Academic literature on the topic 'Clay catalyzed vinyl polymerization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clay catalyzed vinyl polymerization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Clay catalyzed vinyl polymerization"

1

Tsuchiya, Yoshikatsu, and Kiyoshi Endo. "Vanadium alkoxide catalyzed polymerization of vinyl chloride." Journal of Polymer Science Part A: Polymer Chemistry 49, no. 4 (January 3, 2011): 1006–12. http://dx.doi.org/10.1002/pola.24514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Satoh, Kotaro, and Masami Kamigaito. "Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations." MRS Proceedings 1613 (2014): 17–21. http://dx.doi.org/10.1557/opl.2014.153.

Full text
Abstract:
ABSTRACTThe metal-catalyzed step-growth radical polymerization was achieved to enable two systems for preparing tailored polymeric structures, i.e., sequence-regulated vinyl copolymer and periodically-functionalized polymer. The former is a novel strategy for preparing sequence-regulated vinyl copolymers by step-polymerization of sequence-regulated vinyl oligomers prepared from common vinyl monomers as building blocks. The later deals the simultaneous chain- and step-growth radical polymerization, which resulted in the polymers with periodic functional groups.
APA, Harvard, Vancouver, ISO, and other styles
3

Knutson, Phil C., Aaron J. Teator, Travis P. Varner, Caleb T. Kozuszek, Paige E. Jacky, and Frank A. Leibfarth. "Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers." Journal of the American Chemical Society 143, no. 40 (October 1, 2021): 16388–93. http://dx.doi.org/10.1021/jacs.1c08282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El-Shall, M. Samy, and H. Reiss. "Observation of homogeneous gas-phase catalyzed vinyl polymerization." Journal of Physical Chemistry 92, no. 5 (March 1988): 1021–22. http://dx.doi.org/10.1021/j100316a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asandei, A. D., and V. Percec. "From metal-catalyzed radical telomerization to metal-catalyzed radical polymerization of vinyl chloride: Toward living radical polymerization of vinyl chloride." Journal of Polymer Science Part A: Polymer Chemistry 39, no. 19 (2001): 3392–418. http://dx.doi.org/10.1002/pola.1322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zepeng, Yunpeng Gao, Shufeng Chen, and Jianbo Wang. "Palladium-Catalyzed Living/Controlled Vinyl Addition Polymerization of Cyclopropenes." Journal of the American Chemical Society 143, no. 42 (October 14, 2021): 17806–15. http://dx.doi.org/10.1021/jacs.1c09071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohaddespour, Ahmad, Seyed J. Ahmadi, Hossein Abolghassemi, Seyed M. Mahjoub, and Saeid Atashrouz. "Irradiation of poly(vinyl ester)/clay nanocomposites." Journal of Composite Materials 52, no. 1 (April 4, 2017): 17–25. http://dx.doi.org/10.1177/0021998317701999.

Full text
Abstract:
The effect of electron beam irradiation on pristine poly(vinyl ester) and cured poly(vinyl ester)/clay nanocomposite with different clay contents is studied at irradiation doses ranging from 100 to 1000 kGy at room temperature. Poly(vinyl ester)/clay nanocomposites were prepared with different amounts of organically modified montmorillonite (1, 3, and 5 wt.%) by in situ polymerization method. Morphology properties of synthesized nanocomposites were studied by X-ray diffraction and transition electron microscopy. The irradiation dose up to 500 kGy yields an increase in Young’s modulus and tensile strength of nanocomposites while further irradiation deteriorates the mechanical strength of samples. Irradiation has no considerable influence on the surface hardness of synthesized nanocomposites. Thermogravimetric analysis results reveal the thermal stability of poly(vinyl ester), and its nanocomposites is improved with irradiation up to 500 kGy. However, similar to mechanical perdition at 1000 kGy irradiation, thermal resistance of nanocomposites decreases. The enhancement in mechanical and thermal properties of synthesized nanocomposites is attributed to the cross-linking effect as bonds can be formed directly between the neighbouring chains.
APA, Harvard, Vancouver, ISO, and other styles
8

Khalili, Amirali, Abdul Razak Rahmat, Alireza Fakhari, and Zyad Salem Alsagayar. "Mechanical Properties of Vinyl Ester Resin/Epoxidized Plam Oil/Nanoclay Composite." Applied Mechanics and Materials 554 (June 2014): 165–69. http://dx.doi.org/10.4028/www.scientific.net/amm.554.165.

Full text
Abstract:
The aim of this study is to develop vinyl ester resin (VE) with enhanced mechanical and thermal properties. Nanocomposites vinyl ester resin (VE)/ epoxidized palm oil (EPO)/ clay were prepared at different amount of epoxidized palm oil (EPO) (5, 7.5 and 10 wt%) in presence of various ratio of clay (1,2 and 3 phr) by free radical polymerization. The curing agent for polymerizing nanocomposites was methyl ethyl ketone peroxide (MEKP). Studies on their mechanical and physical properties were carried out by tensile and flexural tests. The results obtained revealed interactions between the vinyl ester resin (VE) and epoxidized palm oil (EPO). Based on the results of tensile strength, the optimum loading content for EPO and clay was 5wt% and 1 phr, respectively. When the concentration of EPO increased, the ductility was improved, indicated higher toughness.
APA, Harvard, Vancouver, ISO, and other styles
9

NAKAYAMA, Yuushou, and Takeshi SHIONO. "Vinyl-Type Polymerization of Cycloolefins Catalyzed by Transition Metal Complexes." NIPPON GOMU KYOKAISHI 78, no. 12 (2005): 453–60. http://dx.doi.org/10.2324/gomu.78.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Changwei, Manqing Yan, Xianyang Shi, Jiamin Fan, and Hong Bi. "Carbon nanodots-catalyzed free radical polymerization of water-soluble vinyl monomers." RSC Advances 6, no. 44 (2016): 38470–74. http://dx.doi.org/10.1039/c6ra06273c.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Clay catalyzed vinyl polymerization"

1

Bhattacharya, Jagannath. "Physico-chemical studies on selected aspects of clay catalyzed vinyl polymerization." Thesis, University of North Bengal, 1988. http://hdl.handle.net/123456789/717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DALL'ANESE, ANNA. "Palladium catalyzed copolymerizations: from ligand architecture to macromolecule microstructure." Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2963758.

Full text
Abstract:
Polyolefins represent one of the major products of the plastic industry, that satisfy 55 % of the worldwide plastic demand. However, due to their chemical composition, they suffer of scarce surface properties, such as dyeability, compatibility with other materials, printability and adhesion. In this regard, the introduction of polar functional groups into the polyolefin skeleton would overcome this problem. Up to now this target is industrially achieved by radical polymerization reactions, that require harsh conditions of temperature and pressure and do not allow the control on the microstructure of the produced functionalized polyolefin. The direct, homogeneously catalyzed copolymerization reaction of ethylene with polar vinyl monomers would overcome all of these limits, allowing to use milder reaction conditions but, most importantly, to have a precise control on the copolymer microstructure. Much efforts have been done in this direction, and in the last two decades a wide number of systems based on palladium catalysts with a great variety of ligands has been reported. However, the catalytic performances of these systems, in terms of activity/productivity values, incorporation of the polar monomers, molecular weight and molecular weight distribution and copolymer microstructure, do not satisfy the requirements for a potential industrial application, thus better performing catalysts are needed. This PhD thesis aims to develop new homogeneous catalysts for the target reaction based on palladium(II) complexes with bidentate nitrogen-donor ligands (N-N). The strategy of this research project is based on expanding the library of N-N donor ligands reported in literature, and to study the influence of the ligand design on the catalytic outcome. In each Chapter the synthesis and characterization of different N-N ligands will be reported, along with the synthesis and characterization of the relevant Pd(II) complexes, and the study of their catalytic behaviour including the characterization of the catalytic products.
APA, Harvard, Vancouver, ISO, and other styles
3

Sheng-ChaunChang and 張勝荃. "Synthesis of poly(vinyl acetate-co-methyl methacrylate) macromonomers by cobalt-catalyzed chain transfer and their graft polymerization with acrylonitrile." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/3guwct.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Clay catalyzed vinyl polymerization"

1

Delfosse, Sébastien, Aurore Richel, Lionel Delaude, Albert Demonceau, and Alfred F. Noels. "Controlled Radical Polymerization of Vinyl Monomers Catalyzed by RutheniumN-Heterocyclic Carbene Complexes." In ACS Symposium Series, 40–55. Washington, D C: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0944.ch004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, Myeongsoon, Ayusman Sen, Lev Zakharov, and Arnold L. Rheingold. "Trends in Alkene Insertion in Late- and Early-Transition Metal Compounds: Relevance to Transition Metal-Catalyzed Polymerization of Polar Vinyl Monomers." In ACS Symposium Series, 143–53. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0857.ch011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography