Academic literature on the topic 'Clifford algebras'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clifford algebras.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Clifford algebras"

1

Aragón, G., J. L. Aragón, and M. A. Rodríguez. "Clifford algebras and geometric algebra." Advances in Applied Clifford Algebras 7, no. 2 (1997): 91–102. http://dx.doi.org/10.1007/bf03041220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ceballos, Johan. "About the Dirichlet Boundary Value Problem using Clifford Algebras." JOURNAL OF ADVANCES IN MATHEMATICS 15 (November 12, 2018): 8098–119. http://dx.doi.org/10.24297/jam.v15i0.7795.

Full text
Abstract:
This paper reviews and summarizes the relevant literature on Dirichlet problems for monogenic functions on classic Clifford Algebras and the Clifford algebras depending on parameters on. Furthermore, our aim is to explore the properties when extending the problem to and, illustrating it using the concept of fibres. To do so, we explore ways in which the Dirichlet problem can be written in matrix form, using the elements of a Clifford's base. We introduce an algorithm for finding explicit expressions for monogenic functions for Dirichlet problems using matrices in Finally, we illustrate how to
APA, Harvard, Vancouver, ISO, and other styles
3

DA ROCHA, ROLDÃO, ALEX E. BERNARDINI та JAYME VAZ. "κ-DEFORMED POINCARÉ ALGEBRAS AND QUANTUM CLIFFORD–HOPF ALGEBRAS". International Journal of Geometric Methods in Modern Physics 07, № 05 (2010): 821–36. http://dx.doi.org/10.1142/s0219887810004567.

Full text
Abstract:
The Minkowski space–time quantum Clifford algebra structure associated with the conformal group and the Clifford–Hopf alternative κ-deformed quantum Poincaré algebra is investigated in the Atiyah–Bott–Shapiro mod 8 theorem context. The resulting algebra is equivalent to the deformed anti-de Sitter algebra [Formula: see text], when the associated Clifford–Hopf algebra is taken into account, together with the associated quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah–Bott–Shapiro theorem.
APA, Harvard, Vancouver, ISO, and other styles
4

Değırmencı, N., and Ş. Karapazar. "Explicit isomorphisms of real Clifford algebras." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–13. http://dx.doi.org/10.1155/ijmms/2006/78613.

Full text
Abstract:
It is well known that the Clifford algebraClp,qassociated to a nondegenerate quadratic form onℝn (n=p+q)is isomorphic to a matrix algebraK(m)or direct sumK(m)⊕K(m)of matrix algebras, whereK=ℝ,ℂ,ℍ. On the other hand, there are no explicit expressions for these isomorphisms in literature. In this work, we give a method for the explicit construction of these isomorphisms.
APA, Harvard, Vancouver, ISO, and other styles
5

Lewis, D. W. "A note on Clifford algebras and central division algebras with involution." Glasgow Mathematical Journal 26, no. 2 (1985): 171–76. http://dx.doi.org/10.1017/s0017089500005954.

Full text
Abstract:
In this note we consider the question as to which central division algebras occur as the Clifford algebra of a quadratic form over a field. Non-commutative ones other than quaternion division algebras can occur and it is also the case that there are certain central division algebras D which, while not themselves occurring as a Clifford algebra, are such that some matrix ring over D does occur as a Clifford algebra. We also consider the further question as to which involutions on the division algebra can occur as one of two natural involutions on the Clifford algebra.
APA, Harvard, Vancouver, ISO, and other styles
6

Hasiewicz, Z., K. Thielemans, and W. Troost. "Superconformal algebras and Clifford algebras." Journal of Mathematical Physics 31, no. 3 (1990): 744–56. http://dx.doi.org/10.1063/1.528802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuznetsov, Sergey P., Vladimir V. Mochalov, and Vasiliy P. Chuev. "ALGORITHM FOR FINDING THE INVERSE ELEMENTS AND SOLUTION OF THE SILVESTER EQUATION IN THE CLIFFORD ALGEBRAS R4,0, R1,3, R5,0." Vestnik Chuvashskogo universiteta, no. 4 (December 26, 2023): 109–19. http://dx.doi.org/10.47026/1810-1909-2023-4-109-119.

Full text
Abstract:
The purpose of the work is to find an algorithm for finding inverse elements in the Clifford algebras R4,0, R1,3, R5,0 and to solve the nonlinear Sylvester equation .
 
 Materials and methods. Using the basic conjugation operations in Clifford algebras, finding an algorithm for finding inverse elements. Application of this algorithm to solve the Sylvester equation.
 
 Results of the work. In Clifford algebras R4,0, R1,3, R5,0, which have a great application in physics, a method for finding inverse elements and equations for finding zero divisors were found. The found algori
APA, Harvard, Vancouver, ISO, and other styles
8

GLITIA, DANA DEBORA. "Modular G-graded algebras and G-algebras of endomorphisms." Carpathian Journal of Mathematics 30, no. 3 (2014): 301–8. http://dx.doi.org/10.37193/cjm.2014.03.14.

Full text
Abstract:
We study Clifford Theory and field extensions for strongly group-graded algebras. In [Turull, A., Clifford theory and endoisomorphisms, J. Algebra 371 (2012), 510–520] and [Turull, A., Endoisomorphisms yield mo-dule and character correspondences, J. Algebra 394 (2013), 7–50] the author introduced the notion of endoisomorphism showing that there is a natural connection between it and Clifford Theory of finite group algebras. An endoisomorphism is an isomorphism between G-algebras of endomorphisms, where G is a finite group. We consider here endoisomorphisms between modules over strongly G-grade
APA, Harvard, Vancouver, ISO, and other styles
9

CASTRO, CARLOS. "POLYVECTOR SUPER-POINCARÉ ALGEBRAS, M, F THEORY ALGEBRAS AND GENERALIZED SUPERSYMMETRY IN CLIFFORD-SPACES." International Journal of Modern Physics A 21, no. 10 (2006): 2149–72. http://dx.doi.org/10.1142/s0217751x06028916.

Full text
Abstract:
Starting with a review of the Extended Relativity Theory in Clifford-Spaces, and the physical motivation behind this novel theory, we provide the generalization of the nonrelativistic supersymmetric point-particle action in Clifford-space backgrounds. The relativistic supersymmetric Clifford particle action is constructed that is invariant under generalized supersymmetric transformations of the Clifford-space background's polyvector-valued coordinates. To finalize, the Polyvector super-Poincaré and M, F theory superalgebras, in D = 11, 12 dimensions, respectively, are discussed followed by our
APA, Harvard, Vancouver, ISO, and other styles
10

SCHOTT, RENÉ, and G. STACEY STAPLES. "OPERATOR CALCULUS AND INVERTIBLE CLIFFORD APPELL SYSTEMS: THEORY AND APPLICATION TO THE n-PARTICLE FERMION ALGEBRA." Infinite Dimensional Analysis, Quantum Probability and Related Topics 16, no. 01 (2013): 1350007. http://dx.doi.org/10.1142/s0219025713500070.

Full text
Abstract:
Motivated by evolution equations on Clifford algebras and illustrated with the n-particle fermion algebra, a theory of invertible left- and right-Appell systems is developed for Clifford algebras of an arbitrary quadratic form. This work extends and clarifies the authors' earlier work on Clifford Appell systems, operator calculus, and operator homology/cohomology. A direct connection is also shown between blade factorization algorithms and the construction of Appell systems in these algebras.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Clifford algebras"

1

Han, Gang. "Clifford algebras associated with symmetric pairs /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MATH%202004%20HAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Araujo, Martinho da Costa. "Construção de algebras reais de Clifford." reponame:Repositório Institucional da UFSC, 1988. http://repositorio.ufsc.br/xmlui/handle/123456789/75476.

Full text
Abstract:
Dissertação (mestrado) - Universidade Federal de Santa Catarina. Centro de Ciencias Fisicas e Matematicas<br>Made available in DSpace on 2012-10-16T01:41:13Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-08T16:06:12Z : No. of bitstreams: 1 81779.pdf: 1134439 bytes, checksum: 3a7d46a6cf731cb8b57c4b1815f21112 (MD5)<br>O objetivo anunciado no título desta tese é realizado do seguinte modo: No capítulo I selecionamos definições de estruturas algébricas e de álgebra linear que usaremos nos capítulos posteriores. No capítulo II introduzimos a noção de álgebra de clifford. Estabelecemos a sua
APA, Harvard, Vancouver, ISO, and other styles
3

Wilmot, Gregory Paul. "The structure of Clifford algebra." Title page, contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09SM/09smw738.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hoefel, Eduardo Outeiral Correa. "Teorias de Gauge e algebras de Clifford." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307234.

Full text
Abstract:
Orientador: Jayme Vaz Jr<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-02T06:58:26Z (GMT). No. of bitstreams: 1 Hoefel_EduardoOuteiralCorrea_M.pdf: 3091537 bytes, checksum: f00ee4b0eba7ea00e03a3ba084791085 (MD5) Previous issue date: 2002<br>Resumo: Nesta dissertação apresentamos uma descrição do formalismo matemático das teorias de gauge introduzindo os conceitos de grupos e álgebras de Lie, fibrados principais, conexões e curvatura. Em seguida introduzimos as álgebras de Clif
APA, Harvard, Vancouver, ISO, and other styles
5

Severi, Claudio. "Clifford algebras and spin groups, with physical applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18387/.

Full text
Abstract:
In questo lavoro viene esposta la teoria delle algebre di Clifford e dei gruppi di Spin, con attenzione alle applicazioni fisiche, in particolare l'equazione di Dirac per particelle quantistiche con spin 1/2. I primi due capitoli sono dedicati ad una descrizione generale delle algebre di Clifford reali e complesse, che vengono costruite e classificate. Il terzo capitolo è dedicato ai gruppi di Spin ed alle loro algebre di Lie. Gli ultimi due capitoli illustrano un'applicazione fisica: viene esposta la teoria quantistica dello spin e del momento angolare, e si deriva l'equazione di Dirac con un
APA, Harvard, Vancouver, ISO, and other styles
6

Wylie, Dave. "Factoring Blades and Versors in Euclidean Clifford Algebras." Thesis, Southern Illinois University at Edwardsville, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1564083.

Full text
Abstract:
<p> This thesis examines different methods of factoring elements of Clifford Algebras, specifically, <i>C</i>&ell;<sub>n,0</sub>. Blades are factored using Fontijne's algorithm and other techniques. Versors are factored using Perwass's algorithm. Writing an element as a sum of blades, which are then factored, can make it more efficient to store or transmit that element. To evaluate the usefulness of expressing a given element of <i>C</i>&ell;<sub> n,0</sub> this way, the number of scalars required to express that element is compared between factored and expanded forms.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Buchholz, Sven [Verfasser]. "A Theory of Neural Computation with Clifford Algebras / Sven Buchholz." Kiel : Universitätsbibliothek Kiel, 2005. http://d-nb.info/1080317147/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doran, Christopher John Leslie. "Geometric algebra and its application to mathematical physics." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/251691.

Full text
Abstract:
Clifford algebras have been studied for many years and their algebraic properties are well known. In particular, all Clifford algebras have been classified as matrix algebras over one of the three division algebras. But Clifford Algebras are far more interesting than this classification suggests; they provide the algebraic basis for a unified language for physics and mathematics which offers many advantages over current techniques. This language is called geometric algebra - the name originally chosen by Clifford for his algebra - and this thesis is an investigation into the properties and app
APA, Harvard, Vancouver, ISO, and other styles
9

Resende, Adriana Souza. "Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306698.

Full text
Abstract:
Orientador: Waldyr Alves Rodrigues Junior<br>Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-15T23:09:32Z (GMT). No. of bitstreams: 1 Resende_AdrianaSouza_M.pdf: 17553204 bytes, checksum: a66cefe30e9957cc4351e03d3aec35b2 (MD5) Previous issue date: 2010<br>Resumo: O presente trabalho tem a intenção de apresentar por intermédio de uma linguagem unificada alguns conceitos de cálculo vetorial, álgebra linear (matrizes e transformações lineares) e também algumas idéias elem
APA, Harvard, Vancouver, ISO, and other styles
10

Rocha, Junior Roldão da. "Spinors e twistors no modelo paravetorial : uma formulação via algebras de Clifford." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307233.

Full text
Abstract:
Orientador: Jayme Vaz Junior<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-09-24T19:00:48Z (GMT). No. of bitstreams: 1 RochaJunior_Roldaoda_M.pdf: 4478856 bytes, checksum: 633cef106ddf91dc74b9d11ae74d1372 (MD5) Previous issue date: 2001<br>Resumo: Nesta dissertação o formalismo dos spinors e twistors de Penrose são formulados em termos das álgebras de Clifi'ord. Para tal utilizamos o modelo paravetorial do espaço-tempo, onde um vetor do espaço-tempo é escrito em termos da soma de
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Clifford algebras"

1

Kondrat'ev, Gennadiy. Clifford Geometric Algebra. INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1832489.

Full text
Abstract:
The monograph is devoted to the fundamental aspects of geometric algebra and closely related issues. The category of Clifford algebras is considered as the conjugate category of vector spaces with a quadratic form. Possible constructions in this category and internal algebraic operations of an algebra with a geometric interpretation are studied. An application to the differential geometry of a Euclidean manifold based on a shape tensor is included.&#x0D; We consider products, coproducts and tensor products in the category of associative algebras with application to the decomposition of Cliffor
APA, Harvard, Vancouver, ISO, and other styles
2

Abłamowicz, Rafał, ed. Clifford Algebras. Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klawitter, Daniel. Clifford Algebras. Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-07618-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baylis, William E., ed. Clifford (Geometric) Algebras. Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4104-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Artibano, Micali, ed. Quadratic mappings and Clifford algebras. Birkhäuser, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lounesto, Pertti. Clifford algebras and spinors. Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perwass, Christian. Geometric algebra with applications in engineering. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meinrenken, Eckhard. Clifford Algebras and Lie Theory. Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Snygg, John. Clifford algebras: Computational toolfor physicists. Oxford University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crumeyrolle, Albert. Orthogonal and Symplectic Clifford Algebras. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-7877-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Clifford algebras"

1

Eastwood, Michael. "Algebras Like Clifford Algebras." In Clifford Algebras. Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scharlau, Winfried. "Clifford Algebras." In Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69971-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Husemoller, Dale. "Clifford Algebras." In Graduate Texts in Mathematics. Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2261-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meinrenken, Eckhard. "Clifford algebras." In Clifford Algebras and Lie Theory. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36216-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cnops, Jan. "Clifford Algebras." In An Introduction to Dirac Operators on Manifolds. Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0065-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chevalley, Claude. "Clifford Algebras." In The Algebraic Theory of Spinors and Clifford Algebras. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60934-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lam, T. Y. "Clifford algebras." In Graduate Studies in Mathematics. American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/067/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitrea, Marius. "Clifford algebras." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hassani, Sadri. "Clifford Algebras." In Mathematical Physics. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hahn, Alexander J. "The Clifford Algebra in the Theory of Algebras, Quadratic Forms, and Classical Groups." In Clifford Algebras. Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Clifford algebras"

1

KRASNOV, YAKOV. "COMMUTATIVE ALGEBRAS IN CLIFFORD ANALYSIS." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karmakar, Sanjay, and B. Rajan. "Multigroup-Decodable STBCs from Clifford Algebras." In 2006 IEEE Information Theory Workshop. IEEE, 2006. http://dx.doi.org/10.1109/itw.2006.322857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karmakar, Sanjay, and B. Sundar Rajan. "Multigroup-Decodable STBCs from Clifford Algebras." In 2006 IEEE Information Theory Workshop. IEEE, 2006. http://dx.doi.org/10.1109/itw2.2006.323839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chien, Steve, Lars Rasmussen, and Alistair Sinclair. "Clifford algebras and approximating the permanent." In the thiry-fourth annual ACM symposium. ACM Press, 2002. http://dx.doi.org/10.1145/509907.509944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gürlebeck, Klaus, Wolfgang Sprössig, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Analysis in Clifford Algebras—Some Aspects." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sprössig, Wolfgang, Klaus Gürlebeck, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Clifford Algebras in Mathematics and Applied Sciences." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Furui, Sadataka. "Clifford algebras and physical and engineering sciences." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rajan, G. Susinder, and B. Sundar Rajan. "STBCs from Representation of Extended Clifford Algebras." In 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SCHOTT, RENÉ, and G. STACEY STAPLES. "CLIFFORD ALGEBRAS, RANDOM GRAPHS, AND QUANTUM RANDOM VARIABLES." In Quantum Stochastics and Information - Statistics, Filtering and Control. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812832962_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ouyang, W., and Y. Wu. "Motion Representation and Inertial Navigation in Clifford Algebras." In 2022 DGON Inertial Sensors and Systems (ISS). IEEE, 2022. http://dx.doi.org/10.1109/iss55898.2022.9926412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!