Academic literature on the topic 'Cleaning Industry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cleaning Industry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cleaning Industry"

1

Perry, T. S. "Cleaning (electronics industry safety)." IEEE Spectrum 30, no. 2 (February 1993): 20–26. http://dx.doi.org/10.1109/6.208358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tomar, Prashant, and Preeti Khothiyal. "A REVIEW ON CLEANING VALIDATION FOR PHARMACEUTICAL INDUSTRY." INDIAN RESEARCH JOURNAL OF PHARMACY AND SCIENCE 4, no. 2 (June 2017): 950–62. http://dx.doi.org/10.21276/irjps.2017.4.2.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edser, Caroline. "Cleaning products industry embraces sustainability." Focus on Surfactants 2007, no. 5 (May 2007): 1–2. http://dx.doi.org/10.1016/s1351-4210(07)70157-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Butler, John. "INTERNAL CLEANING — AN INDUSTRY VIEW." Facilities 7, no. 2 (February 1989): 8–10. http://dx.doi.org/10.1108/eb006478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Booth, Vicki. "Cleaning up the power industry." Physics World 20, no. 3 (March 2007): 49. http://dx.doi.org/10.1088/2058-7058/20/3/38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mazonakis, Nikos E., Panagiota H. Karathanassi, Dimitrios P. Panagiotopoulos, Paraskevi G. Hamosfakidi, and Dimitrios A. Melissos. "Cleaning validation in the toiletries industry." Analytica Chimica Acta 467, no. 1-2 (September 2002): 261–66. http://dx.doi.org/10.1016/s0003-2670(02)00486-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Whelan, Kent F. "Heat cleaning for the coating industry." Metal Finishing 98, no. 6 (January 2000): 500–506. http://dx.doi.org/10.1016/s0026-0576(00)80451-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whelan, Kent F. "Heat cleaning for the coating industry." Metal Finishing 97, no. 5 (January 1999): 488–94. http://dx.doi.org/10.1016/s0026-0576(99)80816-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bauer, Andrea. "Contact dermatitis in the cleaning industry." Current Opinion in Allergy and Clinical Immunology 13, no. 5 (October 2013): 521–24. http://dx.doi.org/10.1097/aci.0b013e328364ec21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bdiri, Bensghaier, Chaabane, Kozmai, Baklouti, and Larchet. "Preliminary Study on Enzymatic-Based Cleaning of Cation-Exchange Membranes Used in Electrodialysis System in Red Wine Production." Membranes 9, no. 9 (September 3, 2019): 114. http://dx.doi.org/10.3390/membranes9090114.

Full text
Abstract:
The use of enzymatic agents as biological solutions for cleaning ion-exchange membranes fouled by organic compounds during electrodialysis (ED) treatments in the food industry could be an interesting alternative to chemical cleanings implemented at an industrial scale. This paper is focused on testing the cleaning efficiency of three enzyme classes (β-glucanase, protease, and polyphenol oxidase) chosen for their specific actions on polysaccharides, proteins, and phenolic compounds, respectively, fouled on a homogeneous cation-exchange membrane (referred CMX-Sb) used for tartaric stabilization of red wine by ED in industry. First, enzymatic cleaning tests were performed using each enzyme solution separately with two different concentrations (0.1 and 1.0 g/L) at different incubation temperatures (30, 35, 40, 45, and 50 °C). The evolution of membrane parameters (electrical conductivity, ion-exchange capacity, and contact angle) was determined to estimate the efficiency of the membrane′s principal action as well as its side activities. Based on these tests, we determined the optimal operating conditions for optimal recovery of the studied characteristics. Then, cleaning with three successive enzyme solutions or the use of two enzymes simultaneously in an enzyme mixture were tested taking into account the optimal conditions of their enzymatic activity (concentration, temperatures, and pH). This study led to significant results, indicating effective external and internal cleaning by the studied enzymes (a recovery of at least 25% of the electrical conductivity, 14% of the ion-exchange capacity, and 12% of the contact angle), and demonstrated the presence of possible enzyme combinations for the enhancement of the global cleaning efficiency or reducing cleaning durations. These results prove, for the first time, the applicability of enzymatic cleanings to membranes, the inertia of their action towards polymer matrix to the extent that the choice of enzymes is specific to the fouling substrates.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cleaning Industry"

1

Tourdot, Justin M. "A comparison of wet manual cleaning processes to carbon dioxide cleaning processes in the semiconductor industry." Online version, 2001. http://www.uwstout.edu/lib/thesis/2001/2001tourdotj.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Curran, Carmel. "Laser cleaning of microelectronic components for the semiconductor industry." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sinsheimer, Peter. "Fashioning a greener shade of clean integrating pollution prevention into public policy : the case of professional wet cleaning /." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835200081&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Noyan, Mehmet Alican. "Self-cleaning optical surfaces for the inkjet and 3D printing industry." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456201.

