungen der optischen Dicke mit berücksichtigt werden. Die Annahme einer typischen Breite der Tropfengrößenverteilung ist dabei eine der größten Unsicherheiten von Nd (Unsicherheit für die OE Methode etwa 150%, für die Radar-Radiometer-Methode etwa 200%). Desweiteren wurden aus unterschiedlichen Perspektiven abgeleitete wolkenmikrophysikalische Größen hinsichtlich ihrer Konsistenz untersucht. Beim Vergleich von Nd und des Effektivradius (re) vom bodengebundenen Retrieval mit in-situ Beobachtungen für einen Falltag wurde eine gute Übereinstimmung gefunden. Beim Vergleich der von SEVIRI und Bodenstationen abgeleiteten Wolkeneigenschaften haben sich mittlere quadratische Abweichungen des Flüssigwasserpfads und der optischen Dicke von jeweils 65 gm2 und 14 ohne signifikanten Bias gezeigt. Damit zeigt sich SEVIRI für großskalige, statistische ACI-Untersuchungen repräsentativ zur Bodenperspektive. Für individuelle Falltage traten jedoch teils größere Unterschiede auf, welche durch Inhomogenitäten und Auflösungseffekte erklärt werden können. Mit SEVIRI Beobachtungen und aus der MACC Reanalyse abgeleiteten CCN Konzentrationen wurde eine Quantifizierung von ACI für das Jahr 2012 durchgeführt. Dabei wurde für Europa ein deutlicher, mikrophysikalischer Effekt gefunden, d.h. eine Abnahme von re und eine Zunahme von Nd mit zunehmender CCN Konzentration. Im Gegensatz dazu wurde für die Wolkenalbedo kein eindeutiger Anstieg mit der CCN-Konzentration gefunden. Verwendet man die Aerosol-optische Dicke (AOD) anstelle der CCN-Konzentration, sind die Werte der ACI Metrik nur halb so groß. Dieses Ergebnis deutet darauf hin, dass die AOD kein optimaler CCN-Proxy ist.
APA, Harvard, Vancouver, ISO, and other styles
12

Paunova, Irena T. "Explicit numerical study of aerosol-cloud interactions in boundary layer clouds." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100670.

Full text
Abstract:
Aerosol-cloud interactions, the mechanisms by which aerosols impact clouds and precipitation and clouds impact aerosols as they are released upon droplet evaporation, are investigated by means of explicit high-resolution (3 km) numerical simulations with the Mesoscale Compressible Community (MC2) model. This model, which is non-hydrostatic and compressible, was extended by including separate continuity equations for dry and activated multi-modal aerosol, and for chemical species. The sources and sinks include: particle activation, solute transfer between drops, generation of extra soluble material in clouds via oxidation of dissolved SO2, and particle regeneration. The cloud processes are represented by an advanced double-moment bulk microphysical parameterization.
Three summertime cases have been evaluated: a marine stratus and a cold frontal system over the Bay of Fundy near Nova Scotia, formed on 1 Sep 1995 and extensively sampled as a part of the Radiation, Aerosol, and Cloud Experiment (RACE); and a continental stratocumulus, formed over the southern coast of Lake Erie on 11 July 2001. The marine stratus and the frontal system have been examined for the effects of aerosol on cloud properties and thoroughly evaluated against the available observations. The frontal system and the continental stratocumulus have been evaluated for the effects of cloud processing on the aerosol spectrum.
The marine stratus simulations suggest a significant impact of the aerosol on cloud properties. A simulation with mechanistic activation and a uni-modal aerosol showed the best agreement with observations in regards to cloud-base and cloud-top height, droplet concentration, and liquid water content. A simulation with a simple activation parameterization failed to simulate essential bulk cloud properties: droplet concentration was significantly underpredicted and the vertical structure of the cloud was inconsistent with the observations. A simulation with a mechanistic parameterization and a bi-modal aerosol, including a coarse mode observed in particle spectra below cloud, showed high sensitivity of droplet concentration to the inclusion of the coarse mode. There was a significant reduction in droplet number relative to the simulation without the coarse mode. A similar change occurred in the precipitating system preceding the stratus formation, resulting in an enhancement of precipitation in the weaker (upstream) part of the system while the precipitation in the more vigorous (downstream) part of the system remained almost unaffected.
Aerosol processing via collision-coalescence and aqueous chemistry in the non-drizzling stratocumulus case suggests that impact of the two mechanisms is of similar magnitude and can be as large as a 3-5 % increase in particle mean radius. A more detailed analysis reveals that the impact of chemical processing is oxidant-limited; beyond times when the oxidant (H 2O2) is depleted (∼ 40 minutes), the extent of processing is determined by supply of fresh oxidant from large-scale advection (fresh gaseous emissions are not considered). Aerosol processing via drop collision-coalescence alone suggests, as expected, sensitivity to the strength of the collection process in clouds. Larger particle growth, up to 5-10 %, is observed in the case of the frontal clouds, which exhibit stronger drop collection compared to that in the stratocumulus case. The processed aerosol exerted a measurable impact on droplet concentrations and precipitation production in the frontal clouds. For the case modeled here, contrary to expectations, the processed spectrum (via physical processing) produced higher droplet concentration than the unprocessed spectrum. The reasons explaining this phenomenon and the resulting impact on precipitation production are discussed.
The current work illustrates the complexity of the coupled system at the cloud system scales, revealed earlier at much smaller large eddy scales. If future parameterizations of the regional effect of aerosols on clouds are to be developed, careful consideration is required of the many of feedbacks in the boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
13

Quaas, Johannes, Bjorn Stevens, Philip Stier, and Ulrike Lohmann. "Interpreting the cloud cover." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186087.

Full text
Abstract:
Statistical analysis of satellite data shows a positive correlation between aerosol optical depth (AOD) and total cloud cover (TCC). Reasons for this relationship have been disputed in recent literature. The aim of this study is to explore how different processes contribute to one model’s analog of the positive correlation between aerosol optical depth and total cloud cover seen in the satellite retrievals. We compare the slope of the linear regression between the logarithm of TCC and the logarithm of AOD, or the strength of the relationship, as derived from three satellite data sets to the ones simulated by a global aerosol-climate model. We analyse model results from two different simulations with and without a parameterisation of aerosol indirect effects, and using dry compared to humidified AOD. Perhaps not surprisingly we find that no single one of the hypotheses discussed in the literature is able to uniquely explain the positive relationship. However the dominant contribution to the model’s AOD-TCC relationship can be attributed to aerosol swelling in regions where humidity is high and clouds are coincidentally found. This finding leads us to hypothesise that much of the AOD-TCC relationship seen in the satellite data is also carried by such a process, rather than the direct effects of the aerosols on the cloud fields themselves.
APA, Harvard, Vancouver, ISO, and other styles
14

Menon, Surabo, Jean-Louis Brenguier, Olivier Boucher, Paul Davison, Genio Anthony D. Del, Johann Feichter, Steven Ghan, et al. "Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations: Evaluating aerosol/cloud/radiation process parameterizations withsingle-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations." Wiley, 2003. https://ul.qucosa.de/id/qucosa%3A13455.

Full text
Abstract:
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
APA, Harvard, Vancouver, ISO, and other styles
15

Bulgin, Claire Elizabeth. "Improved understanding of aerosol processes using satellite observations of aerosol optical properties." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4906.

Full text
Abstract:
Atmospheric aerosols are the largest remaining uncertainty in the Earth’s radiative budget and it is important that we improve our knowledge of aerosol processes if we are to understand current radiative forcing and accurately project changes in future climate. Aerosols affect the radiation balance directly through the absorption and scattering of incoming solar radiation and indirectly through the modification of cloud microphysical properties. Understanding aerosol forcing remains challenging due to the short atmospheric residence time of aerosols resulting in large spatial and temporal heterogeneity in aerosol loading and chemical composition. Satellite retrievals are becoming increasingly important to improving our knowledge of aerosol forcing. They provide regular global data at finer spatial and temporal resolution than available through sparse groundbased point measurements or localised aircraft campaigns, but cannot unambiguously determine aerosol speciation, relying heavily on a priori assumptions. In this thesis I use data from two satellite instruments: the Along Track Scanning Radiometer 2 (ATSR-2) and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) interpreted using the Oxford-RAL Aerosol and Cloud (ORAC) retrieval scheme in three pieces of interrelated work. First I use satellite observations of aerosol optical depth a and cloud particle effective radius re from the ATSR-2 instrument in 1997 to investigate the Twomey indirect effect (IE, -δ ln re /δ ln τa) in regions of continental outflow. I generally find a negative correlation between τa and re with the strongest inverse relationships downwind of Africa. North America and eastern Asian continental outflow exhibits a strong seasonal dependence, as expected. Global values for IE range from 0.10 to 0.16, consistent with theoretical predictions. Downwind of Africa, I find that the IE is unphysically high but robust (r = −0.85) during JJA associated with high aerosol loading, and attribute this tentatively to the Twomey hypothesis accounting only for a limited number of physical properties of aerosols. Second, I test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. I find that using the observed DODO free tropospheric aerosol size distribution and refractive index compared with the dust aerosol properties from the Optical Properties of Aerosol and Cloud (OPAC) package, increases simulated top of the atmosphere radiance at 0.55 μm assuming a fixed aerosol optical depth of 0.5, by 10–15%, reaching a maximum difference at low solar zenith angles. This difference is sensitive to changes in AOD, increasing by ~2–4% between AOD of 0.4–0.6. I test the sensitivity of the retrieval to the vertical distribution of the aerosol and find that this is unimportant in determining simulated radiance at 0.55 μm. I also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and I find that it poorly constrains aerosol speciation. I develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. I use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using my speciation against the GlobAerosol retrieval during January and July 2006. I find AOD discrepancies of 0.2–1 over regions of biomass burning outflow, where AOD from my aerosol speciation and the GlobAerosol speciation can differ by as much as 50 - 70 %. Finally I use satellite observations of aerosol optical depth and cloud fraction from the MSG SEVIRI instrument to investigate the semi-direct effect of Saharan dust aerosol on marine stratocumulus cloud cover over the Atlantic during July 2006. I first use these data to study the spatial autocorrelation of aerosol optical depth and find that it is correlated over a lag of 0.1◦ (approximately 10 km at low latitudes), beyond which it rapidly decorrelates. I find a 15 % higher cloud fraction in regions with high dust loading (AOD > 0.5), compared with scenes with a lower dust loading (AOD < 0.5), which for high dust scenes increases with local static stability. I attribute this tentatively to aerosol solar shielding enhancing longwave cloud top radiative cooling which drives marine stratocumulus convection.
APA, Harvard, Vancouver, ISO, and other styles
16

Costantino, Lorenzo. "Analysis of aerosol-cloud interaction from space." Versailles-St Quentin en Yvelines, 2012. http://www.theses.fr/2012VERS0004.

Full text
Abstract:
Le but de cette thèse est de fournir une analyse exhaustive des interactions entre nuages et aérosols dans le Sud-Est de l'Atlantique, en quantifiant l'impact des aérosols sur le bilan radiatif régional en ondes courtes. Pour cet objectif, nous avons utilisé les données satellitaires de MODIS, PARASOL et CALIPSO, qui fournissent des observations complémentaires et quasi simultanées. L'idée principale qui a permis une analyse originale est d'utiliser les observations du lidar CALIPSO pour identifier les cas pour lesquels les couches d’aérosols et nuages vues par MODIS et PARASOL sont en interaction (mélangées) et ceux pour lesquels ils sont clairement disjoints. Il ressort de cette analyse que les propriétés des nuages sont fortement influencées par l'interaction avec les aérosols (premier effet indirect). On observe une diminution du rayon efficace de gouttelettes et du contenu en eau sous l'effet d’une hausse de la concentration des particules polluantes. En revanche, nous n’avons pas mis en évidence une modification significative de la réflectance des nuages. Lorsque les aérosols et les nuages sont mélangés, on observe aussi une diminution de l’occurrence des précipitations (second effet indirect) et l'augmentation de la couverture nuageuse. D'autre part, la fraction nuageuse est affectée par la présence d'aérosols, même si les particules de pollution sont situées au-dessus du sommet des nuages (sans interaction physique). Cette observation est interprétée comme étant une conséquence de l'effet radiatif des aérosols. Pour quantifier le forçage radiatif direct et indirect des aérosols, nous avons utilisé un code de transfert radiatif rapide à onde courte, contraint par les observations satellitaires. Sur six ans (2005-2010), le forçage moyen est faible et égal à -0. 07 (direct) et -0. 05 (indirect) W/m². Le forçage total est donc négatif (refroidissement) et égal à -0. 12 W/m²
The aim of this work is to provide a comprehensive analysis of cloud and aerosol interaction over South-East Atlantic, to quantify the overall aerosol impact on the regional radiation budget. We used data from MODIS, PARASOL and CALIPSO satellites, that fly in close proximity on the same sun-synchronous orbit and allow for complementary observations of the same portion of the atmosphere, within a few minutes. The main idea is to use CALIPSO vertical information to define whether or not aerosol and cloud layers observed by MODIS and PARASOL are mixed and interacting. We found evidences that, in case of interaction, cloud properties are strongly influenced by aerosol presence (first indirect effect). In particular, there is a decrease in cloud droplet effective radius and liquid water path with aerosol enhancement. On the other hand, we could not evidence any significant impact on the cloud reflectance. We also analyzed the aerosol impact on precipitation (second indirect effect). In polluted low clouds over the ocean, we found evidence of precipitation suppression and cloud cover increase with increasing aerosol concentration. On the other hand, cloud fraction is shown to be affected by aerosol presence, even if pollution particles are located above cloud top, without physical interaction. This observation is interpreted as a consequence of the aerosol radiative effect. Aerosol shortwave direct (DRF) and indirect (IRF) radiative forcing at TOA has been quantified, with the use of a radiative transfer model constrained by satellite observations. For the direct effect, there is a competition between cooling (negative, due to light scattering by the aerosols) and warming (positive, due to the absorption by the same particles). The six year (2005-2010) mean estimate is equal to -0. 07 (DRF) and -0. 05 (IRF) W/m². The resulting total aerosol forcing is negative (cooling) and equal to -0. 12 W/m²
APA, Harvard, Vancouver, ISO, and other styles
17

Menon, Surabo, Jean-Louis Brenguier, Olivier Boucher, Paul Davison, Genio Anthony D. Del, Johann Feichter, Steven Ghan, et al. "Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177303.

Full text
Abstract:
The Second Aerosol Characterization Experiment (ACE-2) data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24–48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields. Several schemes were tested for the prediction of cloud droplet number concentration (N). Physically based activation schemes using vertical velocity show noticeable discrepancies compared to empirical schemes due to biases in the diagnosed cloud base vertical velocity. Prognostic schemes exhibit a larger variability than the diagnostic ones, due to a coupling between aerosol activation and drizzle scavenging in the calculation of N. When SCMs are initialized at a fine vertical resolution with locally observed vertical profiles of liquid water, predicted optical properties are comparable to observations. Predictions however degrade at coarser vertical resolution and are more sensitive to the mean liquid water path than to its spatial heterogeneity. Predicted precipitation fluxes are severely underestimated and improve when accounting for sub-grid liquid water variability. Results from the 24–48 hr runs suggest that most models have problems in simulating boundary layer cloud morphology, since the large-scale initialization fields do not accurately reproduce observed meteorological conditions. As a result, models significantly overestimate optical properties. Improved cloud morphologies were obtained for models with subgrid inversions and subgrid cloud thickness schemes. This may be a result of representing subgrid scale effects though we do not rule out the possibility that better large-forcing data may also improve cloud morphology predictions.
APA, Harvard, Vancouver, ISO, and other styles
18

Farrington, Robert. "Testing mixed phase cloud parametrizations through confronting models with in-situ observations." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/testing-mixed-phase-cloud-parametrizations-through-confronting-models-with-insitu-observations(e2b7e31b-fa4a-4501-9f30-2ca2452c58fa).html.

Full text
Abstract:
Accurate representations of clouds are required in large-scale weather and climate models to make detailed and precise predictions of the Earth's weather and climate. Representations of clouds within these models are limited by the present understanding of the role of aerosols in the microphysical processes responsible for cloud formation and development. As part of a NERC funded CASE studentship with the Met Office, this thesis aims to test new aerosol-dependent mixed-phase cloud parametrizations by obtaining extensive cloud microphysical measurements in-situ and comparing and contrasting them with model simulations. Cloud particle concentrations were measured during the Ice NUcleation Process Investigation And Quantification (INUPIAQ) field campaign at Jungfraujoch in Switzerland. A new probe was used to separate droplet and small ice concentrations by using depolarisation ratio and size thresholds. Whilst the new small ice crystal and droplet number concentrations compared favourably with other instruments, the size and depolarisation ratio thresholds were found to be subjective, and suggested to vary from cloud to cloud. An upwind site was chosen to measure out-of-cloud aerosol particle concentrations during INUPIAQ. During periods where the site was out-of-cloud and upwind of Jungfraujoch, several large-scale model simulations were run using the aerosol concentrations in an aerosol-dependent ice nucleation parametrization. The inclusion of the parametrization failed to increase the simulated ice crystal number concentrations, which were several orders of magnitude below those observed in-situ at Jungfraujoch. Several possible explanations for the high observed ice crystal number concentrations at Jungfraujoch are tested using further model simulations. Further primary ice nucleation was ruled out, as the inclusion of additional ice nucleating particles in the model simulations suppressed the liquid water content, preventing the simulation of the mixed-phase clouds observed during INUPIAQ. The addition of ice crystals produced via the Hallett-Mossop process upwind of Jungfraujoch into the model only infrequently provided enough ice crystals to match the observed concentrations. The inclusion of a simple surface flux of hoar crystals into the model simulations was found to produce ice crystal number concentrations of a similar magnitude to those observed at Jungfraujoch, without depleting the simulated liquid water content. By confronting models with in-situ observations of cloud microphysical process, this thesis highlights interactions between surface ice crystals and mixed-phase clouds, and their potential impact on large-scale models.
APA, Harvard, Vancouver, ISO, and other styles
19

Lathem, Terry Lee. "On the water uptake of atmospheric aerosol particles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50112.

Full text
Abstract:
The feedbacks among aerosols, clouds, and radiation are important components for understanding Earth's climate system and quantifying human-induced climate change, yet the magnitude of these feedbacks remain highly uncertain. Since every cloud droplet in the atmosphere begins with water condensing on a pre-existing aerosol particle, characterizing the ability of aerosols to uptake water vapor and form cloud condensation nuclei (CCN) are key to understanding the microphysics behind cloud formation, as well as assess the impact aerosols have on the Earth system. Through a combination of controlled laboratory experiments and field measurements, this thesis characterizes the ability of atmospheric aerosols to uptake water vapor and become CCN at controlled levels of water vapor supersaturation. The origin of the particle water uptake, termed hygroscopicity, is also explored, being from either the presence of deliquescent soluble material and/or adsorption onto insoluble surfaces. The data collected and presented is comprehensive and includes (1) ground samples of volcanic ash, collected from six recent eruptions re-suspended in the laboratory for analysis, (2) laboratory chamber and flow-tube studies on the oxidation and uptake of surface active organic compounds, and (3) in-situ aircraft measurements of aerosols from the Arctic background, Canadian boreal forests, fresh and aged biomass burning, anthropogenic industrial pollution, and from within tropical cyclones in the Atlantic basin. Having a more thorough understanding of aerosol water uptake will enable more accurate representation of cloud droplet number concentrations in global models, which can have important implications on reducing the uncertainty of aerosol-cloud-climate interactions, as well as additional uncertainties in aerosol transport, atmospheric lifetime, and impact on storm dynamics.
APA, Harvard, Vancouver, ISO, and other styles
20

Rosenfeld, Daniel, Meinrat O. Andreae, Ari Asmi, Mian Chin, Leeuw Gerrit de, David P. Donovan, Ralph Kahn, et al. "Global observations of aerosol-cloud-precipitation-climate interactions." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-177356.

Full text
Abstract:
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects ofmeteorology fromthose of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing.Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
APA, Harvard, Vancouver, ISO, and other styles
21

Rothenberg, Daniel (Daniel Alexander). "Fundamental aerosol-cloud interactions and their influence on the aerosol indirect effect on climate." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108963.

Full text
Abstract:
Thesis: Ph. D. in Atmospheric Science, Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 173-189).
The influence of anthropogenic aerosol emissions on the optical properties of clouds and the radiative forcing arising from these interactions, known as the aerosol indirect effect on climate, constitutes a fundamental uncertainty in our understanding of 2 0 th century climate change. In this dissertation, we investigate the role of a keystone physical process, droplet activation, in contributing to this uncertainty. The first half of the ensuing work focuses on the parameterization of this process in global model, assessing both existing schemes and developing a novel one. The second half then quantifies the influence of activation by using a suite of aerosol-climate models which include a complete description of the physics which give rise to the indirect effect. Parameterizations of droplet activation perform well for idealized single-mode aerosol populations, but show systematic biases in high-pollution, weak-updraft regimes. These are exacerbated when the aerosol in question is a complex mixture. We show that estimates of droplet nucleation are highly sensitive to changes in the accumulation mode size and number concentration; this mode is itself sensitive to anthropogenic aerosol emissions, which potentially further biases modeled cloud droplet number. Using a model emulation technique, we develop a framework for building efficient metamodels of activation, which greatly reduce the mean error in droplet number predicted across regimes. The biases in these parameterizations raise questions the influence of activation on the indirect effect. Using different schemes, we calculate a spread of 1 W m- 2 in the indirect effect, which we show is equal to the spread computed from an independent suite of global models with different aerosol and physics modules. The estimated indirect effect scales more strongly with the baseline cloud droplet number concentration simulated by each model than by its change from pre-industrial to present day, indicating a strong saturation effect. While present-day estimates of aerosol-cloud interactions derived from satellite-based instruments are inadequate at constraining the pre-industrial cloud droplet burden, we show that process-based measurements could overcome this problem.
by Daniel Alexander Rothenberg.
Ph. D. in Atmospheric Science
APA, Harvard, Vancouver, ISO, and other styles
22

Morales, Betancourt Ricardo. "On the representation of sub-grid scale phenomena and its impact on clouds properties and climate." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50373.

Full text
Abstract:
This thesis addresses a series of questions related to the problem of achieving reliable and physically consistent representations of aerosol-cloud interaction in global circulation models (GCM). In-situ data and modeling tools are used to develop and evaluate novel parameterization schemes for the process of aerosol activation for applications in GCM simulations. Atmospheric models of different complexity were utilized, ranging from detailed Lagrangian parcel model simulations of the condensational growth of droplets, to one-dimensional single column model with aerosol and cloud microphysics, and finally GCM simulations performed with the Community Atmosphere Model (CAM). A scheme for mapping the sub-grid scale variability of cloud droplet number concentrations (CDNC) to a number of microphysical process rates in a GCM was tested, finding that neglecting this impact can have substantial influences in the integrated cloud properties. A comprehensive comparison and evaluation of two widely used, physically-based activation parameterizations was performed in the framework of CAM5.1. This was achieved by utilizing a numerical adjoint sensitivity approach to comprehensively investigate their response under the wide range of aerosol and dynamical conditions encountered in GCM simulations. As a result of this, the specific variables responsible for the observed differences in the physical response across parameterizations are encountered, leading to further parameterization improvement.
APA, Harvard, Vancouver, ISO, and other styles
23

Lance, Sara. "Quantifying compositional impacts of ambient aerosol on cloud formation." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26700.

Full text
Abstract:
Thesis (Ph.D)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2008.
Committee Chair: Nenes, Athanasios; Committee Co-Chair: Smith, Jim; Committee Member: Bergin, Mike; Committee Member: Huey, Greg; Committee Member: Weber, Rodney. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
24

Karlsson, Karl-Göran. "The use of a satellite-derived cloud climatology for studying cloud-aerosol processes and the performance of regional cloud climate simulations." Doctoral thesis, Stockholm University, Department of Meteorology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1364.

Full text
Abstract:

The entry of satellite-derived decadal cloud datasets with homogeneous coverage in time and space enables studies not possible before. This thesis presents two such applications. The first study deals with cloud-aerosol processes and the second with an evaluation of cloud simulations from a regional climate model.

The first part of the thesis describes the used satellite-derived dataset based on imagery from the Advanced Very High Resolution Radiometer (AVHRR) on the polar orbiting NOAA satellites. A method for cloud retrieval and the compilation of a 1991-2000 Scandinavian cloud climatology are described.

The second part reveals an intriguing anti-correlation between monthly mean satellite-derived cloudiness and the concentration of the cosmogenetic isotope Beryllium-7 in near-surface aerosol samples for three measurement sites in Sweden. Large-scale transport processes are suggested as the most likely physical mechanism for this behaviour but more complex relations to cloud microphysical processes are not ruled out.

The final part presents a thorough evaluation of cloud simulations of the SMHI Rossby Centre regional atmospheric model (RCA3). Several model-to-satellite adaptations are applied to avoid artificial biases of results. The study stresses the necessity to account for initial differences between observed and modelled clouds caused by satellite cloud detection limitations. Results show good agreement of modelled and observed cloud amounts while the vertical distribution of clouds appears largely different. RCA3 underestimates medium-level clouds while overestimating low- and high-level clouds. Also, the current use of the Maximum cloud overlap approach in the radiation scheme and an indicated excess of cloud condensate in modelled clouds appear to create excessive cloud optical thicknesses with serious implications for the surface radiation budget.

Future applications are outlined based on greatly enhanced satellite-derived cloud and radiation budget datasets.

APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Qingfu. "Modeling of the aerosol-cloud interactions in marine stratocumulus /." Full-text version available from OU Domain via ProQuest Digital Dissertations, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Slater, Daniel. "Predicting the impacts of cloud processing on aerosol properties /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gunturu, Udaya Bhaskar. "Aerosol-Cloud interactions : a new perspective in precipitation enhancement." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58462.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 171-184).
Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation from them. The processes and mechanisms by which clouds and precipitation are modified by changes in aerosol composition and size-distribution are very intricate. The objective of this thesis is to improve the understanding of the processes and mechanisms through which the changes in aerosol concentrations impact the evolution of deep convective clouds and precipitation formation. We develop a new coupled model in which a very detailed model of aerosol activation is coupled to a three-dimensional cloud resolving model. This coupled model can accurately represent different kinds of aerosol populations. This coupled model is used to investigate the impact of changing aerosol concentrations on the dynamics, microphysical evolution and precipitation formation in deep convective clouds. We examine the theories of aerosol activation, and the representation of aerosol activation in cloud models. The limitations of the extant methods of representation of aerosol activation in cloud models are evaluated. Then we descibe the components of the coupled model - Modified Eulerian and Lagrangian Aerosol Model (MELAM) and the Cloud Resolving Model (CRM). The features of these two component models with respect to aersol activation and cloud formation are discussed. The evaluation of the coupled model by simulation of a deep convertive event observed during the INDian Ocean EXperiment (INDOEX) by statistcal comparison of observed and simulated cloud fields shows that the coupled model can simulate deep convective events reasonably well. We present a study of the senstivity of the model to initial thermodynamic conditions (CAPE). Different initial thermodynamic conditons sampled during the INDOEX are used to initialize the coupled model and, the structure and evolution of the deep convective event are discussed. The study sheds new light on the respone of deep convection to CAPE. It is found that when the atmosphere has moderate CAPE, the precipitation forming processes are very active and when the CAPE is (cont.) low or high, they are comparatively less efficient.
As the most important part of our study, we examine the response of deep convection to changing initial aerosol concentration. Different aerosol concentrations from those representing pristine to polluted atmospheres are considered. We look at the buoyancy of the cloud and the microphysical evolution. It is found that the dynamics and microphysics are tightly coupled and we infer that to understand aerosol-cloud interactions in deep convective clouds, both - dynamics and microphysics - and their interaction have to be taken into consideration. Our results show that the response of a deep convective cloud to changing aerosol concentration is very different from the much well understood reponse of shallow clouds or small cumulus clouds. In general, increase in aerosol concentratin is seen to invigorate convection and lead to greater condensate. Although the cloud droplet size decreases, collision-coalescence is not completely inefficient. The precipitation in high aerosol regime is seen to occure in short spells of intense rain. A very interesting anomalous response of deep convection to initial aerosol concentration is observed at intermediate aerosol concentrations. The cloud lifetime, and precipitation are seen to increase in this regime. A possible mechanism to explain this anomalous behavior is proposed and the available circumstantial support for the mechanism from extant observations is presented. It is proposed that the efficient collection of rain and cloud droplets by ice and graupel particles in the middle troposphere is primarily responsible for this increased cloud lifetime and precipitation.
by Udaya Bhaskar Gunturu.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
28

Gryspeerdt, Edward, Tom Goren, and Tristan W. P. Smith. "Observing the timescales of aerosol–cloud interactions in snapshot satellite images." Copernicus Publications, 2021. https://ul.qucosa.de/id/qucosa%3A74863.

Full text
Abstract:
The response of cloud processes to an aerosol perturbation is one of the largest uncertainties in the anthropogenic forcing of the climate. It occurs at a variety of timescales, from the near-instantaneous Twomey effect to the longer timescales required for cloud adjustments. Understanding the temporal evolution of cloud properties following an aerosol perturbation is necessary to interpret the results of so-called “natural experiments” from a known aerosol source such as a ship or industrial site. This work uses reanalysis wind fields and ship emission information matched to observations of ship tracks to measure the timescales of cloud responses to aerosol in instantaneous (or“snapshot”) images taken by polar-orbiting satellites. As in previous studies, the local meteorological environment is shown to have a strong impact on the occurrence and properties of ship tracks, but there is a strong time dependence in their properties. The largest droplet number concentration (Nd) responses are found within 3 h of emission, while cloud adjustments continue to evolve over periods of 10 h or more. Cloud fraction is increased within the early life of ship tracks, with the formation of ship tracks in otherwise clear skies indicating that around 5 %–10%of clear-sky cases in this region may be aerosol-limited. The liquid water path (LWP) enhancement and the Nd– LWP sensitivity are also time dependent and strong functions of the background cloud and meteorological state. The nearinstant response of the LWP within ship tracks may be evidence of a bias in estimates of the LWP response to aerosol derived from natural experiments. These results highlight the importance of temporal development and the background cloud field for quantifying the aerosol impact on clouds, even in situations where the aerosol perturbation is clear.
APA, Harvard, Vancouver, ISO, and other styles
29

Nichman, Leonid. "Optical measurements of the microphysical properties of aerosol and small cloud particles in the CLOUD project." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/optical-measurements-of-the-microphysical-properties-of-aerosol-and-small-cloud-particles-in-the-cloud-project(ad792d0c-90d1-4704-b666-b75d284b40fe).html.

Full text
Abstract:
Clouds play an important role in precipitation, solar radiation budget and electrification of Earth's atmosphere. The presence of small ice crystals in clouds and their morphology can complicate parametrisation and climate modelling, consequently leading to a net cooling feedback on climate. In situ airborne measurements provide single particle characterisation with high temporal and spatial resolution allowing better understanding of atmosphericprocesses of ice nucleation and growth. Simulations of the preindustrial clouds and accurate characterisation and comparison of the instruments require a well-controlled and often pristine environment. The experimental chamber setup allows simulations of these and other conditions. The microphysical features of the micrometric ice particles in clouds were examined in a laboratory setup, at numerous sub-zero temperatures [-10 to -50 ⁰C]. The following instruments were sampling the content of the CLOUD chamber air volume: Cloud and Aerosol Spectrometer with Polarisation (CASPOL), Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition), 3-View Cloud Particle Imager (3V-CPI), and the Scattering-Intensity-Measurements-for-the-Optical-detectioN-of-icE (SIMONE-Junior). Cluster analysis was applied to the data collected with CASPOL and compared with results from the other probes. We were able to discriminate and map the aerosol and cloud particles in the pristine chamber environment using polarisation ratios (Dpol/Backscatter and Dpol/Forwardscatter) of the scattered light. We demonstrate the sensitivity of the instruments in detecting secondary organic aerosol (SOA) phase transitions. Then, we show the ability of the viscous SOA to nucleate ice in a series of SPectrometer for Ice Nuclei (SPIN) measurements. The detected viscous SOA ice nucleation efficiency may affect global modelling and estimations of ice water content in the atmosphere. Subsequently, the analysis and discrimination technique used in the CLOUD chamber was applied to airborne measurements to test its efficiency and to retrieve the composition of clouds. Data from four flight campaigns on board of the FAAM BAe-146 were analysed: Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA), COnvective-Precipitation-Experiment (COPE) in south England, CIRrus Coupled Cloud-Radiation EXperiment (CIRCCREX), and PIKNMIX in Scotland. In these and other flights, we were able to identify unique clusters such as salts, minerals, organics, volcanic ash, water and ice, confirming some of the offline laboratory elemental analysis results, and providing complementary information. Single particle polarisation measurements were compared with bulk depolarisation, diffraction patterns, and imaging. Most of the optical instruments still suffer from ambiguity in phase derivation (i.e. water/ice) of optically spherical small shapes. We discuss some of the limitations of optical cloud particle discrimination in different ambient conditions and offer possible solutions to reduce the uncertainty, e.g., surface complexity derivation from scatteringpatterns. Our findings will help to develop better instruments and improve the models which are used for weather forecasts and climate change predictions.
APA, Harvard, Vancouver, ISO, and other styles
30

Steele, Henry Donnan 1974. "Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/58445.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2004.
Includes bibliographical references (p. 275-315).
Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud albedo, lifetime, and patterns which together are thought to exert a negative radiative forcing on the climate; these are the indirect effects of atmospheric aerosols. The specifics of the process by which aerosol particles seed cloud particles are complex and highly uncertain. The goal of this thesis is to refine understanding of the role of various aerosol types in determining cloud properties. We approach this goal by constructing a new highly detailed aerosol-cloud process model that is designed to simulate condensation upon complex aerosol populations. We use this model to investigate the microphysics of aerosol-cloud interactions, specifically considering the role of cloud dynamics and of the ubiquitous mixed soot / sulfate aerosols. We describe the Mixed Eulerian-Lagrangian Aerosol Model (MELAM). This new computer model of aerosol microphysics is specifically tailored to simulate condensation and activation as accurately as possible. It specifically calculates aerosol thermodynamics, condensation, coagulation, gas and aqueous phase chemistry, and dissolution. The model is able to consider inorganic aerosols and aerosols with both inorganics and insoluble cores; the specific chemical system to be considered is specified by the user in text input files. Aerosol particles may be represented using "sectional distributions" or using a "representative sample" distribution which tracks individual particles.
(cont.) We also develop a constant updraft speed, adiabatic parcel model and a variable updraft speed, episodically entraining parcel model to provide boundary conditions to MELAM and allow simulations of aerosol activation in cloud updrafts. Using MELAM and the parcel models, we demonstrate that aerosol activation depends on the composition and size distribution of the sub-cloud aerosol population, on the updraft speed through a parcel's lifting condensation level, on the vertical profile of the updraft speed, and on entrainment. We use a convective parameterization that was developed for use in global or regional models to drive the episodically entraining, variable updraft speed parcel model. Ultimately, reducing the uncertainty of the global impact of the indirect effects of aerosols will depend on successfully linking cloud parameterizations to models of aerosol activation; our work represents a step in that direction. We also consider the activation of mixed soot / sulfate particles in cloud updrafts. We constrain for the first time a model of condensation onto these mixed particles that incorporates the contact angle of the soot / solution interface and the size of the soot core. We find that as soot ages and its contact angle with water decreases, mixed soot / sulfate aerosols activate more readily than the equivalent sulfate aerosols that do not have soot inclusions. We use data from the Aerosol Characterization Experiments (ACE) 1 and 2, and from the Indian Ocean Experiment (INDOEX) to define representative aerosol distributions for clean, polluted, and very polluted marine environments. Using these distributions, we argue that the trace levels of soot observed in clean marine environments do not substantially impact aerosol activation, while the presence of soot significantly increases the number of aerosol that activate in polluted areas.
by Henry Donnan Steele.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
31

Cravigan, Luke. "The role of marine biota on the composition and concentration of potential cloud condensation nuclei." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/132173/1/Luke_Cravigan_Thesis.pdf.

Full text
Abstract:
Aerosol-cloud interactions in remote marine environments are poorly represented in atmospheric modelling, which contributes to uncertainties in climate prediction. This work reports on in-situ observations which highlight the importance of biogenic marine aerosols, and their spatial and seasonal variability, to the uncertainty in modelled aerosol-cloud interactions. Measurements were taken during four voyages in the Southern and South Pacific Ocean spanning summer to winter. The observations were used to test the applicability of existing empirical models for the Southern Hemisphere.
APA, Harvard, Vancouver, ISO, and other styles
32

Megahed, Khaled. "The impact of mineral dust aerosol particles on cloud formation." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984083375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Junior, Theotonio Mendes Pauliquevis. "\"Os efeitos de aerossóis emitidos por queimadas na formação de gotas de nuvens e na composição da precipitação na Amazônia\"." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-27082007-101307/.

Full text
Abstract:
Este trabalho teve como objetivo investigar a relação entre produtos de atividades antropogênicas na Amazônia e sua influência no efeito indireto dos aerossóis no clima. Para isso, foi feita uma caracterização físico-química detalhada dos aerossóis naturais e de queimadas na Amazônia e procurou-se compreender como estes diferentes tipos de aerossóis se comportam como Núcleos de Condensação de Nuvens. Foi estudado também a influência dos aerossóis de queimadas na composição química da precipitação e no transporte de nutrientes. Visando atingir estes objetivos, foram feitas medidas em regiões distintas da Amazônia com relação ao impacto por atividades antropogênicas, principalmente queimadas. Foi possível observar em várias circunstâncias uma relação entre a composição do material particulado e da precipitação, o que nos permitiu concluir que as emissões antropogênicas influenciam significativamente a composição da precipitação. Foram identificadas as principais componentes que afetam a composição do material particulado em suspensão na Amazônia, e concluimos que o material particulado originado de emissões biogênicas é predominante em regiões preservadas, com pequena contribuição também de poeira de solo e transporte de aerossóis marinhos. Em regiões sob influência de atividades antropogênicas, observou-se que a composição dos aerossóis e da precipitação é afetada mesmo na estação úmida. No estudo das propriedades físicas e químicas das partículas de aerossol que são relevantes para o seu papel como Núcleos de Condensação de Nuvens, concluiu-se que a distribuição de tamanho é mais importante do que a composição química das partículas, devido ao fato das emissões de novas partículas por queimadas ocorrer predominantemente acima do diâmetro seco de ativação. A composição química só foi importante em valores de supersaturação baixos (< 0.2%), o que significa que esse efeito pode ser importante para nuvens estratiformes, onde o valor máximo de supersaturação é baixo, devido a baixa velocidade de ascensão das parcelas. A exportação de nutrientes devido ao transporte em larga escala de aerossóis de emissões de queimadas se mostrou particularmente crítica com relação às quantidades de fósforo que estão sendo perdidas irreversivelmente pela floresta amazônica, que foi cerca de 7 vezes maior do que a quantidade reposta por deposição úmida. Essa perda de fósforo pode ser crítica para o ecossistema em longo prazo.
The main objective of this study was to investigate the relationship between anthropogenic emissions in the Amazon basin and the indirect aerosol effect on climate. A detailed study of physical and chemical properties of natural and biomass burning aerosols was conducted, in order to understand how these completely different aerosols behave as Cloud Condensation Nuclei (CCN). It was also investigated the influence of biomass burning aerosols in chemical composition of precipitation, and transport of nutrients. The measurements were carried out in completely different regions respect to the impact of anthropogenic activities, especially biomass burning emissions. The analysis of aerosols and rainwater chemistry showed that anthropogenic emissions have a significant influence in the composition of precipitation. Factor analysis was applied to perform source identification, and the conclusion is that at remote and free of anthropogenic emission areas, the most important contribution was from biogenic emissions, with a small contribution of soil dust and marine aerosols advection. It was quite different at regions under influence of anthropogenic activities, where measurements showed a clear anthropogenic influence even during wet season both in aerosols and precipitation chemistry. In the study of hygroscopic properties of aerosol particles, the main conclusion was that size distribution of particles is the most important parameter to determine the ability of aerosols to act as CCN, because most of biomass burning emission are particles bigger than the activation diameter. Chemical composition was an important factor only if supersaturation is below 0.2%, because in this supersaturation range the activation diameter is extremely sensible to small changes in supersaturation. Transport of nutrients due to largescale transport of biomass burning aerosols was specially critical concerning phosphorus exportation, estimated as 7 times the apportionment through wet deposition. Continuous exportation of phosphorus can be a long term limitation to the forest ecosystem, if biomass burning activity maintain its present levels.
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Zhen, and Zhen Wang. "Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales." Diss., The University of Arizona, 2018. http://hdl.handle.net/10150/626640.

Full text
Abstract:
Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Ångstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land) with their influences on cloud water composition examined and implications of wet deposition discussed. Chemical analysis of cloud water samples indicates a wide pH range between 2.92 and 7.58, with an average as 4.46. The highest pH values were observed north of San Francisco, coincident with the strongest land mass influence (e.g. Si, B, and Cs). Conversely, the lowest pH values were observed south of San Francisco where there is heavy ship traffic, resulting in the highest concentrations of sulfate, nitrate, V, Fe, Al, P, Cd, Ti, Sb, P, and Mn. The acidic cloud environment with influences from various air mass types can affect the California coastal aquatic ecosystem since it can promote the conversion of micronutrients to more soluble forms. Beyond characterization of how regional air mass sources affect cloud water composition, aircraft cloud water collection provides precious information on tracking cloud processing with specific species such as oxalic acid, which is the most abundant dicarboxylic acid in tropospheric aerosols. Particular attention is given to explore relationship between detected metals with oxalate aqueous-phase production mechanisms. A number of case flights show that oxalate concentrations drop by nearly an order of magnitude relative to samples in the same vicinity with similar environmental and cloud physical conditions. Such a unique feature was consistent with an inverse relationship between oxalate and Fe. In order to examine the hypothesis that oxalate decreasing is potentially related to existing of Fe, chemistry box model simulations were conducted. The prediction results show that the loss of oxalate due to the photolysis of iron oxalato complexes is likely a significant oxalate sink in the study region due to the ubiquity of oxalate precursors, clouds, and metal emissions from ships, the ocean, and continental sources.
APA, Harvard, Vancouver, ISO, and other styles
35

Karlsson, Karl-Göran. "The use of a satellite-derived cloud climatology for studying cloud-aerosol processes and the performance of regional cloud climate simulations /." Stockholm : Department of Meteorology, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ruppe, Karen M. "A maritime and continental aerosol-cloud interaction study from ASTEX '92." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jahani, Babak. "Cloud-aerosol transition zone radiative effects from modeling and observational perspectives." Doctoral thesis, Universitat de Girona, 2021. http://hdl.handle.net/10803/673743.

Full text
Abstract:
Aerosols and clouds, as two particular cases of a single phenomenon (i.e., a suspension of particles in the air), are important components in the climate system. They play a crucial role in determination of Earth’s energy budget, as they strongly affect the balance between the incoming shortwave solar radiation absorbed by Earth’s atmosphere and surface, and the thermal longwave radiation emitted from the Earth. Although aerosols and clouds interact and affect each other's properties, their radiative properties and effects are usually treated separately in climate, meteorological, and weather forecasting studies and models. Thus, a discrimination between the cloudy and noncloudy skies is often required in such contexts. Traditionally, the algorithms used for performing this discrimination assume that the state of the sky is either cloudy or noncloudy (but containing a certain aerosol load), leaving no space for an intermediate phase. However, the change in the state of sky from cloudy to cloudless (or vice versa) occurs gradually, and it comprises an additional phase called “transition zone” (or “twilight zone”), which may represent a variety of atmospheric processes: hydration/dehydration of aerosols, cloud fragments shearing off from the adjacent clouds, decaying and incipient clouds, etc. As a result of this simplified assumption about the state of sky, the area corresponding to the transition zone is often labeled as an area containing optically thin layers of cloud or aerosol. However, the microphysical and radiative characteristics of the transition zone are expected to lay on the border between those corresponding to a cloud and those corresponding to an atmospheric aerosol. In other words, radiative and optical properties corresponding to clear (noncloudy) or cloudy skies are misleadingly used to characterize such transition zone conditions. In the present thesis we contribute to the knowledge available about the transition zone from an energy balance perspective
Els aerosols i els núvols, com a dos casos particulars d’un mateix fenomen (és a dir, una suspensió de partícules a l’aire), són components importants del sistema climàtic. Tenen un paper crucial en la determinació del balanç energètic de la Terra, ja que afecten fortament l’equilibri entre la radiació solar, d’ona curta, que absorbeixen l’atmosfera i la superfície de la Terra i la radiació tèrmica, d’ona llarga, emesa des de la Terra. Tot i que els aerosols i els núvols interactuen entre ells, modificant uns les característiques dels altres, les seves propietats i efectes radiatius se solen tractar per separat en estudis i models climàtics, meteorològics i de predicció del temps. Per tant, sovint es requereix una discriminació entre el cel serè i el cel ennuvolat. Tradicionalment, els algoritmes utilitzats per realitzar aquesta discriminació suposen que l’estat del cel és o bé ennuvolat o bé serè (sense núvols però que conté una certa càrrega d’aerosol), sense deixar espai per a una fase intermèdia. No obstant això, el canvi de l'estat del cel d’ennuvolat a serè (o viceversa) es produeix gradualment i comprèn una fase addicional anomenada "zona de transició" (o "twilight zone"), que pot representar una varietat de processos atmosfèrics: hidratació / deshidratació d’aerosols, fragments de núvols que sorgeixen dels núvols adjacents, núvols incipients o a punt de desaparèixer, etc. Com a resultat d’aquest supòsit simplificat sobre l’estat del cel, l’àrea corresponent a la zona de transició sovint s’etiqueta com una àrea que conté capes òpticament primes de núvol o aerosol, tot i que s’espera que les característiques microfísiques i radiatives de la zona de transició es trobin al límit entre les que corresponen a un núvol i les que corresponen a un aerosol atmosfèric. En altres paraules, les propietats òptiques i radiatives corresponents a cel serè (no nuvolós) o ennuvolat s’utilitzen de manera no del tot adequada per caracteritzar les condicions de zones de transició. En la present tesi contribuïm al coneixement disponible sobre la zona de transició des d’una perspectiva de balanç energètic
Programa de Doctorat en Medi Ambient
APA, Harvard, Vancouver, ISO, and other styles
38

Mallet, Marc D. "Water uptake and composition of natural Australian cloud condensation nuclei." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/104437/1/Marc_Mallet_Thesis.pdf.

Full text
Abstract:
This project was an investigation of atmospheric aerosols emitted from the Great Barrier Reef and north Australian fires. The chemical and physical properties of these aerosols were examined to determine their role in cloud formation. Interactions between aerosols and clouds are associated with the largest uncertainty in global climate models. The work of this thesis will contribute towards reducing this uncertainty by providing data for these poorly characterised regions in Australia.
APA, Harvard, Vancouver, ISO, and other styles
39

Doutriaux-Boucher, Marie, and Johannes Quaas. "Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189683.

Full text
Abstract:
Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.
APA, Harvard, Vancouver, ISO, and other styles
40

Kniffka, Anke, and Thomas Trautmann. "Verwendung von mikrophysikalischen Messungen zur Charakterisierung von Aerosol und Wolken für Strahlungsübertragungsrechnungen." Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-218078.

Full text
Abstract:
In diesem Beitrag werden Ansätze beschrieben, wie man aus flugzeuggetragenen Messungen von Eigenschaften atmosphärischer Extingenten die für Strahlungstransportrechnungen notwendigen Größen und Parameter rekonstruieren kann. Angewendet wird das Programm zur ersten Auswertung für bezüglich der Strahlung verschiedene atmosphärische Situationen. Die Daten hierzu wurden auf der ersten Messkampagne des Projektes INSPECTRO gesammelt. Es zeigt sich für den Fall einer Atmosphäre mit stratiformer Bewölkung eine gute Übereinstimmung mit den Messungen. Eine genaue Berechnung der Extinktion durchWolken mittels Tropfenspektren bringt derzeit keine Vorteile gegenüber einer einfachen Parametrisierung. Für den Fall eines durchbrochenen Wolkenfeldes ergeben sich lokal große Unterschiede zwischen Simulation und Messung. Dennoch läßt sich zeigen, daß die gemessenen und berechneten Felder des aktinischen Flusses einander sehr ähnliche statistische Eigenschaften haben
In this article some methods to reconstruct an artificial three-dimensional atmosphere from flight measurement data are described. The artificial atmosphere shall accurately represent the scattering properties of the real atmosphere, that are necessary to perform radiative transfer simulations. The method is applied to conduct a preliminary analysis of several atmospheric situations corresponding to different sets of radiative properties. The analyzed measurement data was collected during the first measurement campaign within the INSPECTRO project. In the case of an atmosphere containing a stratiform cloud layer, the measurements and simulation results are in very good agreement. A more accurate calculation of the extinction of radiation within the clouds by way of accounting for measured droplet spectra does momentarily not lead to an improvement in comparison with the simple parameterization method. In the case of a broken cloud field the significant local discrepancies between the measurement data and simulation results are to be noted. Nevertheless it can be shown that the statistical properties of the measured and calculated actinic flux fields resemble each other very closely
APA, Harvard, Vancouver, ISO, and other styles
41

Boström, Patrik. "Revisiting Observed Changes in Cloud Properties over Europe." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179997.

Full text
Abstract:
The Earth’s atmosphere is a vulnerable system which is easily changed by micro- and macrophysical variations. Big decreases in pollution levels of sulfur dioxide over Central Europe from 1980s to 2000s led to decreased mass concentration of atmospheric solid and liquid particles. This gives the opportunity to investigate how these particles influence the atmosphere. Newly released satellite climatology data was used to analyze statistics of cloud properties during four years in the high polluted atmosphere (1985-88) and four years in the less polluted atmosphere (2004-07). These two periods were investigated in collaboration with Atmospheric Remote Sensing Unit of the research department of the Swedish Meteorological and Hydrological Institute (SMHI). Cloud top temperature of liquid clouds over polluted regions during the earlier period was colder by more than 2 K and more than 5 K for only optical thin liquid clouds. The changes in mass concentrations of atmospheric particles derived by the sulfur dioxide emissions are shown to be a highly possible factor to the observed cloud changes.
Jordens atmosfär är ett känsligt system som lätt förändras av mikro- samt makrofysikaliska variationer. Stora minskningar i föroreningsnivåer av svaveldioxid över centrala Europa från 1980 till 2000-talet ledde till minskade masskoncentrationer av fasta och flytande atmosfäriska partiklar. Detta ger en möjlighet att undersöka hur dessa partiklar påverkar atmosfären. Nyligen utvecklad klimatologisk satellitdata användes för att analysera statistik av molnegenskaper under fyra år i en högt förorenad atmosfär (1985-88) och fyra år i en mindre förorenad atmosfär (2004-07). De två perioderna undersöktes i samarbete med Enheten för atmosfärisk fjärranalys av forskningsavdelningen till Sveriges meteorologiska och hydrologiska institut (SMHI). Molntopptemperaturen för moln i vätskefas över förorenande områden under den tidigare perioden var mer än 2 K kallare och mer än 5 K kallare för endast optiskt tunna moln i vätskefas. Förändringarna i masskoncentrationer för atmosfäriska partiklar och droppar med svaveldioxidusläpp som ursprung visas vara högst möjliga att ligga bakom de observerade molnförändringarna.
APA, Harvard, Vancouver, ISO, and other styles
42

Chang, Dong Yeong [Verfasser]. "Aerosol-cloud interactions studied with a chemistry-climate model / Dong Yeong Chang." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1065634471/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sweat, Perry C. "Verification of aerosol optical depth retrievals from cloud shadows using satellite imagery." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://bosun.nps.edu/uhtbin/hyperion-image.exe/08Mar%5FSweat.pdf.

Full text
Abstract:
Thesis (M.S. in Meteorology)--Naval Postgraduate School, March 2008.
Thesis Advisor(s): Durkee, Philip A. "March 2008." Description based on title screen as viewed on May 13, 2008. Includes bibliographical references (p. 65-67). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
44

LeBlanc, Samuel Elie. "Spectral signatures in shortwave radiation measurements to derive cloud and aerosol properties." Thesis, University of Colorado at Boulder, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3624806.

Full text
Abstract:

The amplitude and spectral shape of shortwave radiation are used to retrieve aerosol and cloud properties from airborne and ground based measurements. By interacting with clouds and aerosols in the Earth's atmosphere, the wavelength-dependent radiation emitted by the sun is modified. This thesis presents the change in radiation due to absorption and scattering by clouds and aerosols, which result in distinct spectral signatures in shortwave radiation spectra.

The spectral signature in shortwave radiation due to aerosols is quantified by airborne measurements of irradiance above and below aerosol layers. This radiative effect is quantified by the relative forcing efficiency, which is used to compare the impact of aerosols from different air masses, locations, and time of day. The relative forcing efficiency is the net irradiance change due to the presence of aerosols normalized by aerosol optical thickness and incident irradiance. It is shown to vary by less than 20% per unit of midvisible aerosol optical thickness for aerosols sampled during 4 different experiments, except for highly absorbing aerosols near Mexico City. The similarity in relative forcing efficiency for these experiments, not expected a priori, suggests that this quantity is constrained for various types of aerosols with differing scattering and absorption characteristics even when surface albedo differs. To estimate the radiative effect of aerosols sampled in the Los Angeles basin during one of the experiments, where no concurrent measurements of optical thickness with spectral irradiance were available, a new iterative technique was devised to use aerosol optical thickness measurements from another airborne platform.

Cloud-transmitted zenith radiance spectra were measured from the ground in Boulder, Colorado. In these measurements, spectral signatures of cloud optical and microphysical properties were uncovered. The spectral signatures are the result of radiation that is transmitted through clouds, where ice or liquid water cloud particles modulate the radiation by absorbing and scattering incident light in a wavelength-dependent manner. Typically, the magnitudes of radiance at 2 wavelengths have been used to retrieve cloud properties, but by using wavelength-dependent features more sensitivity to cloud microphysical properties is obtained. This thesis presents a method to analyze wavelength-dependent signal, where spectral features such as slopes, curvatures, and shifts in locations of maxima and minima are parameterized. These spectral features found in normalized radiance are quantified by introducing 15 parameters. These 15 parameters form the basis of a new generalized retrieval obtaining cloud optical thickness (τ), effective radius (re), and thermodynamic phase (&phis;). When applied to a liquid water cloud case, this retrieval matched a measured transmittance spectrum with a smaller root mean square difference over the entire spectrum (3.1%) than two other methods (up to 6.4%). To quantify the retrieval over all possible combinations of τ, re, and &phis;, simulated measurements were used in conjunction with realistic measurement and model error characteristics. By combining these error characteristics within the GEneralized Nonlinear Retrieval Analysis (GENRA) a solution probability distributions can be built. The information of cloud properties contained within cloud-transmitted radiance is greater on average for liquid water clouds than for ice clouds. For all possible combinations of cloud properties, radiance transmitted through clouds with τ<20 contain the most information on cloud properties, indicating that the 15 parameters have greatest sensitivity to cloud properties of optically thin clouds (τ<20). Of the 15 parameters, only 10 are required to retrieve accurately τ, re, and &phis; for any cloud except for ice clouds with τ>25 and re>30 μm. Using this retrieval, the correct thermodynamic phase is determined from transmittance with a probability greater than 99.4% for horizontally homogeneous clouds that contain either ice or liquid water cloud particles.

APA, Harvard, Vancouver, ISO, and other styles
45

Kipling, Zak. "Cloud cycling, scavenging and aerosol vertical profiles : process sensitivity and observational constraints." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:16f442be-dac6-40d2-b1fa-4c5a2ff69e9c.

Full text
Abstract:
The effects of aerosol in the atmosphere account for some of the largest uncertainties in estimates of the human impact on climate. These effects depend not only on the total mass of aerosol, but also its size distribution, mixing state and vertical profile. Previous studies have suggested that both the size distribution and mixing state of aerosol may be strongly influenced by repeated cycling through non-precipitating cloud. The extent of this process is assessed in the HadGEM3–UKCA model; although fewer cycles are seen for all aerosol than in previous studies, the figure varies considerably between aerosol types. The role of scavenging by precipitating cloud is also considered, and several approaches to increasing the physical realism of its representation are considered. In particular, coupling convective scavenging into the convective transport scheme is shown to provide significant benefits over an operator-split approach (which underestimates removal and allows excess aerosol to reach the upper troposphere and be transported to remote regions). To evaluate the alternative convective scavenging schemes, a method is developed for carrying out a pointwise evaluation against vertically-resolved in-situ observations from large-scale aircraft campaigns, based on nudging and flight-track sampling in the model. It is demonstrated that this approach can help to constrain the choice between different model configurations with a degree of statistical confidence. Finally, the processes controlling the vertical profile of aerosol are investigated using a series of model-based sensitivity tests, along with the extent to which these processes can account for the large diversity in vertical profiles seen amongst current models. For mass profiles and number profiles of large particles (greater than about 100nm dry diameter), removal and secondary production processes are shown to be most important; for number profiles of smaller particles, microphysical processes are shown to become increasingly dominant.
APA, Harvard, Vancouver, ISO, and other styles
46

Costa, Maria João Tavares da. "Aerosol and cloud satellite remote sensing: monitoring and modelling using passive radiometers." Doctoral thesis, Universidade de Évora, 2004. http://hdl.handle.net/10174/11498.

Full text
Abstract:
O objectivo do presente trabalho é a caracterização das propriedades dos aerossóis e das nuvens usando medidas combinadas de radiómetros passivos multi-espectrais que se encontram instalados a bordo de satélites. A determinação das propriedades dos aerossóis tem como objectivo a sua subsequente utilização para estimar o forçamento radiativo directo provocado pelos aerossóis na região espectral dos pequenos comprimentos de onda. Por sua vez a determinação das propriedades das nuvens tem como objectivo o estudo das possíveis modificações que as nuvens podem sofrer devido à interacção com os aerossóis presentes na atmosfera, já que isto pode levar a alterações significativas do clima. A investigação está centrada no estudo de episódios intensos e elevada variabilidade temporal de aerossóis sobre o oceano, os quais são caracterizados por grandes quantidades deste tipo de partículas em suspensão na atmosfera em datas e locais específicos, podendo modificar significativamente a composição da atmosfera e afectar o ciclo hidrológico. Esta investigação tem como ponto de partida o facto de que as medidas de satélite em diferentes regiões espectrais são úteis para extrair informações sobre os constituintes atmosféricos (aerossóis e nuvens) e que a combinação de sensores a bordo de satélites em órbitas diferentes, aqui proposta, contribui para melhorar o conhecimento dos aerossóis atmosféricos, fornecendo um instrumento de monitorização efectiva, durante a ocorrência de episódios de aerossóis sobre o oceano, dificilmente conseguida apenas com um satélite. As propriedades ópticas dos aerossóis representativas das condições atmosféricas são obtidas através da inversão de medidas obtidas do instrumento Global Ozone Monitoring Experiment (GOME), as quais apresentam alta resolução espectral. As propriedades ópticas dos aerossóis obtidas desta inversão, são utilizadas em cálculos de transferência radiativa para a determinação da espessura óptica dos aerossóis usando agora medidas de satélite em órbita geoestacionária (Meteosat e GMS), com uma resolução espacial e temporal superior à do sensor GOME e portanto mais adequados à caracterização de eventos de aerossóis. Esta combinação de sensores para a caracterização de aerossóis intensos e de relativa curta duração, substitui com enorme vantagem o uso dos modelos fixos de aerossóis disponíveis na literatura. As propriedades ópticas dos aerossóis obtidas representam uma componente essencial para a determinação do forçamento radiativo dos aerossóis à escala regional. ### / Abstract - The goal of the present work is the characterization of aerosol and cloud properties using combined measurements of multi-wavelength passive radiometers onboard satellites. The determination of the, aerosol properties is aimed at their subsequent use to estimate the direct aerosol radiative forcing in the short wave (SW) spectral region. The determination of cloud properties is aimed at providing information on the possible, modification of clouds through the interaction with atmospheric aerosol particles, as this may lead to significant changes of the Earth's climate. The research is focused on the, study of aerosol events over the ocean, characterized by "heavy" particle loads in the atmosphere in specific dates and geographical locations, which may strongly modify the atmospheric composition and. affect the hydrological cycle. The starting point of the investigation is that satellite measurements in different spectral regions are suitable for retrieving information on the atmospheric constituents, (clouds and aerosols). In addition, that the combination of satellite sensors in different orbits proposed here contributes to improve the knowledge of atmospheric aerosol particles, providing an effective aerosol monitoring tool during the occurrence of strong aerosol events over the ocean. Aerosol optical properties representative of the atmospheric conditions are obtained from the inversion of high spectral resolution measurements from the Global Ozone Monitoring Experiment (GOME) instrument. The derived aerosol optical properties are input in radiative transfer calculations for the, retrieval of the aerosol optical thickness using now geostationary visible broadband measurements (Meteosat and GMS), with a better spatial and temporal resolution with respect to GOME and therefore more adequate for the characterization of aerosol events. This combination of sensors for the characterization of intense and short-terra aerosol episodes, replaces with great advantage the use of fixed aerosol models available in literature. The, retrieved effective aerosol optical properties represent an essential component for the regional aerosol radiative forcing assessment. The method developed for cloud characterization is based on satellite multi-spectral measurements used in combination with radiative transfer calculations to retrieve the cloud microphysical properties (cloud optical thickness, droplet effective radius and cloud top temperature) and the cloud modification duo to the interaction with aerosol particles.
APA, Harvard, Vancouver, ISO, and other styles
47

Moore, Richard Herbert. "Using measurements of CCN activity to characterize the mixing state, chemical composition, and droplet growth kinetics of atmospheric aerosols to constrain the aerosol indirect effect." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45945.

Full text
Abstract:
Atmospheric aerosols are known to exert a significant influence on the Earth's climate system; however, the magnitude of this influence is highly uncertain because of the complex interaction between aerosols and water vapor to form clouds. Toward reducing this uncertainty, this dissertation outlines a series of laboratory and in-situ field measurements, instrument technique development, and model simulations designed to characterize the ability of aerosols to act as cloud condensation nuclei (CCN) and form cloud droplets. Specifically, we empirically quantify the mixing state and thermodynamic properties of organic aerosols (e.g., hygroscopicity and droplet condensational uptake coefficient) measured in polluted and non-polluted environments including Alaska, California, and Georgia. It is shown that organic aerosols comprise a substantial portion of the aerosol mass and are often water soluble. CCN measurements are compared to predictions from theory in order to determine the error associated with simplified composition and mixing state assumptions employed by current large-scale models, and these errors are used to constrain the uncertainty of global and regional cloud droplet number and albedo using a recently-developed cloud droplet parameterization adjoint coupled with the GMI chemical transport model. These sensitivities are important because they describe the main determinants of climate forcing. We also present two novel techniques for fast measurements of CCN concentrations with high size, supersaturation, and temporal resolution that substantially improve the state of the art by several orders of magnitude. Ultimately, this work represents a step toward better understanding how atmospheric aerosols influence cloud properties and Earth's climate.
APA, Harvard, Vancouver, ISO, and other styles
48

Alroe, Joel. "Emission sources, cloud-relevant properties and variability of aerosol over the Southern and Pacific Oceans." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/209152/1/Joel_Alroe_Thesis.pdf.

Full text
Abstract:
Cloud-forming aerosol over the Southern Ocean currently contribute a major source of uncertainty in global atmospheric models. This work presents the seasonal changes in marine aerosol over the Southern Ocean, between the summer and winter months. The observations, obtained during two ship-based voyages south of Australia and New Zealand, revealed the impact of meteorology and marine biological productivity on the concentration and cloud-relevant properties of the marine aerosols. Comparison was made against an array of published empirical models for sea spray production to investigate their relevance for this region.
APA, Harvard, Vancouver, ISO, and other styles
49

Doutriaux-Boucher, Marie, and Johannes Quaas. "Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data: Evaluation of cloud thermodynamic phase parametrizations in theLMDZ GCM by using POLDER satellite data." Wiley, 2004. https://ul.qucosa.de/id/qucosa%3A13984.

Full text
Abstract:
Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.
APA, Harvard, Vancouver, ISO, and other styles
50

Painemal, David. "Investigation of the Cloud Microphysics and Albedo Susceptibility of the Southeast Pacific Stratocumulus Cloud Deck." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/581.

Full text
Abstract:
Marine stratocumulus cloud regimes exert a strong climatic influence through their high solar reflectivity. Human-induced changes in stratocumulus clouds, attributed to an increase of the aerosol burden (indirect effects), can be significant given the cloud decks proximity to the continents; nevertheless, the magnitude and the final climatic consequences of these changes are uncertain. This thesis investigates further the interactions between aerosols, cloud microphysics, regional circulation, and radiative response in the Southeast Pacific stratocumulus cloud deck, one of the largest and most persistent cloud regimes in the planet. Specifically, three different aspects are addressed by this thesis: The importance of the synoptic atmospheric variability in controlling cloud microphysical and radiative changes, a validation analysis of satellite retrievals of cloud microphysics from MOderate Resolution Imaging Spectroradiometer (MODIS), and the quantitative assessments of cloud aerosol interactions along with their associated radiative forcing using primarily aircraft remote sensing data. Synoptic and satellite-derived cloud property variations for the Southeast Pacific region associated with changes in coastal satellite-derived cloud droplet number concentration (Nd) are analyzed through a composite technique. MAX and MIN Nd composites are defined by the top and bottom terciles of daily area-mean Nd values over the Arica Bight, the region with the largest mean oceanic Nd, for the five October months of 2001, 2005, 2006, 2007, and 2008. The MAX-Nd composite is characterized by a weaker subtropical anticyclone and weaker winds than the MIN-Nd composite. Additionally, the MAX-Nd composite clouds over the Arica Bight are thinner than the MIN-Nd composite clouds, have lower cloud tops, lower near-coastal cloud albedos, and occur below warmer and drier free tropospheres. At 85˚W, the top-of-atmosphere shortwave fluxes are significantly higher (50%) for the MAX-Nd, with thicker, lower clouds and higher cloud fractions than for the MIN-Nd. The change in Nd at this location is small, suggesting that the MAX-MIN Nd composite differences in radiative properties primarily reflects synoptic changes. The ability of MODIS level 2 retrievals to represent the cloud microphysics is assessed with in-situ measurements of droplet size distributions, collected during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The MODIS cloud optical thickness (t) correlates well with the in-situ values with a positive bias (1.42). In contrast, the standard 2.1 micron-derived MODIS cloud effective radius (r_e) is found to systematically exceed the in-situ cloud-top r_e, with a mean bias of 2.08 um. Three sources of errors that could contribute to the MODIS r_e positive bias are investigated further: the spread of the cloud droplet size distribution, the presence of a separate drizzle mode, and the sensor viewing angles. The sensor zenith viewing angles were found to have little impact, while the algorithm assumption about the cloud droplet spectra and presence of a precipitation mode could affect the retrievals but not by enough to fully explain the positive MODIS r_e bias. The droplet spectra effects account for r_e offsets smaller than 0.6 um, 0.9 um, and 1.6 um for non-drizzling, light-drizzling, and heavy-drizzling clouds respectively. An explanation for the observed MODIS bias is lacking although three-dimensional radiative effects were not considered. This investigation supports earlier studies documenting a similar bias, this time using data from newer probes. MODIS r_e and t were also combined to estimate a liquid water path (LWP) and Nd. A positive bias was also apparent in LWP, and attributed to r_e. However, when selected appropriate parameters a priori, the MODIS Nd estimate was found to agree the best with the insitu aircraft observations of the four MODIS variables. Lastly, the first aerosol indirect effect (Twomey effect) is explicitly investigated with VOCALS-REx observations, collected during three daytime research flights (Nov 9, 11, and 13), utilizing an aerosol-cloud interactions metric, and defined as ACI=dln(t)/dln(Na), with Na corresponding to the accumulation mode aerosol concentration, t derived from a broadband pyranometer, and ACI binned by cloud LWP derived from a millimeter-wavelength radiometer. Aircraft remote sensing estimates of the ACI, during sub-cloud transects, show that the cloud aerosol-interactions are strong and close to the maximum theoretical value for thin clouds, with a decrease of ACI with LWP. Although an explanation for the dependence of ACI on LWP is lacking, we found that a decrease in ACI with LWP is associated with decreases in both surface meridional winds and Nd. Similar to ACI, albedo fractional changes due to Nd fractional changes also tended to be smaller for higher LWPs, but with an overall radiative forcing larger than conservative global estimates obtained in global circulation models. The findings of this thesis emphasize the strong stratocumulus albedo response to an aerosol perturbation and its dependence on the regional scale atmospheric configuration. The results presented here can be used as a benchmark for testing regional and climate models, as well as helping to improve the current parameterizations of the first aerosol indirect effect.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography