Academic literature on the topic 'Clay modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clay modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Clay modelling"
Gao, Zhiwei, and Yi Hong. "Constitutive modelling of gassy clay." E3S Web of Conferences 92 (2019): 15005. http://dx.doi.org/10.1051/e3sconf/20199215005.
Full textKatti, Dinesh R., Zillur R. Patwary, and Kalpana S. Katti. "Modelling clay–fluid interactions in montmorillonite clays." Environmental Geotechnics 4, no. 5 (October 2017): 322–38. http://dx.doi.org/10.1680/jenge.14.00027.
Full textGraham, J., N. Tanaka, T. Crilly, and M. Alfaro. "Modified Cam-Clay modelling of temperature effects in clays." Canadian Geotechnical Journal 38, no. 3 (June 1, 2001): 608–21. http://dx.doi.org/10.1139/t00-125.
Full textPetalas, Alexandros L., Mats Karlsson, and Minna Karstunen. "Modelling of undrained shearing of soft natural clays." E3S Web of Conferences 92 (2019): 15001. http://dx.doi.org/10.1051/e3sconf/20199215001.
Full textChia, Julian Y. H., Kais Hbaieb, and Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites." Key Engineering Materials 334-335 (March 2007): 785–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.785.
Full textYakushev, Vladimir. "Experimental Modeling of Methane Hydrate Formation and Decomposition in Wet Heavy Clays in Arctic Regions." Geosciences 9, no. 1 (December 27, 2018): 13. http://dx.doi.org/10.3390/geosciences9010013.
Full textYeow, Hoe-Chian, and Matthew R. Coop. "The constitutive modelling of London Clay." Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 170, no. 1 (February 2017): 3–15. http://dx.doi.org/10.1680/jgeen.15.00146.
Full textHbaieb, K., Q. X. Wang, Y. H. J. Chia, and B. Cotterell. "Modelling stiffness of polymer/clay nanocomposites." Polymer 48, no. 3 (January 2007): 901–9. http://dx.doi.org/10.1016/j.polymer.2006.11.062.
Full textKalker, Thomas. "Clay Modelling — From Sketch to Model." Auto Tech Review 4, no. 10 (October 2015): 34–37. http://dx.doi.org/10.1365/s40112-015-1004-8.
Full textNajser, J., D. Mašín, and J. Boháč. "Numerical modelling of lumpy clay landfill." International Journal for Numerical and Analytical Methods in Geomechanics 36, no. 1 (November 21, 2010): 17–35. http://dx.doi.org/10.1002/nag.990.
Full textDissertations / Theses on the topic "Clay modelling"
Kite, Matthew J. S. "Computational modelling of clay pipe extrusion." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources. Online version available for University members only until June 9, 2014, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25966.
Full textEvans, D. G. "Modelling a china clay band dryer." Thesis, University of Exeter, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383097.
Full textDe, Moor E. K. "Modelling of deep tunnel behaviour in clay." Thesis, City University London, 1989. http://openaccess.city.ac.uk/7396/.
Full textEllison, Kirk Carr. "Constitutive modelling of a heavily overconsolidated clay." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610606.
Full textWang, Yan. "Exploring Biopolymer-Clay Nanocomposite Materials by Molecular Modelling." Doctoral thesis, KTH, Teoretisk kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166299.
Full textI denna avhandling har molekylär modellering och molekyldynamisk (MD) simulering använts för att studera modellsystem för bio-nanokompositer bestående av montmorillonit-lera samt två olika sorters biopolymerer – xyloglukan (XG) och kitosan (CHS). Båda dessa polymerer är naturligt förekommande och mycket vanliga. De är dessutom förnyelsebara och kostnadseffektiva. Då polymererna förstärkts med nanopartiklar av montmorillonit får det resulterande kompositmaterialet en unik kombination av egenskaper såsom mekaniska, elektriska, termiska och barriär egenskaper etc. Genom att använda molekyldynamiska (MD) simuleringar, studeras här växelverkan mellan dessa biopolymerer och lernanopartiklar (Mnt) på grundläggande atomistisk detaljnivå. Mellan XG och Mnt i ett fullt hydrerat system kunde stark bindningsaffinitet påvisas. Den dominerande drivkraften för affiniteten var entalpi, d.v.s. potentiell växelverkansenergi. Den adsorberade XG-kedjan antar en platt konformation på ytan. Ett förslag utifrån simuleringsresultaten var att galaktosresidyn i xyloglukanets sidokedja underlättar adsorptionen till lerytan. Simuleringarna kunde också visa att adsorption av XG till Mnt beror starkt på motjonernas hydreringsförmåga. Bindningsaffiniteten mellan XG och Mnt var som starkast i K-Mnt/XG- systemet. Därefter följde, i minskande ordning, Na-Mnt/XG, Li-Mnt/XG och Ca-Mnt/XG. Det kunde visas att strukturen vid gränsytan styrs av konkurrerande mekanismer mellan joner, vatten och XG. Dimensionsstabilitet vid fuktexponering, d.v.s. förmågan hos ett material att motverka svällning, är en viktig egenskap för biopolymer-lernanokompositer. Ren lera sväller signifikant även vid låga fukthalter. Dock kunde MD simuleringar visa att ett modellsystem av XG-Mnt behåller sitt ursprungliga interlamellära avstånd vid hydreringsnivåer under 50%, vilket indikerar ett stabilare material. Vid högre hydrering uppmättes dock svällningen vara densamma som för ren lera. I CHS-Mnt-systemet visade det sig att direkt elektrostatisk växelverkan med signifikant styrka mellan laddningar på polymer och Mnt-yta spelar störst roll för kompositformeringen. Olika effekt på polymer-lerväxelverkan uppnåddes genom att variera acetyleringsgraden (DA) respektive protoneringsgraden (DPr). För den tungt acetylerade CHS-polymeren (DA > 50%, även kallad kitin) visade sig den starka vidhäftningen bero på korrelation mellan acetylgrupperna och motjonerna som i sin tur verkade som ett elektrostatiskt “lim”. På liknande sätt kunde den svaga vidhäftningen mellan fullt deprotonerad (DPr = 0%) neutral CHS och lera förklaras med en betydligt svagare korrelation mellan aminogrupperna och motjonerna. Spänning-töjningsbeteendet hos CHS-Mnt modellen visar att dess mekaniska egenskaper beror kraftigt på volymsandelen Mnt och graden av exfoliering i kompositen. Materialets struktur är nära relaterat till materialegenskaperna. Framtiden för nanokompositer av biopolymerer och lera är ljus då de kan komma att ersätta oljebaserade plaster och användas frekvent i våra dagliga liv. Materialen kommer successivt förbättras genom utveckling av experimentella metoder i kombination med molekylmodellering för ökad förståelse för växelverkan mellan polymer, lera, vatten, joner och lösningsmedel.
本论文利用分子动力学模拟技术研究了两种备选生物大分子与蒙脱土(Montmorillonite, Mnt)(一种粘土)组成的生物纳米复合材料,分别是木葡聚糖(Xyloglucan, XG)/蒙脱土和壳聚糖(Chitosan, CHS)/蒙脱土。木葡聚糖与壳聚糖都是自然界广泛存在的生物大分子,资源丰富且取材面宽,提取及加工成本低廉,加之可以生物降解并可再生,是优秀的生物复合材料备选原料。经过蒙脱土纳米颗粒加固后,这些基于生物大分子的复合材料将获得多功能且有多种独特特性相结合的优点,比如,更好的力学性能,生物可降解,良好的导电性能,传热性能和屏蔽气体与液体侵扰的能力等等。论文中,我们采用分子动力学模拟的方法着重对生物大分子与蒙脱土在界面上的粘附相互作用机理进行了深入探讨。 首先,对于木葡聚糖/蒙脱土纳米复合材料,我们发现糖分子与土分子间有着很强的天然亲和力。研究证明它们之间的这种相互作用,热焓是主要的推动力,也就是糖和土分子间的相互作用势能。含有半乳糖残基的木葡聚糖分子(本文中亦称天然木葡聚糖分子)吸附到粘土表面后,分子构型呈现扁平状,半乳糖残基似有辅助木葡聚糖大分子吸附到粘土颗粒上的作用。 进一步研究发现,木葡聚糖分子在粘土表面上的吸附与溶液中抗衡离子的水和作用密切相关。在钾离子平衡的糖/粘土系统中,糖分子与土分子的相互作用最强,钠离子平衡的糖/粘土系统次之,紧接着是锂离子平衡的糖/粘土系统,最弱的是钙离子平衡的糖/粘土系统。研究发现,离子,水分子,以及糖分子在粘土层间的竞争机制在糖分子的粘附过程中起着重要的作用。 材料暴露于潮湿环境中的尺寸稳定性,也就是材料抗肿胀的能力是生物大分子/蒙脱土所构成的复合材料的重要参数。蒙脱土自身即使在很低的潮湿环境下就会有明显地膨胀现象,然而,对木葡聚糖/蒙脱土复合材料来说,尺寸稳定性可以在水和值低于50%以下有效保存。其夹层尺寸的稳定保持暗示了材料在这个程度的潮湿环境下的稳定性。然而,当水和值高于50%时,木葡聚糖/蒙脱土复合材料将出现明显的肿胀现象,表现在夹层尺寸的明显增大,且其膨胀速率与粘土自身的膨胀速率逐渐趋于相当水平。 其次,对于壳聚糖/蒙脱土复合材料,我们发现由电荷-电荷间直接产生地强烈的静电吸引作用是壳聚糖分子与蒙脱土分子相互粘附并构成复合材料的关键因素。通过改变壳聚糖分子的乙酰化程度(Degree of acetylation, DA)和质子化程度(Degree of protonation, DPr),糖分子与土分子的相互作用有着显著地不同。对于乙酰化程度(DA)高于50%的壳聚糖分子(亦成为甲壳素分子chitin, CHT),电中性的甲壳素分子与土分子间的强吸附作用源于乙酰基功能团与抗衡离子的强相关性。抗衡离子此时扮演着类似于“电子胶”的作用,可以有效地将电中性的甲壳素分子与土分子粘结在一起。类似地,当质子化程度最低时,亦即壳聚糖分子完全非质子化,即呈现电中性时,较差的糖/土吸附作用源于氨基功能团与抗衡离子的较弱的相关性。 进一步对壳聚糖/蒙脱土复合材料的分子系统进行应力应变计算发现,复合材料的力学性能直接受蒙脱土体积分数和其剥离程度的影响,通常,粘土的体积分数越大体系的力学性能越高,且剥离程度对材料的整体性能也有直接影响。因此,材料的结构与其性能的表征有着密切联系。 我们相信生物大分子与蒙脱土构成的生物复合材料有着光明的前景,可以取代石油提取物制成的塑料材料,并将能够广泛应用在日常生活中。通过实验技术的改善和应用分子模拟技术对复合材料体系中生物大分子,蒙脱土分子,水分子,离子,溶液环境等混合物质相互作用的理解增加,这种可再生的新材料将会得到重要改进,这也是整本论文的主旋律。
QC 20150520
Bio-nanocomposites
Grace, Tim, and n/a. "An investigation of primary school children's clay modelling techniques." University of Canberra. Education, 1993. http://erl.canberra.edu.au./public/adt-AUC20060712.130505.
Full textMorris, Jonathan David. "Physical and numerical modelling of grouted nails in clay." Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:530eeb78-5ead-4459-8733-3e6ae722c687.
Full textNigussie, Daniel Gebremedhin. "Numerical modelling of run-out of sensitive clay slide debris." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23329.
Full textMrayed, Sabri Mohamed Ali Chemical Sciences & Engineering Faculty of Engineering UNSW. "Molecular modelling applications in crystallization fouling and clay/polymer nanocomposites." Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40682.
Full textLee, Yat Sun. "Physical and numerical modelling of pipe-soil interaction in clay." Thesis, University of Sheffield, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577564.
Full textBooks on the topic "Clay modelling"
Trotman, Clare. Dinosaur clay modelling. Woodbridge: Top That!, 2001.
Find full textCompany, Eberhard Faber Pencil. New FIMO: Modelling ideas. Neumarkt, Germany: Eberhard Faber, 1986.
Find full textGriffiths, Eric. The technique of modelling in clay. London: B.T. Batsford Ltd., 1987.
Find full textGriffiths, Eric. The technique of modelling in clay. London: Batsford, 1987.
Find full textModelling. Bethany, MO: Fitzgerald Books, 1995.
Find full textThe clay modelling handbook: Learning from the masters. London: Aurum, 1992.
Find full textMolteni, Mario. The clay modelling handbook: Learning from the masters. New York: Clarkson Potter, 1992.
Find full textMosugu, Mary Ebenmosi. Soil water fluxes in cracking clay soils: A monitoring and modelling study. Birmingham: University of Birmingham, 2000.
Find full text1948-, A:son-Ljungberg Inger, ed. Carving and whittling: The Swedish style. Asheville, N.C: Lark Books, 1998.
Find full textShan, Jian. Application of the sub-region mixed energy principle to numerical modelling of prestressed clad cable nets. [s.l.]: typescript, 1990.
Find full textBook chapters on the topic "Clay modelling"
Krause, F. L., and J. Lüddemann. "Virtual Clay Modelling." In Product Modeling for Computer Integrated Design and Manufacture, 162–75. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35187-2_14.
Full textChai, Jinchun, and John P. Carter. "Modelling Soft Clay Behaviour." In Deformation Analysis in Soft Ground Improvement, 7–55. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1721-3_2.
Full textMašín, David. "Hypoplastic Model for Clay." In Modelling of Soil Behaviour with Hypoplasticity, 103–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03976-9_6.
Full textChia, Julian Y. H., Kais Hbaieb, and Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites." In Advances in Composite Materials and Structures, 785–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.785.
Full textVineetha, K., A. Boominathan, and Subhadeep Banerjee. "Numerical Modelling of Mechanised Tunnelling in Clay." In Lecture Notes in Civil Engineering, 161–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0562-7_18.
Full textMeyer, W. S., H. D. Barrs, and N. S. Jayawardane. "Waterlogging as a Limitation to Wheat Yield in an Irrigated Clay Soil." In Wheat Growth and Modelling, 199–204. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-3665-3_19.
Full textFavero, Valentina, Alessio Ferrari, and Lyesse Laloui. "1D Compression Behaviour of Opalinus Clay." In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 322–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52773-4_37.
Full textZhang, Chun-Liang. "Response of Clay Rock to Moisture Change." In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 155–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52773-4_17.
Full textZhu, Z., M. Kham, V. Alves Fernandes, and F. Lopez-Caballero. "Dynamic Response of a Central Clay Core Dam Under Two-Component Seismic Loading." In Dam Breach Modelling and Risk Disposal, 231–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46351-9_23.
Full textDella Vecchia, Gabriele, Camillo Airò Farulla, and Cristina Jommi. "Modelling the Water Retention Domain of a Compacted Scaly Clay." In Unsaturated Soils: Research and Applications, 55–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31343-1_7.
Full textConference papers on the topic "Clay modelling"
Hansen, M. "Statistical modelling of partial clay cover." In 3rd EEGS Meeting. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609.201407321.
Full textLiu, M. D., J. P. Carter, S. Horpibulsuk, and D. S. Liyanapathirana. "Modelling the Behaviour of Cemented Clay." In GeoShanghai International Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40864(196)10.
Full textCheuk, C. Y., and D. J. White. "Centrifuge Modelling of Pipe Penetration Due to Dynamic Lay Effects." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57923.
Full textHale, J. R., D. V. Morris, T. S. Yen, and W. A. Dunlap. "Modelling Pipeline Behavior on Clay Soils During Storms." In Offshore Technology Conference. Offshore Technology Conference, 1992. http://dx.doi.org/10.4043/7019-ms.
Full textNadim, F., and R. Dahlberg. "Numerical Modelling of Cyclic Pile Capacity in Clay." In Offshore Technology Conference. Offshore Technology Conference, 1996. http://dx.doi.org/10.4043/7994-ms.
Full textNguyen, Lam, Behzad Fatahi, and Hadi Khabbaz. "Modelling Behaviour of Cemented Clay Capturing Cementation Degradation." In Geo-Shanghai 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413401.017.
Full textPahlevanzadeh, S. "Experimental Modelling Of Group Lime Columns In Clay." In 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA). Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-4948-4_154.
Full textWestgate, Z. J., L. Tapper, B. M. Lehane, and C. Gaudin. "Modelling the Installation of Stiffened Caissons in Overconsolidated Clay." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79125.
Full textDominijanni, Andrea, and Mario Manassero. "Modelling Osmosis and Solute Transport through Clay Membrane Barriers." In Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40789(168)19.
Full textSalehnia, F., R. Charlier, and S. Levasseur. "Numerical Modelling of the Excavated Damaged Zone in Boom Clay." In International Workshop on Geomechanics and Energy. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131941.
Full text