Academic literature on the topic 'Climatology (excl. Climate Change Processes)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Climatology (excl. Climate Change Processes).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Climatology (excl. Climate Change Processes)"

1

Martin, Eric, Gérald Giraud, Yves Lejeune, and Géraldine Boudart. "Impact of a climate change on avalanche hazard." Annals of Glaciology 32 (2001): 163–67. http://dx.doi.org/10.3189/172756401781819292.

Full text
Abstract:
AbstractThe SAFRAN/Crocus/MÉPRA software is used to assess the climatology of the avalanche hazard and its sensitivity to climate change. A natural avalanche-hazard index based on MEPRA analysis is defined and validated against natural avalanche observations (triggered avalanches are not taken into account). A 15 year climatology then allows a comparison of avalanche hazard in the different French massifs. Finally a simple climate scenario (with a general increase of precipitation and temperature) shows that avalanche hazard may decrease slightly in winter (mainly February) and more significantly in May/June. The relative proportion of wet-snow avalanches increases.
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, Shichang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, et al. "Black carbon and organic carbon dataset over the Third Pole." Earth System Science Data 14, no. 2 (February 17, 2022): 683–707. http://dx.doi.org/10.5194/essd-14-683-2022.

Full text
Abstract:
Abstract. The Tibetan Plateau and its surroundings, also known as the Third Pole, play an important role in the global and regional climate and hydrological cycle. Carbonaceous aerosols (CAs), including black carbon (BC) and organic carbon (OC), can directly or indirectly absorb and scatter solar radiation and change the energy balance on the Earth. CAs, along with the other atmospheric pollutants (e.g., mercury), can be frequently transported over long distances into the inland Tibetan Plateau. During the last decades, a coordinated monitoring network and research program named “Atmospheric Pollution and Cryospheric Changes” (APCC) has been gradually set up and continuously operated within the Third Pole regions to investigate the linkage between atmospheric pollutants and cryospheric changes. This paper presents a systematic dataset of BC, OC, water-soluble organic carbon (WSOC), and water-insoluble organic carbon (WIOC) from aerosols (20 stations), glaciers (17 glaciers, including samples from surface snow and ice, snow pits, and 2 ice cores), snow cover (2 stations continuously observed and 138 locations surveyed once), precipitation (6 stations), and lake sediment cores (7 lakes) collected across the Third Pole, based on the APCC program. These data were created based on online (in situ) and laboratory measurements. High-resolution (daily scale) atmospheric-equivalent BC concentrations were obtained by using an Aethalometer (AE-33) in the Mt. Everest (Qomolangma) region, which can provide new insight into the mechanism of BC transportation over the Himalayas. Spatial distributions of BC, OC, WSOC, and WIOC from aerosols, glaciers, snow cover, and precipitation indicated different features among the different regions of the Third Pole, which were mostly influenced by emission sources, transport pathways, and deposition processes. Historical records of BC from ice cores and lake sediment cores revealed the strength of the impacts of human activity since the Industrial Revolution. BC isotopes from glaciers and aerosols identified the relative contributions of biomass and fossil fuel combustion to BC deposition on the Third Pole. Mass absorption cross sections of BC and WSOC from aerosol, glaciers, snow cover, and precipitation samples were also provided. This updated dataset is released to the scientific communities focusing on atmospheric science, cryospheric science, hydrology, climatology, and environmental science. The related datasets are presented in the form of excel files. BC and OC datasets over the Third Pole are available to download from the National Cryosphere Desert Data Center (https://doi.org/10.12072/ncdc.NIEER.db0114.2021; Kang and Zhang, 2021).
APA, Harvard, Vancouver, ISO, and other styles
3

Greene, Scott, Mark Morrissey, and Sara E. Johnson. "Wind Climatology, Climate Change, and Wind Energy." Geography Compass 4, no. 11 (November 2010): 1592–605. http://dx.doi.org/10.1111/j.1749-8198.2010.00396.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masson, Valéry, Aude Lemonsu, Julia Hidalgo, and James Voogt. "Urban Climates and Climate Change." Annual Review of Environment and Resources 45, no. 1 (October 17, 2020): 411–44. http://dx.doi.org/10.1146/annurev-environ-012320-083623.

Full text
Abstract:
Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.
APA, Harvard, Vancouver, ISO, and other styles
5

Nazarenko, Larissa, and Nickolai Tausnev. "Modeling of the Beaufort ice-ocean climatology change." Annals of Glaciology 33 (2001): 560–66. http://dx.doi.org/10.3189/172756401781818491.

Full text
Abstract:
AbstractA coupled ice-ocean model is used to study the sensitivity of the Beaufort Sea climatology to representation of sub-grid-scale eddies; to hypothetically not present and double Mackenzie River discharge; and to approximate climate warming specified through a surface air-temperature increase of 3° C. The eddy effect is considered in two ways: as eddy interaction with sea-floor topography yielding a driving force ("neptune" parameterization) and as eddy diffusion and viscosity. The model with neptune parameterization reproduces surface layer circulation, as well as the bathymetrically steered Beaufort Undercurrent, while the model with usual damping does not simulate the Beaufort Undercurrent. The absence of the strong boundary Beaufort Undercurrent affects the thermohaline structure of the Beaufort Sea which becomes less consistent with observational data. The increase of the Mackenzie River discharge causes more northward transport of sea ice, resulting in sea-ice thinning in Mackenzie Bay, while the absence of the Mackenzie River discharge induces southward sea-ice drift and sea-ice thickening in Mackenzie Bay. The sensitivity study of surface air-temperature warming shows a shrinkage of sea ice by 6% in area and 15% in volume, causing the freshening and warming of the surface ocean layer. The sensitivity studies of river discharge and surface air temperature use the neptune parameterization.
APA, Harvard, Vancouver, ISO, and other styles
6

Robinson, A., R. Calov, and A. Ganopolski. "An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change." Cryosphere 4, no. 2 (April 7, 2010): 129–44. http://dx.doi.org/10.5194/tc-4-129-2010.

Full text
Abstract:
Abstract. In order to explore the response of the Greenland ice sheet (GIS) to climate change on long (centennial to multi-millennial) time scales, a regional energy-moisture balance model has been developed. This model simulates seasonal variations of temperature and precipitation over Greenland and explicitly accounts for elevation and albedo feedbacks. From these fields, the annual mean surface temperature and surface mass balance can be determined and used to force an ice sheet model. The melt component of the surface mass balance is computed here using both a positive degree day approach and a more physically-based alternative that includes insolation and albedo explicitly. As a validation of the climate model, we first simulated temperature and precipitation over Greenland for the prescribed, present-day topography. Our simulated climatology compares well to observations and does not differ significantly from that of a simple parameterization used in many previous simulations. Furthermore, the calculated surface mass balance using both melt schemes falls within the range of recent regional climate model results. For a prescribed, ice-free state, the differences in simulated climatology between the regional energy-moisture balance model and the simple parameterization become significant, with our model showing much stronger summer warming. When coupled to a three-dimensional ice sheet model and initialized with present-day conditions, the two melt schemes both allow realistic simulations of the present-day GIS.
APA, Harvard, Vancouver, ISO, and other styles
7

Papadimitriou, L. V., A. G. Koutroulis, M. G. Grillakis, and I. K. Tsanis. "High-end climate change impact on European water availability and stress: exploring the presence of biases." Hydrology and Earth System Sciences Discussions 12, no. 7 (July 31, 2015): 7267–325. http://dx.doi.org/10.5194/hessd-12-7267-2015.

Full text
Abstract:
Abstract. Climate models project a much more substantial warming than the 2 °C target making higher end scenarios increasingly plausible. Freshwater availability under such conditions is a key issue of concern. In this study, an ensemble of Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological states under +4 °C of global warming for the European region. Five major European catchments were analyzed in terms of future drought climatology and the impact of +2 vs. +4 °C global warming was investigated. The effect of bias correction of the climate model outputs and the observations used for this adjustment was also quantified. Projections indicate an intensification of the water cycle at higher levels of warming. Even for areas where the average state may not considerably be affected, low flows are expected to reduce leading to changes in the number of dry days and thus drought climatology. The identified increasing or decreasing runoff trends are substantially intensified when moving from the +2 to the +4 °C of global warming. Bias correction resulted in an improved representation of the historical hydrology. It is also found that the selection of the observational dataset for the application of the bias correction has an impact on the projected signal that could be of the same order of magnitude to the selection of the RCM.
APA, Harvard, Vancouver, ISO, and other styles
8

Oo, Kyaw Than. "Climatology Definition of the Myanmar Southwest Monsoon (MSwM): Change Point Index (CPI)." Advances in Meteorology 2023 (January 25, 2023): 1–18. http://dx.doi.org/10.1155/2023/2346975.

Full text
Abstract:
Myanmar’s climate is heavily influenced by its geographic location and relief. Located between the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM), Myanmar’s climate is distinguished by the alternation of seasons known as the monsoon. The north-south direction of peaks and valleys creates a pattern of alternate zones of heavy and scanty precipitation during both the northeast and southwest monsoons. The majority of the rainfall has come from Myanmar’s southwest monsoon (MSwM), which is Myanmar’s rainy season (summer in global terms, June–September). This study explained both threshold-based and nonthreshold-based objective definitions of the onset and withdrawal of large-scale MSwM. The seasonal transitions in MSwM circulation and precipitation are convincingly represented by the new index, which is based on change point detection of the atmospheric moisture flow converging in the MSwM region (10–28 N, 92–102 E). A transition in vertically integrated moisture transport (VIMT), the reversal of surface winds, and an increase in precipitation may also be considered when defining MSwM onset objectively. We also define a change point of the MSwM (CPI) index for MSwM onset and withdrawal dates. The climatological mean onset of MSwM is day 135 (May 14), withdrawal is day 278 (October 4), and the total season length is 144 days. We are investigating spatial patterns of rainfall progression at and after the start of the monsoon, rather than transitions within a single region of the MSwM. The local southwest monsoon duration is well correlated with the CPI duration on interannual timescales, particularly in the peak rainfall regions, with a delay (advance) in large-scale onset or withdrawal associated with a delay (advance) of onset or withdrawal by local index. Hence, the next phase of this research is to study the maintenance and break of the monsoon to understand the underlying physical processes governing the monsoon circulation. The results of this study provide a possibility to reconstruct Myanmar’s monsoon climate dynamics, and the findings of this study can help unravel many remaining questions regarding the greater Asian monsoon system’s variability.
APA, Harvard, Vancouver, ISO, and other styles
9

Mallett, Robbie D. C., Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston. "Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover." Cryosphere 15, no. 5 (June 4, 2021): 2429–50. http://dx.doi.org/10.5194/tc-15-2429-2021.

Full text
Abstract:
Abstract. Mean sea ice thickness is a sensitive indicator of Arctic climate change and is in long-term decline despite significant interannual variability. Current thickness estimations from satellite radar altimeters employ a snow climatology for converting range measurements to sea ice thickness, but this introduces unrealistically low interannual variability and trends. When the sea ice thickness in the period 2002–2018 is calculated using new snow data with more realistic variability and trends, we find mean sea ice thickness in four of the seven marginal seas to be declining between 60 %–100 % faster than when calculated with the conventional climatology. When analysed as an aggregate area, the mean sea ice thickness in the marginal seas is in statistically significant decline for 6 of 7 winter months. This is observed despite a 76 % increase in interannual variability between the methods in the same time period. On a seasonal timescale we find that snow data exert an increasingly strong control on thickness variability over the growth season, contributing 46 % in October but 70 % by April. Higher variability and faster decline in the sea ice thickness of the marginal seas has wide implications for our understanding of the polar climate system and our predictions for its change.
APA, Harvard, Vancouver, ISO, and other styles
10

Dunkerley, David. "Sub-Daily Rainfall Intensity Extremes: Evaluating Suitable Indices at Australian Arid and Wet Tropical Observing Sites." Water 11, no. 12 (December 11, 2019): 2616. http://dx.doi.org/10.3390/w11122616.

Full text
Abstract:
Rainfall intensity extremes are relevant to many aspects of climatology, climate change, and landsurface processes. Intensity is described and analysed using a diversity of approaches, reflecting its importance in these diverse areas. The characteristics of short-interval intensity extremes, such as the maximum 5-min intensity, are explored here. It is shown that such indices may have marked diurnal cycles, as well as seasonal variability. Some indices of intensity, such as the SDII (simple daily intensity index), provide too little information for application to landsurface processes. Upper percentiles of the intensity distribution, such as the 95th and 99th percentiles (Q95 and Q99) are used as indices of extreme intensity, but problematically are affected by changes in intensity below the nominated threshold, as well as above it, making the detection of secular change, and application to sites with contrasting rainfall character, challenging. For application to landsurface processes, a new index is introduced. This index (RQ95), is that intensity or rainfall rate above which 5% of the total rainfall is delivered. This index better reflects intense rainfall than does Q95 of even 5-min accumulation duration (AD) rainfall depths. Such an index is helpful for detecting secular change at an observing station, but, like Q95, remains susceptible to the effects of change elsewhere in the distribution of intensities. For understanding impacts of climate and climate change on landsurface processes, it is argued that more inclusive indices of intensity are required, including fixed intensity criteria.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Climatology (excl. Climate Change Processes)"

1

Charalampidis, Charalampos. "Climatology and firn processes in the lower accumulation area of the Greenland ice sheet." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284365.

Full text
Abstract:
The Greenland ice sheet is the largest Northern Hemisphere store of fresh water, and it is responding rapidly to the warming climate. In situ observations document the changing ice sheet properties in the lower accumulation area, Southwest Greenland. Firn densities from 1840 meters above sea level retrieved in May 2012 revealed the existence of a 5.5-meter-thick, near-surface ice layer in response to the recent increased melt and refreezing in firn. As a consequence, vertical meltwater percolation in the extreme summer 2012 was inefficient, resulting in surface runoff. Meltwater percolated and refroze at six meters depth only after the end of the melt season. This prolonged autumn refreezing under the newly accumulated snowpack resulted in unprecedented firn warming with temperature at ten meters depth increased by more than four degrees Celsius. Simulations confirm that meltwater reached nine meters depth at most. The refrozen meltwater was estimated at 0.23 meters water equivalent, amounting to 25 % of the total 2012 ablation. A surface energy balance model was used to evaluate the seasonal and interannual variability of all surface energy fluxes at that elevation in the years 2009 to 2013. Due to the meltwater presence at the surface in 2012, the summer-averaged albedo was significantly reduced (0.71 in 2012; typically 0.78). A sensitivity analysis revealed that 71 % of the subsequent additional solar radiation in 2012 was used for melt, corresponding to 36 % of the total 2012 surface lowering. This interplay between melt and firn properties highlights that the lower accumulation area of the Greenland ice sheet will be responding rapidly in a warming climate.
Stability and Variations of Arctic Land Ice (SVALI)
Programme for Monitoring of the Greenland Ice Sheet (PROMICE)
Greenland Analogue Project (GAP)
APA, Harvard, Vancouver, ISO, and other styles
2

(9179345), Youmi Oh. "QUANTIFYING CARBON FLUXES AND ISOTOPIC SIGNATURE CHANGES ACROSS GLOBAL TERRESTRIAL ECOSYSTEMS." Thesis, 2020.

Find full text
Abstract:

This thesis is a collection of three research articles to quantify carbon fluxes and isotopic signature changes across global terrestrial ecosystems. Chapter 2, the first article of this thesis, focuses on the importance of an under-estimated methane soil sink for contemporary and future methane budgets in the pan-Arctic region. Methane emissions from organic-rich soils in the Arctic have been extensively studied due to their potential to increase the atmospheric methane burden as permafrost thaws. However, this methane source might have been overestimated without considering high affinity methanotrophs (HAM, methane oxidizing bacteria) recently identified in Arctic mineral soils. From this study, we find that HAM dynamics double the upland methane sink (~5.5 TgCH4yr-1) north of 50°N in simulations from 2000 to 2016 by integrating the dynamics of HAM and methanogens into a biogeochemistry model that includes permafrost soil organic carbon (SOC) dynamics. The increase is equivalent to at least half of the difference in net methane emissions estimated between process-based models and observation-based inversions, and the revised estimates better match site-level and regional observations. The new model projects double wetland methane emissions between 2017-2100 due to more accessible permafrost carbon. However, most of the increase in wetland emissions is offset by a concordant increase in the upland sink, leading to only an 18% increase in net methane emission (from 29 to 35 TgCH4yr-1). The projected net methane emissions may decrease further due to different physiological responses between HAM and methanogens in response to increasing temperature. This article was published in Nature Climate Change in March 2020.

In Chapter 3, the second article of this thesis, I develop and validate the first biogeochemistry model to simulate carbon isotopic signatures (δ13C) of methane emitted from global wetlands, and examined the importance of the wetland carbon isotope map for studying the global methane cycle. I incorporated a carbon isotope-enabled module into an extant biogeochemistry model to mechanistically simulate the spatial and temporal variability of global wetland δ13C-CH4. The new model explicitly considers isotopic fractionation during methane production, oxidation, and transport processes. I estimate a mean global wetland δ13C-CH4 of -60.78‰ with its seasonal and inter-annual variability. I find that the new model matches field chamber observations 35% better in terms of root mean square estimates compared to an empirical static wetland δ13C-CH4 map. The model also reasonably reproduces the regional heterogeneity of wetland δ13C-CH4 in Alaska, consistent with vertical profiles of δ13C-CH4 from NOAA aircraft measurements. Furthermore, I show that the latitudinal gradient of atmospheric δ13C-CH4 simulated by a chemical transport model using the new wetland δ13C-CH4 map reproduces the observed latitudinal gradient based on NOAA/INSTAAR global flask-air measurements. I believe this study is the first process-based biogeochemistry model to map the global distribution of wetland δ13C-CH4, which will significantly help atmospheric chemistry transport models partition global methane emissions. This article is in preparation for submission to Nature Geoscience.

Chapter 4 of this thesis, the third article, investigates the importance of leaf carbon allocation for seasonal leaf carbon isotopic signature changes and water use efficiency in temperate forests. Temperate deciduous trees remobilize stored carbon early in the growing season to produce new leaves and xylem vessels. The use of remobilized carbon for building leaf tissue dampens the link between environmental stomatal response and inferred intrinsic water use efficiency (iWUE) using leaf carbon isotopic signatures (δ13C). So far, few studies consider carbon allocation processes in interpreting leaf δ13C signals. To understand effects of carbon allocation on δ13C and iWUE estimates, we analyzed and modeled the seasonal leaf δ13C of four temperate deciduous species (Acer saccharum, Liriodendron tulipifera, Sassafras albidum, and Quercus alba) and compared the iWUE estimates from different methods, species, and drought conditions. At the start of the growing season, leaf δ13C values were more enriched, due to remobilized carbon during leaf-out. The bias towards enriched leaf δ13C values explains the higher iWUE from leaf isotopic methods compared with iWUE from leaf gas exchange measurements. I further showed that the discrepancy of iWUE estimates between methods may be species-specific and drought sensitive. The use of δ13C of plant tissues as a proxy for stomatal response to environmental processes, through iWUE, is complicated due to carbon allocation and care must be taken when interpreting estimates to avoid proxy bias. This article is in review for publication in New Phytologist.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Climatology (excl. Climate Change Processes)"

1

National Environmental Satellite, Data, and Information Service, Office of Research and Applications research programs: Meteorological prediction, oceanic processes, climate and global change monitoring, satellite instrumentation and calibration. Washington, D.C: The Office, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United, States National Environmental Satellite Data and Information Service Office of Research and Applications. National Environmental Satellite, Data, and Information Service, Office of Research and Applications research programs: Meteorological prediction, oceanic processes, climate and global change monitoring, satellite instrumentation and calibration. Washington, D.C: The Office, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Environmental Satellite, Data, and Information Service. Office of Research and Applications. National Environmental Satellite, Data, and Information Service, Office of Research and Applications research programs: Meteorological prediction, oceanic processes, climate and global change monitoring, satellite instrumentation and calibration. Washington, D.C: The Office, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United, States Congress House Committee on Science Space and Technology (2011). Climate change: Examining the processes used to create science and policy : hearing before the Committee on Science, Space, and Technology, House of Representatives, One Hundred Twelfth Congress, first session, Thursday, March 31, 2011. Washington: U.S. G.P.O., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gravity Wave Processes: Their Parameterization in Global Climate Models (Nato a S I Series Series I, Global Environmental Change). Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Climatology (excl. Climate Change Processes)"

1

Elsner, James B., and Thomas H. Jagger. "Time Series Models." In Hurricane Climatology. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199827633.003.0014.

Full text
Abstract:
In this chapter, we consider time series models. A time series is an ordered sequence of numbers with respect to time. In climatology, you encounter time-series data in a format given by . . . {h}Tt=1 = {h1,h2,. . . ,hT} (10.1) . . . where the time t is over a given season, month, week, or day and T is the time series length. The aim is to understand the underlying physical processes that produced the series. A trend is an example. Often by simply looking at a time series plot, you can pick out a trend that tells you that the process generating the data is changing. A single time series gives you a sample from the process. Yet under the ergodic hypothesis, a single time series of infinite length contains the same information (loosely speaking) as the collection of all possible series of finite length. In this case, you can use your series to learn about the nature of the process. This is analogous to spatial interpolation encountered in Chapter 9, where the variogram was computed under the assumption that the rainfall field is stationary. Here we consider a selection of techniques and models for time series data. We begin by showing you how to overlay plots as a tool for exploratory analysis. This is done to compare the variation between two series qualitatively. We demonstrate large variation in hurricane counts arising from a constant rate process. We then show techniques for smoothing. We continue with a change-point model and techniques for decomposing a continuous-valued series. We conclude with a unique way to create a network graph from a time series of counts and suggest a new definition of a climate anomaly. A plot showing your variables on a common time axis is an informative exploratory graph. Values from two different series are scaled to have the same relative range so the covariation in the variables can be compared visually. Here you do this with hurricane counts and sea-surface temperature (SST). Begin by loading annual.RData. These data were assembled in Chapter 6.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Climatology (excl. Climate Change Processes)"

1

Nigmatulin, R. I. "Multiscale and Multiphase in Physics, Oceanology and Economics." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66737.

Full text
Abstract:
Climate change, global warming, possible anthropogenic effects on climate processes due to a rapid growth of industry and agriculture are the most popular themes under discussion among the ecological problems. One of the most important issues in climatology yet undecided is whether the recent climate warming affects the deep ocean which may become the major long-term incoming heat flux from the atmosphere? After all, the state of the atmosphere depends to a great extent on the ocean the mass of which is 270 times as great as the mass of the atmosphere and heat capacity is 1,000 times as great. Hence, the ocean is the basic heat, greenhouse gas and moisture source and flux for the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
2

Lukyanova, Anna, Anna Lukyanova, Andrei Bagaev, Andrei Bagaev, Vladimir Zalesny, Vladimir Zalesny, Vitaliy Ivanov, and Vitaliy Ivanov. "NUMERICAL SIMULATION OF THE SEMIDIURNAL TIDAL WAVE IMPACT ON THE BLACK SEA CLIMATIC CIRCULATION." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b9439af4c65.49313476.

Full text
Abstract:
The Black Sea is an enclosed deep marine basin, where the structure of tidal movements is dominated by the direct influence of the tidal force on the proper water body. We investigated the spatial structure of its climatic circulation under the impact of tides. We developed a program module extending the numerical general circulation model of the Black Sea which was designed in the Institute of numerical mathematics, Moscow. It allows the lunar semidiurnal harmonics (M_2) influence to be taken into account explicitly via the discrete analogues of the differential equations of motion. Our work reflects the main results of the numerical experiment on the 4x4 km horizontal grid and 40 vertical σ-levels. It was a one-year model run using the CORE atmospheric climatology forcing. We compared the first and the last weeks of simulation and found out that the characteristics of a tidal mode M2 were established at a very short period of time (7 days), which is the estimate of the model’s energy redistribution time scale. The coastal areas where the tidal impact is substantial (~10 cm) were located mainly at the shallow-shelf inlets highly influenced by the climate change. Validation of the cotidal maps showed the reliability of our model at the climatological time scale. In future we will focus on the baroclinic tidal movements and validation with the Marine Hydrophysical Institute database in order to shed new light on physical and ecological processes at the frontal zone along the Rim Current.
APA, Harvard, Vancouver, ISO, and other styles
3

Lukyanova, Anna, Anna Lukyanova, Andrei Bagaev, Andrei Bagaev, Vladimir Zalesny, Vladimir Zalesny, Vitaliy Ivanov, and Vitaliy Ivanov. "NUMERICAL SIMULATION OF THE SEMIDIURNAL TIDAL WAVE IMPACT ON THE BLACK SEA CLIMATIC CIRCULATION." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b4316462ec6.

Full text
Abstract:
The Black Sea is an enclosed deep marine basin, where the structure of tidal movements is dominated by the direct influence of the tidal force on the proper water body. We investigated the spatial structure of its climatic circulation under the impact of tides. We developed a program module extending the numerical general circulation model of the Black Sea which was designed in the Institute of numerical mathematics, Moscow. It allows the lunar semidiurnal harmonics (M_2) influence to be taken into account explicitly via the discrete analogues of the differential equations of motion. Our work reflects the main results of the numerical experiment on the 4x4 km horizontal grid and 40 vertical σ-levels. It was a one-year model run using the CORE atmospheric climatology forcing. We compared the first and the last weeks of simulation and found out that the characteristics of a tidal mode M2 were established at a very short period of time (7 days), which is the estimate of the model’s energy redistribution time scale. The coastal areas where the tidal impact is substantial (~10 cm) were located mainly at the shallow-shelf inlets highly influenced by the climate change. Validation of the cotidal maps showed the reliability of our model at the climatological time scale. In future we will focus on the baroclinic tidal movements and validation with the Marine Hydrophysical Institute database in order to shed new light on physical and ecological processes at the frontal zone along the Rim Current.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography