Academic literature on the topic 'Closed Interacting Quantum Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Closed Interacting Quantum Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Closed Interacting Quantum Systems"
Polkovnikov, Anatoli, Krishnendu Sengupta, Alessandro Silva, and Mukund Vengalattore. "Colloquium: Nonequilibrium dynamics of closed interacting quantum systems." Reviews of Modern Physics 83, no. 3 (August 15, 2011): 863–83. http://dx.doi.org/10.1103/revmodphys.83.863.
Full textRiera-Campeny, Andreu, Maria Moreno-Cardoner, and Anna Sanpera. "Time crystallinity in open quantum systems." Quantum 4 (May 25, 2020): 270. http://dx.doi.org/10.22331/q-2020-05-25-270.
Full textWeidenmüller, Hans A. "Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems." Entropy 24, no. 7 (July 11, 2022): 959. http://dx.doi.org/10.3390/e24070959.
Full textGIAMPAOLO, S. M., F. ILLUMINATI, A. DI LISI, and G. MAZZARELLA. "MASSIVE QUANTUM MEMORIES BY PERIODICALLY INVERTED DYNAMIC EVOLUTIONS." International Journal of Quantum Information 04, no. 03 (June 2006): 507–17. http://dx.doi.org/10.1142/s0219749906001955.
Full textTavanfar, Alireza, Aliasghar Parvizi, and Marco Pezzutto. "Unitary Evolutions Sourced By Interacting Quantum Memories: Closed Quantum Systems Directing Themselves Using Their State Histories." Quantum 7 (May 15, 2023): 1007. http://dx.doi.org/10.22331/q-2023-05-15-1007.
Full textAndrianov, Alexander A., Mikhail V. Ioffe, Ekaterina A. Izotova, and Oleg O. Novikov. "The Franke–Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS) Equation for Two-Dimensional Systems." Symmetry 14, no. 4 (April 6, 2022): 754. http://dx.doi.org/10.3390/sym14040754.
Full textMaffei, Maria, Patrice A. Camati, and Alexia Auffèves. "Closed-System Solution of the 1D Atom from Collision Model." Entropy 24, no. 2 (January 19, 2022): 151. http://dx.doi.org/10.3390/e24020151.
Full textSHARIF, M., and ABDUL JAWAD. "THERMODYNAMICS IN CLOSED UNIVERSE WITH ENTROPY CORRECTIONS." International Journal of Modern Physics D 22, no. 03 (March 2013): 1350014. http://dx.doi.org/10.1142/s0218271813500144.
Full textSee, Tian Feng. "Few-photon transport in strongly interacting light-matter systems: A scattering approach." International Journal of Quantum Information 17, no. 06 (September 2019): 1950050. http://dx.doi.org/10.1142/s0219749919500503.
Full textShepelin, A. V., A. M. Rostom, V. A. Tomilin, and L. V. Il’ichov. "Multiworld motives by closed time-like curves." Journal of Physics: Conference Series 2081, no. 1 (November 1, 2021): 012029. http://dx.doi.org/10.1088/1742-6596/2081/1/012029.
Full textDissertations / Theses on the topic "Closed Interacting Quantum Systems"
Williams, Ceri Rhys. "Quantum interacting branching systems." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416728.
Full textStellin, Filippo. "Anderson localization in interacting quantum systems." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7004.
Full textIn this thesis we theoretically investigate the behaviour of quantum particles (electrons, atoms, photons, etc.) moving in a random medium and undergoing Anderson localization. For noninteractingparticles, the energy spectrum can possess one or more critical points, where the nature of the single-particle wavefunctions changes from extended to localized leading to a undergoes a metal-insulator phase transition, also known as Anderson transition.A fundamental question is whether and how Anderson transitions survive in interacting quantum systems. Here we study a minimal model of two particles moving in a disordered lattice and subject to short-range mutual interactions. By combining large-scale numerics with Green’s functions techniques, we show that two-particle Anderson transitions do occur in three dimensions and explore the phase diagram in the space of energy, disorder and interaction strength. The latter presents a rich structure, characterized by a doubly reentrant behavior, caused by the competition between scattering and bound states of the pair. We also show that previous claims of 2D Anderson transitions of the pair are essentially due to finite-size effects.A second problem that we address in this thesis is the occurrence of 2D metal-insulator transitions for a single particle in the presence of a spatially correlated potential and subject to spin-orbit interactions, described by Rashba-Dresselhaus couplings. We illustrate that, irrespective of the properties of the disorder, there is a regime where the critical energy depends linearly on the disorder strength. The slope and the intercept are studied in the vicinity of the spin-helix point, where the SU(2) symmetry is restored and the 2D metal-insulator transition disappears
Kasztelan, Christian. "Strongly Interacting Quantum Systems out of Equilibrium." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-124827.
Full textBayani, Babak [Verfasser]. "Interacting quantum-dissipative tunnelling systems / Babak Bayani." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1019453125/34.
Full textKriel, Johannes Nicolaas. "A duality construction for interacting quantum Hall systems." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6749.
Full textENGLISH ABSTRACT: The fractional quantum Hall effect represents a true many-body phenomenon in which the collective behaviour of interacting electrons plays a central role. In contrast to its integral counterpart, the appearance of a mobility gap in the fractional quantum Hall regime is due entirely to the Coulomb interaction and is not the result of a perturbed single particle gap. The bulk of our theoretical understanding of the underlying many-body problem is based on Laughlin’s ansatz wave function and the composite fermion picture proposed by Jain. In the latter the fractional quantum Hall effect of interacting electrons is formulated as the integral quantum Hall effect of weakly interacting quasiparticles called composite fermions. The composite fermion picture provides a qualitative description of the interacting system’s low-energy spectrum and leads to a generalisation of Laughlin’s wave functions for the electron ground state. These predictions have been verified through extensive numerical tests. In this work we present an alternative formulation of the composite fermion picture within a more rigorous mathematical framework. Our goal is to establish the relation between the strongly interacting electron problem and its dual description in terms of weakly interacting quasiparticles on the level of the microscopic Hamiltonian itself. This allows us to derive an analytic expression for the interaction induced excitation gap which agrees very well with existing numerical results. We also formulate a mapping between the states of the free particle and interacting descriptions in which the characteristic Jastrow-Slater structure of the composite fermion ansatz appears naturally. Our formalism also serves to clarify several aspects of the standard heuristic construction, particularly with regard to the emergence of the effective magnetic field and the role of higher Landau levels. We also resolve a long standing issue regarding the overlap of unprojected composite fermion trial wave functions with the lowest Landau level of the free particle Hamiltonian.
AFRIKAANSE OPSOMMING: Die fraksionele kwantum Hall-effek is ’n veeldeeltjie verskynsel waarin die kollektiewe gedrag van wisselwerkende elektrone ’n sentrale rol speel. In teenstelling met die heeltallige kwantum Hall-effek is die ontstaan van ’n energie gaping in die fraksionele geval nie ’n enkeldeeltjie effek nie, maar kan uitsluitlik aan die Coulomb wisselwerking toegeskryf word. Die teoretiese raamwerk waarbinne hierdie veeldeeltjie probleem verstaan word is grootliks gebaseer op Laughlin se proefgolffunksie en die komposiete-fermion beeld van Jain. In laasgenoemde word die fraksionele kwantum Hall-effek van wisselwerkende elektrone geformuleer as die heeltallige kwantum Hall-effek van swak-wisselwerkende kwasi-deeljies wat as komposiete-fermione bekend staan. Hierdie beeld lewer ’n kwalitatiewe beskrywing van die wisselwerkende sisteem se lae-energie spektrum en lei tot ’n veralgemening van Laughlin se golffunksies vir die elektron grondtoestand. Hierdie voorspellings is deur verskeie numeriese studies geverifieer. In hierdie tesis ontwikkel ons ’n alternatiewe formulering van die komposiete-fermion beeld binne ’n strenger wiskundige raamwerk. Ons doel is om die verband tussen die sterk-wisselwerkende elektron sisteem en sy duale beskrywing in terme van swak-wisselwerkende kwasi-deeltjies op die vlak van die mikroskopiese Hamilton-operator self te realiseer. Hierdie konstruksie lei tot ’n analitiese uitdrukking vir die opwekkingsenergie wat baie goed met bestaande numeriese resultate ooreenstem. Ons identifiseer ook ’n afbeelding tussen die vrye-deeltjie en wisselwerkende toestande waarbinne die Jastrow-Slater struktuur van die komposiete-fermion proefgolffunksies op ’n natuurlike wyse na vore kom. Verder werp ons formalisme nuwe lig op kwessies binne die standaard heuristiese konstruksie, veral met betrekking tot die oorsprong van die effektiewe magneetveld en die rol van ho¨er effektiewe Landau vlakke. Ons lewer ook uitspraak oor die vraagstuk van die oorvleueling van ongeprojekteerde komposiete-fermion golffunksies met die laagste Landau vlak van die vrye-deeltjie Landau probleem.
Antonio, R. G. "Quantum computation and communication in strongly interacting systems." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469437/.
Full textGenway, Sam. "Thermalisation and temporal relaxation in closed quantum systems." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9137.
Full textRau, Sebastian [Verfasser]. "Optimal Control of interacting Quantum Particle Systems / Sebastian Rau." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042308470/34.
Full textKerner, Joachim Friedrich. "Interacting many-particle systems on general compact quantum graphs." Thesis, University of London, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603454.
Full textThomson, Steven. "The effects of disorder in strongly interacting quantum systems." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9441.
Full textBooks on the topic "Closed Interacting Quantum Systems"
Nozières, Philippe. Theory of interacting Fermi systems. Reading, Mass: Addison-Wesley, 1997.
Find full textAlbrecht, Andreas Johann. Identifying dechohering paths in closed quantum systems. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.
Find full textMoral, Pierre Del. Feynman-Kac formulae: Genealogical and interacting particle systems with applications. New York: Springer-Verlag, 2004.
Find full textClos, Govinda. Trapped atomic ions for fundamental studies of closed and open quantum systems. Freiburg: Universität, 2017.
Find full textThermal relaxation for particle systems in interaction with several bosonic heat reservoirs. Norderstedt: Books on Demand GmbH, 2004.
Find full text1938-, Arenhövel H., ed. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.
Find full text1975-, Sims Robert, and Ueltschi Daniel 1969-, eds. Entropy and the quantum II: Arizona School of Analysis with Applications, March 15-19, 2010, University of Arizona. Providence, R.I: American Mathematical Society, 2011.
Find full textAccardi, Luigi, and Franco Fagnola. Quantum Interacting Particle Systems. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/5055.
Full textGiamarchi, Thierry, Andrew J. Millis, Olivier Parcollet, Hubert Saleur, and Leticia F. Cugliandolo, eds. Strongly Interacting Quantum Systems out of Equilibrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.001.0001.
Full textMorawetz, Klaus. Interacting Systems far from Equilibrium: Quantum Kinetic Theory. Oxford University Press, 2018.
Find full textBook chapters on the topic "Closed Interacting Quantum Systems"
Chiew, Shao-Hen, Leong-Chuan Kwek, and Chee-Kong Lee. "Exploring the Dynamics of Quantum Information in Many-Body Localised Systems with High Performance Computing." In Supercomputing Frontiers, 43–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10419-0_4.
Full textCoolen, Anthony C. C., Theodore Nikoletopoulos, Shunta Arai, and Kazuyuki Tanaka. "Dynamical Analysis of Quantum Annealing." In Sublinear Computation Paradigm, 295–317. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4095-7_12.
Full textNishijima, Kazuhiko, Masud Chaichian, and Anca Tureanu. "Quantization of Interacting Systems." In Quantum Field Theory, 105–25. Dordrecht: Springer Netherlands, 2022. http://dx.doi.org/10.1007/978-94-024-2190-3_6.
Full textDeych, Lev I. "Non-interacting Many-Particle Systems." In Advanced Undergraduate Quantum Mechanics, 345–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71550-6_11.
Full textAccardi, Luigi, and Sergei Kozyrev. "Quantum Boltzmann Statistics in Interacting Systems." In Stochastic Analysis and Mathematical Physics II, 1–7. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8018-3_1.
Full textRivas, Angel, and Susana F. Huelga. "Time Evolution in Closed Quantum Systems." In SpringerBriefs in Physics, 15–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23354-8_2.
Full textZimanyi, Gergely T. "Quantum Phase Transitions in Interacting Bose Systems." In Quantum Dynamics of Submicron Structures, 549–64. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_44.
Full textPulé, J. V. "Bose-Einstein Condensation in Some Interacting Systems." In Fundamental Aspects of Quantum Theory, 247–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_28.
Full textWalschaers, Mattia. "Efficient Transport in Closed Systems." In Statistical Benchmarks for Quantum Transport in Complex Systems, 77–143. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93151-7_4.
Full textLukkarinen, Jani. "Kinetic Theory and Thermalization of Weakly Interacting Fermions." In Macroscopic Limits of Quantum Systems, 1–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01602-9_1.
Full textConference papers on the topic "Closed Interacting Quantum Systems"
Mandel’, Arkadiy M., Vadim B. Oshurko, George I. Solomakho, Alexandr A. Shartz, and Kirill G. Solomakho. "Quantum Dissipative Mechanism of Noncontact Friction." In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9533.
Full textSmith, Charles E., and Michael R. von Spakovsky. "Time Evoultion of Entropy in a System Comprised of a Boltzmann Type Gas: An Application of the Beretta Equation of Motion." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42933.
Full textKuhl, J., E. J. Mayer, G. O. Smith, D. Bennhardt, T. Meier, A. Schulze, P. Thomas, R. Hey, and K. Ploog. "Contributions of Bound and Unbound Two-Exciton States to the Nonlinear Optical Response of GaAs Quantum Wells." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.md.5.
Full textACCARDI, LUIGI, and SERGEI KOZYREV. "QUANTUM BOLTZMANN STATISTICS IN INTERACTING SYSTEMS." In Proceedings of the Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704290_0002.
Full textEvers, Jörg, Martin Kiffner, Christoph H. Keitel, Theodore E. Simos, and George Maroulis. "Quantum Control of Interacting Multiatom Systems." In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2836200.
Full textGadomsky, Oleg N., and Konstantin K. Altunin. "Quantum teleportation in interacting hydrogenlike atom systems." In Eighth International Readings on Quantum Optics: IRQO '99, edited by Vitaly V. Samartsev. SPIE, 2000. http://dx.doi.org/10.1117/12.375354.
Full textRicherme, P., P. W. Hess, A. Lee, B. Neyenhuis, J. Smith, J. Zhang, and C. Monroe. "Interacting Many-Body Spin Systems that Fail to Quantum Thermalize." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qt4a.1.
Full textIzrailev, F. M. "Regular versus chaotic dynamics in closed systems of interacting Fermi particles." In NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physics: WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996878.
Full textUleysky, M. Yu, and S. V. Prants. "Quantum Chaos and Quantum Fractals With Atoms and Photons in a Microcavity." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84090.
Full textDegiovanni, Pascal, and S. Peysson. "Life and death of Schrödinger cats in 1D interacting fermion systems." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0049.
Full text