Full text
Abstract:
Liquid and solid repellent surfaces are key to many industries. For example, construction industry benefits from self-cleaning windows, cements, paints, roof tiles, and corrosion resistant surfaces, while easy-to-clean, antifingerprint and antibacterial surfaces are highly relevant for display applications. In inkjet and 3D printers, the unwanted deposition on the inner parts of raw materials in the form of liquid, aerosol or solid particulates may cause device malfunctioning. In particular, ink aerosol and powder may obstruct light passage in several key components, such as sensors and lamps. To address this, the thesis proposes and investigates novel designs and methods to reduce ink aerosol and powder contamination on transparent surfaces. In the first part, Joule heating and hydrophobicity against ink aerosol contamination are studied. The former effect is provided by a transparent conducting film (TCF), while the latter through a self-assembled monolayer (SAM) coating. The combination of the two effects reduce transmittance loss from an average of 10% to less than 1.5% in the presence of ink aerosol. Correspondingly, the area of the surface covered by ink decreases from around 45% to less than 2%. Results obtained with the glass substrates are subsequently extended to the plastic window of a commercial inkjet printer calibration sensor. Furthermore, effectiveness of the proposed self-cleaning surfaces inside an inkjet printer is demonstrated. In the second part, a technology called ¿electric curtain¿ is used to design a self-cleaning surface against powder contamination in 3D printers. Powders are the starting material for forming the objects and are largely present inside the printer. It is shown that an electric curtain can clean about 50% of the powder that deposits on the surface . The thesis also proposes a new electric curtain design consisting of a double electrode layer which significantly increases the particle removal efficacy to more than 70%, with plenty of margin of improvement. In summary, in this thesis novel self-cleaning transparent surfaces are proposed and their potential for inkjet and 3D printing industry is demonstrated in real operating conditions.
En la actualidad, el uso de superficies repelentes de partículas sólidas y líquidas es de gran importancia en el ámbito de la industria. Un caso concreto es el de la industria de la construcción, donde el uso de ventanas, cementos, pinturas y tejas que son “autolimpiables” junto con superficies resistentes a la corrosión son de gran utilidad. Asimismo, superficies fáciles de limpiar, antibacterianas y antihuella son de vital importancia para aplicaciones de visualización. En el caso concreto de las impresoras de tinta y 3D puede existir la deposición de partículas líquidas y solidas respectivamente, durante el funcionamiento de los equipos. Esto conlleva a un mal funcionamiento de las mismas ya que, tanto el aerosol procedente de las tintas como el polvo utilizado en las impresoras 3D, pueden obstruir el paso de la luz en los componentes principales de la impresora, como son los sensores y lámparas. Con el fin de solucionar las cuestiones descritas previamente, en esta tesis se ha desarrollado un nuevo diseño y procedimiento para reducir la contaminación provocada por los aerosoles y el polvo. En la primera parte, se estudia la reducción de la contaminación de aerosoles en el sensor de la impresora mediante dos vías, el calentamiento del mismo por efecto Joule y modificando químicamente la superficie del sensor transformándola en hidrofóbica. El efecto Joule se proporciona a través de una película conductora transparente (TCF), mientras que la hidrofobicidad se confiere mediante un revestimiento de monocapa autoensamblada (SAM). La combinación de ambos efectos hace que la pérdida de transmisión se reduzca de un 10% a un valor igual o inferior del 1.5%. Asimismo, el área recubierta por el aerosol disminuye de un 45% a un valor de 2%. Estos resultados obtenidos para substratos de vidrio se aplicaron posteriormente a una ventana de plástico de un sensor comercial utilizado en impresoras de tinta. Finalmente, se demuestra la efectividad del proceso propuesto (efecto Joule y SAM) al instalarse en una impresora industrial. En la segunda parte, una tecnología llamada “cortina eléctrica" se utiliza para diseñar una superficie de autolimpieza contra la contaminación de polvo en impresoras 3D. Los polvos son el material de partida para formar los objetos y están en gran parte presentes dentro de la impresora. Se muestra que una cortina eléctrica puede limpiar aproximadamente el 50% del polvo que se deposita en la superficie. La tesis también propone un nuevo diseño de cortina eléctrica consistente en una capa de doble electrodo que aumenta significativamente la eficacia de eliminación de partículas a más del 70%, con suficiente margen de mejora. En resumen, en esta tesis se proponen nuevas superficies transparentes de autolimpieza y se demuestra su potencial para la industria de impresión por inyección y 3D en condiciones reales de funcionamiento.
APA, Harvard, Vancouver, ISO, and other styles
5

Atwell, Charlotte. "Improvement and optimisation of industrial process cleaning in the brewing industry." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3423.

Full text
Abstract:
Heineken faces on-going business challenges due to the frequently increasing demand to attain more rigid production, sustainable, and financial targets. There are many factors which influence their ability to meet these targets within their production processes. One significant area which is often overlooked in industry is the limiting aspects within their cleaning in place (CIP) systems which includes; i) production down time, ii) cleaning costs, iii) effluent costs, and iv) quality control. This thesis details the work done in three projects completed by the research engineer for the EngD with Newcastle University in collaboration with Heineken. The aims of the projects were to benchmark the CIP costs within Bulmers fermentation area, to optimise the detergent cleaning phase of the CIP process for fermentation vessels, and to develop a predictive model to determine the theoretical end point of a cleaning process. The thesis also details business benefits which have been seen from the EngD. The research engineer has spent 3.5 years of the EngD working on site at Bulmers on the projects by i) collecting extensive data and site knowledge, ii) performing bench scale experiments, iii) analysis of results, and iv) on site verification of findings. The rest of the time was spent at Newcastle University for the taught section of the EngD, or performing pilot scale trials on the ZEAL pilot plant at Birmingham University. Based on the outcomes of the projects, the work done may be implemented to optimise the detergent CIP step, reduce chemical and water consumption, reduce effluent costs and reduce production down time. The predictive model may also be further developed for implementation on site to provide cost benefits in the same aspects of site cleaning. The overall implementation is predicted to save more than £2,000,000 per annum for Bulmers with the opportunity to be extended and provide comparable savings for all Heineken sites.
APA, Harvard, Vancouver, ISO, and other styles
6

Yardi, Chaitanya Narendra. "Design of regulated velocity flow assurance device for petroleum industry." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1527.

Full text
Abstract:
The petroleum industry faces problems in transportation of crude petroleum be- cause of the deposition of paraffins, hydrates and asphaltenes on the insides of the pipeline. These are conventionally removed using either chemical inhibitors or mechani- cal devices, called pigs, which travel through the pipeline and mechanically scrape away the deposits. These pigs are propelled by the pipeline product itself and hence travel at the same velocity as the product. Research has indicated that cleaning would be better if the pigs are traveling at a relatively constant velocity of around 70% of the product velocity. This research utilizes the concept of regulating the bypass flow velocity in order to maintain the pig velocity. The bypass flow is regulated by the control unit based on the feedback from the turbine flowmeter, which monitors the bypass flow. A motorized butterfly valve is used for actually controlling the bypass flow. In addition to cleaning, the proposed pig utilizes on-board electronics like accelerom- eter and pressure transducers to store the data gathered during the pig run. This data can then be analyzed and the condition of the pipeline predicted. Thus, this research addresses the problem of designing a pig to maintain a constant velocity in order to achieve better cleaning. It also helps gather elementary data that can be used to predict the internal conditions in the pipe.
APA, Harvard, Vancouver, ISO, and other styles
7

Lado, Karen M. (Karen Maria). "Immigrant workers in the cleaning industry : the Central American experience in Boston." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/68292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Emmerich, Jodi. "Cost analysis on the use of chamber cleaning agents nitrogen trifluoride and chlorine trifluoride in the semiconductor industry." Online version, 1999. http://www.uwstout.edu/lib/thesis/1999/1999emmerichj.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Van, Dyke Stephanie A. "An analysis of chlorine trifluoride as an effective substitute for nitrogen triflouride in the chemical vapor deposition reactor cleaning process." Online version, 1998. http://www.uwstout.edu/lib/thesis/1998/1998vandykes.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crabbe, Tim John. "Multinational companies in the cleaning industry : local government privatisation, trade union responses and the European dimension." Thesis, University of Glasgow, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259945.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cleaning Industry"

1

Babington, Mary F., Anna Docktor, Margaret K. Strekal, and Tonia P. Bell. Cleaning products. Cleveland: Freedonia Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCarron, Brendan. BS5750 for the cleaning industry. Edited by Butler John. Northampton: Clavis, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Olivier, Lucie. Garment cleaning: Pollution control through wet cleaning. Montréal, Qué: Environment Canada, Environmental Protection Branch, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Office, Energy Efficiency. Energy efficiency in the dry-cleaning industry. London: Energy Efficiency Office, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, Rod. Hygiene and cleaning in the fish industry. [UK]: Manpower Services Commission for Sea Fish Industry Authority, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

William, Thomas. Introduction to contract cleaning maintenance. Oakland, Calif: Marsh-Wentworth Pub. Co., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Canada. Industry, Science and Technology Canada. Soap and cleaning compounds. Ottawa: Business Centre, Communications Branch, Industry, Science and Technology Canada, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

William, Thomas. Instructors manual (cleaning maintenance). Oakland, Calif: Marsh-Wentworth Pub. Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Canada. Industry, Science and Technology Canada. Soap and cleaning compounds. Ottawa: Industry, Science and Technology Canada, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stanga, Mario. Sanitation: Cleaning and disinfection in the food industry. Weinheim: Wiley-VCH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cleaning Industry"

1

Hackney, Cameron R., and Jon Porter. "Cleaning and Sanitation." In The Seafood Industry, 268–90. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-2041-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parkinson, Nina Gritzai. "Cleaning and Sanitation." In The Seafood Industry, 297–307. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229491.ch22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Manjit, and Jackie Fisher. "Cleaning and disinfection in the brewing industry." In Brewing Microbiology, 337–66. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9250-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wheeler, Roy W. "Cleaning Process Lines in the Explosives Industry." In ACS Symposium Series, 300–303. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0345.ch021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, M., and J. Fisher. "Cleaning and disinfection in the brewing industry." In Brewing Microbiology, 271–300. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4684-0038-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, M., and J. Fisher. "Cleaning and disinfection in the brewing industry." In Brewing Microbiology, 271–300. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-4679-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Littleton, Peter. "Cleaning and Disinfection in the Fish Canning Industry." In Fish Canning Handbook, 262–82. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444323405.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Louie, Winnie, and David Reuschlein. "Cleaning and Disinfection in the Bottled Water Industry." In Technology of Bottled Water, 223–66. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444393330.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bolz, Roger W. "2B Industry Applications Automated Cleaning of Rim Stock." In Manufacturing Automation Management, 33. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2541-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomas, Norton, and Brijesh K. Tiwari. "Sustainable Cleaning and Sanitation in the Food Industry." In Sustainable Food Processing, 363–76. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118634301.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cleaning Industry"

1

Umemoto, Hiroshi, Hideaki Hayashi, Kazunori Takashima, and Akira Mizuno. "Electrostatic Precipitators for Cleaning Diesel Exhaust." In 2008 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2008. http://dx.doi.org/10.1109/08ias.2008.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jehassi, O., and R. Kinsman. "462. Pollution Prevention in the Dry Cleaning Industry." In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2765149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zymbler, Mikhail, Yana Kraeva, Elizaveta Latypova, Sachin Kumar, Dmitry Shnayder, and Alexander Basalaev. "Cleaning Sensor Data in Smart Heating Control System." In 2020 Global Smart Industry Conference (GloSIC). IEEE, 2020. http://dx.doi.org/10.1109/glosic50886.2020.9267813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhiyong Cheng, Juan Jia, Liang Zhong, Rui Guo, Chunlei Han, and Richeng Zhu. "Development of insulator cleaning robot." In 2016 4th International Conference on Applied Robotics for the Power Industry (CARPI). IEEE, 2016. http://dx.doi.org/10.1109/carpi.2016.7745641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Culbert, I. M. "A Review of Cleaning Methods for Motor Windings." In 2008 IEEE Cement Industry Technical Conference Record. IEEE, 2008. http://dx.doi.org/10.1109/citcon.2008.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brems, Steven, Herbert Struyf, Marc Hauptmann, Elisabeth Camerotto, Paul Mertens, and Stefan De Gendt. "Optimizing High Frequency Ultrasound Cleaning in the Semiconductor Industry." In 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2826-7_236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leivo, Charles, Jens Lange, and Dan Ramshaw. "Reduced baghouse maintenance with LPHV pulse cleaning technology." In 2014 IEEE-IAS/PCA Cement Industry Technical Conference. IEEE, 2014. http://dx.doi.org/10.1109/citcon.2014.6820120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zesch, W., S. Honold, Ph Roth, and V. de Vries. "Automated boiler wall cleaning and inspection." In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI 2012). IEEE, 2012. http://dx.doi.org/10.1109/carpi.2012.6473368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rodibaugh, Scott A. "Diesel Lube Oil Contaminant Size and Composition by Analysis of Solids Collected by Oil Cleaning Centrifuge." In Earthmoving Industry Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yahui, Wei Zhang, Jingyi Li, Guangyong Jin, and Chenxiao Zhao. "Study on the mechanism of continuous laser cleaning of epoxy resin coating on Q235B steel." In Global Intelligent Industry Conference 2020, edited by Liang Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2589825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography