Academic literature on the topic 'Closed Thermal Cycles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Closed Thermal Cycles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Closed Thermal Cycles"
Garcia, Ramon. "Contributions on Closed System Transformations Based Thermal Cycles." British Journal of Applied Science & Technology 4, no. 19 (January 10, 2014): 2821–36. http://dx.doi.org/10.9734/bjast/2014/10074.
Full textFerreiro Garcia, Ramon, and Dr Jose Carbia Carril. "Analysis of a thermal cycle that surpass Carnot efficiency undergoing closed polytropic transformations." JOURNAL OF ADVANCES IN PHYSICS 15 (February 19, 2019): 6165–82. http://dx.doi.org/10.24297/jap.v15i0.8029.
Full textDumitrașcu, Gheorghe, Michel Feidt, and Ştefan Grigorean. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles." Energies 14, no. 12 (June 9, 2021): 3416. http://dx.doi.org/10.3390/en14123416.
Full textRogalev, Nikolay, Andrey Rogalev, Vladimir Kindra, Olga Zlyvko, and Pavel Bryzgunov. "Review of Closed SCO2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency." Energies 15, no. 23 (December 5, 2022): 9226. http://dx.doi.org/10.3390/en15239226.
Full textDumitrascu, Gheorghe, Michel Feidt, and Stefan Grigorean. "Closed Irreversible Cycles Analysis Based on Finite Physical Dimensions Thermodynamics." Proceedings 58, no. 1 (September 11, 2020): 37. http://dx.doi.org/10.3390/wef-06905.
Full textShen, Qiang, Chang Lian Chen, Fei Chen, Qi Wen Liu, and Lian Meng Zhang. "Thermal Shock Behavior of Calcia Stabilized Zirconia Ceramics with Porosity Gradient Structure." Materials Science Forum 631-632 (October 2009): 435–40. http://dx.doi.org/10.4028/www.scientific.net/msf.631-632.435.
Full textBurugupally, Sindhu Preetham. "Evaluation of a Combustion-Based Mesoscale Thermal Actuator in Open and Closed Operating Cycles." Actuators 8, no. 4 (October 23, 2019): 73. http://dx.doi.org/10.3390/act8040073.
Full textItoh, Y. Z., and H. Kashiwaya. "A Study of Cyclic Thermal Straining in a Welded Joint, Using a Closed-Loop, Servo-Controlled Testing Machine." Journal of Pressure Vessel Technology 114, no. 4 (November 1, 1992): 422–27. http://dx.doi.org/10.1115/1.2929249.
Full textAmann, Charles A. "Applying Thermodynamics in Search of Superior Engine Efficiency." Journal of Engineering for Gas Turbines and Power 127, no. 3 (June 24, 2005): 670–75. http://dx.doi.org/10.1115/1.1804537.
Full textKhaliq, A. "Finite-Thermal Reservoir Effects on Ecologically Optimized Closed Regenerative Joule-Brayton Power Cycles." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 220, no. 5 (July 11, 2006): 425–34. http://dx.doi.org/10.1243/09576509jpe189.
Full textDissertations / Theses on the topic "Closed Thermal Cycles"
Agrawal, Nitin. "Design and characterization of convective thermal cyclers for high-speed DNA analysis." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1060.
Full textVijayaraj, K. "Thermal Turbomachinery Design for Closed Thermal Cycles and Multiple Fluids." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4640.
Full textRovense, Francesco, Franco Furgiuele, Mario Amelio, and Manuel Silva Pèrez. "Study of an unfried closed joule-brayton cycle in a concentrating solar tower plant with a mass flow rate control system." Thesis, 2018. http://hdl.handle.net/10955/1821.
Full textOggigiorno, la domanda di energia primaria è aumentata, raggiungendo un incremento del 62.5% rispetto a 20 anni fa. La necessità di risorse rinnovabili ha spinto le politiche governative di tutto il mondo a incoraggiare lo sviluppo di nuovi sistemi di produzione di energia. Fra questi vi sono i sistemi a concentrazione solare (CSPs), una tecnologia che concentra la radiazione solare rendendola disponibile, attraverso un fluido termovettore (HTF) come fonte di calore in un ciclo termodinamico di potenza. Il ciclo di potenza più efficiente, come noto, è quello Joule-Brayton, che in configurazione chiusa consente l'utilizzo di HTF diversi; inoltre, è possibile lavorare in condizioni di pressione elevate, con alta temperatura operativa ed efficienza di conversione. L’uso dell’aria come fluido di lavoro rende di facile gestione il sistema senza rischi. Inoltre unendo il ciclo chiuso con un sistema CSP, il sistema è totalmente privo di combustione e non essendo necessario l’uso di combustibile, non sono emessi inquinanti. Fra i sistemi CSP, la tecnologia a torre è in grado di poter raggiungere più alte temperature, disponibile quindi nel ciclo Brayton, e per questo motivo è stato considerato il suo uso nelle analisi. La risorsa imprevedibile, rappresentata dalla radiazione solare, richiede un metodo di regolazione per il controllo della potenza generata dall’impianto. In questo lavoro, quindi, è stata analizzata la fattibilità di un ciclo Joule-Brayton chiuso senza combustione, in un impianto solare a concentrazione a torre che utilizza un sistema di controllo della portata massica. Nel ciclo è operato un controllo della temperatura di ingresso della turbina della turbina a gas, quando varia la radiazione normale diretta (DNI) attraverso la regolazione della densità del fluido di lavoro; questa regolazione è attuata attraverso una variazione di pressione di base del ciclo. In questo sistema la turbina gas non cambia la portata volumetrica come anche i triangoli di velocità o i rapporti di pressione, quindi variando la densità del fluido di lavoro, attraverso una variazione di pressione, è possibile regolare la portata massica al fine di controllare la TIT. Controllando la TIT, quindi, è possibile controllare la potenza elettrica prodotta dalla turbina a gas sotto diversi carichi termici del DNI. In questo lavoro, diverse configurazioni, in termini di potenza delle macchine, come anche l’utilizzo di accumulo termico (TES) sono stati analizzate, ponendo particolare attenzione alla progettazione del campo eliostati. I risultati mostrano che l’efficienza globale del ciclo, rimane costante sotto differenti carichi termici dovuti alla radiazione solare, indipendentemente dalla potenza della turbina a gas; l’utilizzo di accumulo permette di aumentare le ore di utilizzo dell’impianto come anche il fattore di utilizzazione (UF). L’analisi economica, effettuata attraverso il metodo del Levelised Cost of Electricity (LCoE) ha reso possibile ottenere un valore del multiplo solare (SM) differente rispetto ai valori tipici usati. In fine è stata considerata l’applicazione in micro scala di questo tipo di impianto, al fine di confrontarlo con un sistema commerciale esistente.
Università della Calabria.
Books on the topic "Closed Thermal Cycles"
A, Hall Carsie, and Lewis Research Center, eds. Thermal state-of-charge in solar heat receivers. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textA, Hall Carsie, and Lewis Research Center, eds. Thermal state-of-charge in solar heat receivers. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textAlexander, Dennis. 2 kWe Solar Dynamic Ground Test Demonstration Project. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textAlexander, Dennis. 2 kWe Solar Dynamic Ground Test Demonstration Project. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textAlexander, Dennis. 2 kWe Solar Dynamic Ground Test Demonstration Project. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System. Independently Published, 2018.
Find full textBook chapters on the topic "Closed Thermal Cycles"
Haseli, Yousef. "Irreversible engines—Closed cycles." In Entropy Analysis in Thermal Engineering Systems, 85–102. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819168-2.00007-6.
Full textAvery, William H., and Chih Wu. "Open-Cycle OTEC." In Renewable Energy from the Ocean. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195071993.003.0012.
Full text"Thermal reactors." In Closed Nuclear Fuel Cycle with Fast Reactors, 317–28. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-99308-1.00032-5.
Full textAvery, William H., and Chih Wu. "Closed-Cycle OTEC Systems." In Renewable Energy from the Ocean. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195071993.003.0011.
Full textCerezo Acevedo, Estela, Jessica G. Tobal Cupul, Victor M. Romero Medina, Elda Gomez Barragan, and Miguel Angel Alatorre Mendieta. "Analysis and Development of Closed Cycle OTEC System." In Ocean Thermal Energy Conversion (OTEC) - Past, Present, and Progress. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90609.
Full textHanlon, Robert T. "Sadi Carnot." In Block by Block: The Historical and Theoretical Foundations of Thermodynamics, 329–67. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851547.003.0030.
Full textPérez-de-Tejada, Hector, and Rickard Lundin. "Vortex Dynamics in the Wake of Planetary Ionospheres." In Vortex Dynamics - From Physical to Mathematical Aspects [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101352.
Full textCouto, Luíza Camargos, Maria Clara Martins Avelar, Vitória Bernardes, and Lamara Laguardia Valente Rocha. "Inhalation of Toxic Gases in the Kiss Nightclub Disaster: an Example of Inhalation Injury from Indoor Fires." In COLLECTION OF INTERNATIONAL TOPICS IN HEALTH SCIENCE- V1. Seven Editora, 2023. http://dx.doi.org/10.56238/colleinternhealthscienv1-003.
Full textQuante, Markus, and David O’C Starr. "Dynamic Processes in Cirrus Clouds: A Review of Observational Results." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0021.
Full textWhiteman, C. David. "Diurnal Mountain Winds." In Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0019.
Full textConference papers on the topic "Closed Thermal Cycles"
Beniwal, Ravi, Kapil Garg, Sarit Kumar Das, and Himanshu Tyagi. "PARAMETRIC ANALYSIS BETWEEN CLOSED AIR OPEN WATER (CAOW) AND CLOSED WATER OPEN AIR (CWOA) HDH CYCLES." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.ens.036676.
Full textKusterer, Karsten, René Braun, Norbert Moritz, Takao Sugimoto, Kazuhiko Tanimura, and Dieter Bohn. "Comparative Study of Solar Thermal Brayton Cycles Operated With Helium or Argon." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94990.
Full textWatson, Darren T., and Ian Ritchey. "Thermodynamic Analysis of Closed Loop Cooled Cycles." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-288.
Full textBethapudi, Sasank Viswanath, N. Rajalakshmi, and K. S. Dhathathreyan. "PEMFC Stack Activation Through Thermal Management." In ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fuelcell2013-18203.
Full textTacconi, Jacopo, Wilfried Visser, and Dries Verstraete. "Potential of Semi-Closed Cycles for UAV Propulsion." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-92066.
Full textFrate, Guido Francesco, Luigia Paternostro, Lorenzo Ferrari, and Umberto Desideri. "Off-Design of a Pumped Thermal Energy Storage Based on Closed Brayton Cycles." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60185.
Full textKusterer, Karsten, René Braun, Norbert Moritz, Gang Lin, and Dieter Bohn. "Helium Brayton Cycles With Solar Central Receivers: Thermodynamic and Design Considerations." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68407.
Full textEnge, Yngvil O., Manfred Wirsum, and Hans E. Wettstein. "The Potential of Recuperated Semiclosed CO2 Cycles." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90888.
Full textAoki, S., K. Uematsu, K. Suenaga, H. Mori, and H. Sugishita. "A Study of Hydrogen Combustion Turbines." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-394.
Full textAmann, Charles A. "Applying Thermodynamics in Search of Superior Engine Efficiency." In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-483.
Full textReports on the topic "Closed Thermal Cycles"
Analysis of Recompression-Regeneration sCO 2 Combined Cycle Utilizing Marine Gas Turbine Exhaust Heat: Effect of Operating Parameters. SAE International, July 2022. http://dx.doi.org/10.4271/2022-01-5059.
Full text