Academic literature on the topic 'Classification texte'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification texte.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification texte"
Garrido, Carlos. "Deficiencias del texto de partida en la traducción de textos destinados a la enseñanza y divulgación de la ciencia." Meta 60, no. 3 (April 5, 2016): 454–75. http://dx.doi.org/10.7202/1036138ar.
Full textHoek, Leo H. "Timbres-poste et intermédialité." Protée 30, no. 2 (July 9, 2003): 33–44. http://dx.doi.org/10.7202/006729ar.
Full textHurley, Robert. "Le genre « évangile » en fonction des effets produits par la mise en intrigue de Jésus." Laval théologique et philosophique 58, no. 2 (November 27, 2002): 243–57. http://dx.doi.org/10.7202/000359ar.
Full textGARON-AUDY, Muriel. "La logique de l’acte de classification : postulat ou question pour l’analyse de la mobilité." Sociologie et sociétés 8, no. 2 (September 30, 2002): 37–60. http://dx.doi.org/10.7202/001283ar.
Full textCazé, Antoine. "Poésie, texte métissé, une lecture de David Antin." Recherches anglaises et nord-américaines 21, no. 1 (1988): 21–28. http://dx.doi.org/10.3406/ranam.1988.1187.
Full textBonafin, Massimo. "Fra filologia e antropologiala genesi del lupo e della volpe." Reinardus / Yearbook of the International Reynard Society 11 (November 15, 1998): 25–35. http://dx.doi.org/10.1075/rein.11.03bon.
Full textZakharia, Katia. "Les Mille et une nuits. Histoire du texte et classification des contes." Arabica 56, no. 1 (2009): 132–34. http://dx.doi.org/10.1163/157005809x398708.
Full textPiscini, Gianluca. "Sources, cibles et structure de deux réflexions de Porphyre sur l’athéisme (commentaire sur le Timée, fragment 28 Sodano ; Lettre à Marcella 21-23)." Revue des Études Grecques 134, no. 1 (2021): 143–75. http://dx.doi.org/10.3406/reg.2021.8674.
Full textGagnon, Mathieu. "Penser la question des rapports aux savoirs en éducation : clarification et besoin de recherches conceptuelles." Les ateliers de l'éthique 6, no. 1 (March 28, 2018): 30–42. http://dx.doi.org/10.7202/1044300ar.
Full textCaparros, Ernest. "La nature juridique commune du patrimoine familial et de la société d’acquêts." Revue générale de droit 30, no. 1 (December 1, 2014): 1–60. http://dx.doi.org/10.7202/1027599ar.
Full textDissertations / Theses on the topic "Classification texte"
Tisserant, Guillaume. "Généralisation de données textuelles adaptée à la classification automatique." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS231/document.
Full textWe have work for a long time on the classification of text. Early on, many documents of different types were grouped in order to centralize knowledge. Classification and indexing systems were then created. They make it easy to find documents based on readers' needs. With the increasing number of documents and the appearance of computers and the internet, the implementation of text classification systems becomes a critical issue. However, textual data, complex and rich nature, are difficult to treat automatically. In this context, this thesis proposes an original methodology to organize and facilitate the access to textual information. Our automatic classification approache and our semantic information extraction enable us to find quickly a relevant information.Specifically, this manuscript presents new forms of text representation facilitating their processing for automatic classification. A partial generalization of textual data (GenDesc approach) based on statistical and morphosyntactic criteria is proposed. Moreover, this thesis focuses on the phrases construction and on the use of semantic information to improve the representation of documents. We will demonstrate through numerous experiments the relevance and genericity of our proposals improved they improve classification results.Finally, as social networks are in strong development, a method of automatic generation of semantic Hashtags is proposed. Our approach is based on statistical measures, semantic resources and the use of syntactic information. The generated Hashtags can then be exploited for information retrieval tasks from large volumes of data
Danuser, Hermann. "Der Text und die Texte. Über Singularisierung und Pluralisierung einer Kategorie." Bärenreiter Verlag, 1998. https://slub.qucosa.de/id/qucosa%3A36795.
Full textVasil'eva, Natalija. "Eigennamen in der Welt zeitgenössischer Texte." Gesellschaft für Namenkunde e.V, 2007. https://ul.qucosa.de/id/qucosa%3A31517.
Full textLasch, Alexander. "Texte im Handlungsbereich der Religion." De Gruyter, 2011. https://tud.qucosa.de/id/qucosa%3A74840.
Full textSayadi, Karim. "Classification du texte numérique et numérisé. Approche fondée sur les algorithmes d'apprentissage automatique." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066079/document.
Full textDifferent disciplines in the humanities, such as philology or palaeography, face complex and time-consuming tasks whenever it comes to examining the data sources. The introduction of computational approaches in humanities makes it possible to address issues such as semantic analysis and systematic archiving. The conceptual models developed are based on algorithms that are later hard coded in order to automate these tedious tasks. In the first part of the thesis we propose a novel method to build a semantic space based on topics modeling. In the second part and in order to classify historical documents according to their script. We propose a novel representation learning method based on stacking convolutional auto-encoder. The goal is to automatically learn plot representations of the script or the written language
Schneider, Ulrich Johannes. "Über Tempel und Texte: ein Bildervergleich." Fink, 1999. https://ul.qucosa.de/id/qucosa%3A12768.
Full textAKAMA, HIROYUKI. "Tableau, corps, texte : etudes historiques sur la classification-recit en france au xixe siecle." Paris 1, 1992. http://www.theses.fr/1992PA010604.
Full textThrough the "story" named ideology (of cabanis and tracy), the history of nineteenth-century "classification" can be divided into three distinctive stages having their own means to embody the complex of "table-body-text" (tableau-corps-texte). Primarily, an epistemological rupture of the "table" (tableau) which was a matter for the element of ideology, and in consequence, the phenomena of "inner dia-textuality" suppressing the possibilities of this current of thought. Secondly, the appearance of some cone-shaped encyclopedic spaces of knowledges, and their transformations to materialize the "positivist" significations of sociology and anthropology. Thirdly, another rupture of the "table" (tableau), as a result of which the spaces of knowledges became fluid to be symbols of anti-positivist crisis of science, and finally a tripartite unity of "discources" (discours) emerged : hysteria, science-fiction and institute-university
Felhi, Mehdi. "Document image segmentation : content categorization." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0109/document.
Full textIn this thesis I discuss the document image segmentation problem and I describe our new approaches for detecting and classifying document contents. First, I discuss our skew angle estimation approach. The aim of this approach is to develop an automatic approach able to estimate, with precision, the skew angle of text in document images. Our method is based on Maximum Gradient Difference (MGD) and R-signature. Then, I describe our second method based on Ridgelet transform.Our second contribution consists in a new hybrid page segmentation approach. I first describe our stroke-based descriptor that allows detecting text and line candidates using the skeleton of the binarized document image. Then, an active contour model is applied to segment the rest of the image into photo and background regions. Finally, text candidates are clustered using mean-shift analysis technique according to their corresponding sizes. The method is applied for segmenting scanned document images (newspapers and magazines) that contain text, lines and photo regions. Finally, I describe our stroke-based text extraction method. Our approach begins by extracting connected components and selecting text character candidates over the CIE LCH color space using the Histogram of Oriented Gradients (HOG) correlation coefficients in order to detect low contrasted regions. The text region candidates are clustered using two different approaches ; a depth first search approach over a graph, and a stable text line criterion. Finally, the resulted regions are refined by classifying the text line candidates into « text» and « non-text » regions using a Kernel Support Vector Machine K-SVM classifier
Mazyad, Ahmad. "Contribution to automatic text classification : metrics and evolutionary algorithms." Thesis, Littoral, 2018. http://www.theses.fr/2018DUNK0487/document.
Full textThis thesis deals with natural language processing and text mining, at the intersection of machine learning and statistics. We are particularly interested in Term Weighting Schemes (TWS) in the context of supervised learning and specifically the Text Classification (TC) task. In TC, the multi-label classification task has gained a lot of interest in recent years. Multi-label classification from textual data may be found in many modern applications such as news classification where the task is to find the categories that a newswire story belongs to (e.g., politics, middle east, oil), based on its textual content, music genre classification (e.g., jazz, pop, oldies, traditional pop) based on customer reviews, film classification (e.g. action, crime, drama), product classification (e.g. Electronics, Computers, Accessories). Traditional classification algorithms are generally binary classifiers, and they are not suited for the multi-label classification. The multi-label classification task is, therefore, transformed into multiple single-label binary tasks. However, this transformation introduces several issues. First, terms distributions are only considered in relevance to the positive and the negative categories (i.e., information on the correlations between terms and categories is lost). Second, it fails to consider any label dependency (i.e., information on existing correlations between classes is lost). Finally, since all categories but one are grouped into one category (the negative category), the newly created tasks are imbalanced. This information is commonly used by supervised TWS to improve the effectiveness of the classification system. Hence, after presenting the process of multi-label text classification, and more particularly the TWS, we make an empirical comparison of these methods applied to the multi-label text classification task. We find that the superiority of the supervised methods over the unsupervised methods is still not clear. We show then that these methods are not fully adapted to the multi-label classification problem and they ignore much statistical information that coul be used to improve the classification results. Thus, we propose a new TWS based on information gain. This new method takes into consideration the term distribution, not only regarding the positive and the negative categories but also in relevance to all classes. Finally, aiming at finding specialized TWS that also solve the issue of imbalanced tasks, we studied the benefits of using genetic programming for generating TWS for the text classification task. Unlike previous studies, we generate formulas by combining statistical information at a microscopic level (e.g., the number of documents that contain a specific term) instead of using complete TWS. Furthermore, we make use of categorical information such as (e.g., the number of categories where a term occurs). Experiments are made to measure the impact of these methods on the performance of the model. We show through these experiments that the results are positive
Bastos, Dos Santos José Eduardo. "L'identification de texte en images de chèques bancaires brésiliens." Compiègne, 2003. http://www.theses.fr/2003COMP1453.
Full textIdentifying and distinguishing text in document images are tasks whose cat!Jal solutions are mainly based on using contextual informations, like layout informations or informations from the phisical structure. Ln this research work, an alternative for this task is investigated based only in features observed from textual elements, giving more independency to the process. The hole process was developped considering textual elements fragmented in sm ail portions(samples) in order to provide an alternative solution to questions Iike scale and textual elements overlapping. From these samples, a set of features is extracted and serves as input to a classifyer maily chrged with textual extraction from the document and also the distinguish between handwritting and machine-printed text. Moreover, sinGe the only informations emplyed is observed directly from textual elements, the process assumes a character more independent as it doesn't use any heuristics nor à priori information of the treated document. Results around 93% of correct classification confirms the efficacy of the process
Books on the topic "Classification texte"
Les mille et une nuits: Histoire du texte et classification des contes. Paris: L'Harmattan, 2008.
Find full textAnne-Elizabeth, Dalcq, ed. Mettre de l'ordre dans ses idees: Classification des articulations logiques pour structurer son texte. Paris: Duculot, 1999.
Find full textLes parenthèses dans l'Evangile de Jean: Aperçu historique et classification, texte grec de Jean. Leuven: University Press, 1985.
Find full textTöppe, Frank. Im Zeichen der drei goldenen Haare: Der Teufel mit den drei goldenen Haaren, der Vogel Greif : die Beziehungen beider Texte zueinander, zu den entsprechenden Texten der Erstauflage der Grimmschen Märchen und einer F. v. Arnimschen Überlieferung. Meerbusch-Büderich bei Düsseldorf: Edition Vogelmann, 1993.
Find full textDescartes, René. Discours de la méthode: Texte intégral. Paris: Hatier, 1990.
Find full textQuintilian. De institutione oratoria, liber primus: Texte latin publié avec des notes biographiques sur Quintilien, l'histoire de l'institution oratoire et de ses abrégés, la classification et la description des manuscrits, le texte abrégé par Étienne de Rouen et par Jean Racine. Des notes critiques les variantes principales par Ch. Fierville. Paris: Firmin-Didot, 1991.
Find full textGenome clustering: From linguistic models to classification of genetic texts. Berlin: Springer, 2010.
Find full textSupport vector machines for pattern classification. 2nd ed. London: Springer, 2010.
Find full textAlmodóvar, Antonio Rodríguez. El texto infinito: Ensayos sobre el cuento popular. Madrid: Fundación Germán Sánchez Ruipérez, 2004.
Find full textLos cuentos populares o la tentativa de un texto infinito. [Murcia]: Universidad de Murcia, 1989.
Find full textBook chapters on the topic "Classification texte"
Féron, Corinne. "Classification des adverbiaux du moyen français: l’exemple des expressions formées sur vérité, voir, vrai et certain." In Texte, Codex & Contexte, 123–33. Turnhout: Brepols Publishers, 2007. http://dx.doi.org/10.1484/m.tcc-eb.3.3946.
Full textJoachims, Thorsten. "Text Classification." In Learning to Classify Text Using Support Vector Machines, 7–33. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0907-3_2.
Full textSarkar, Dipanjan. "Text Classification." In Text Analytics with Python, 167–215. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2388-8_4.
Full textAli-Ahmed, Syed Toufeeq. "Text Classification." In Encyclopedia of Systems Biology, 2156. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_174.
Full textSarkar, Dipanjan. "Text Classification." In Text Analytics with Python, 275–342. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4354-1_5.
Full textSahin, Özgür. "Text Classification." In Develop Intelligent iOS Apps with Swift, 41–67. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6421-8_3.
Full textZong, Chengqing, Rui Xia, and Jiajun Zhang. "Text Classification." In Text Data Mining, 93–124. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0100-2_5.
Full textWasserman, Larry. "Classification." In Springer Texts in Statistics, 349–79. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21736-9_22.
Full textJames, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. "Classification." In Springer Texts in Statistics, 127–73. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7138-7_4.
Full textJames, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. "Classification." In Springer Texts in Statistics, 129–95. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1418-1_4.
Full textConference papers on the topic "Classification texte"
Yang, Yi, Hongan Wang, Jiaqi Zhu, Yunkun Wu, Kailong Jiang, Wenli Guo, and Wandong Shi. "Dataless Short Text Classification Based on Biterm Topic Model and Word Embeddings." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/549.
Full textKavi, Deniz. "Towards Adversarial Genetic Text Generation." In 8th International Conference on Computer Science and Information Technology (CoSIT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110407.
Full textSouza, Luiz Fernando Spillere de, and Alexandre Leopoldo Gonçalves. "UTILIZAÇÃO PRÁTICA DE WORD EMBEDDING APLICADA À CLASSIFICAÇÃO DE TEXTO." In Congresso Internacional de Conhecimento e Inovação (ciKi). Congresso Internacional de Conhecimento e Inovação (ciKi), 2020. http://dx.doi.org/10.48090/ciki.v1i1.899.
Full textHuang, Ting, Gehui Shen, and Zhi-Hong Deng. "Leap-LSTM: Enhancing Long Short-Term Memory for Text Categorization." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/697.
Full textChaika, M., I. Buneev, and V. Velichko. "ANALYSIS OF THE EFFECTIVENESS OF APPLYING THE FREQUENCY-CONTEXT CLASSIFICATION ALGORITHM TO TEXTS OF DIFFERENT STYLES." In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_174-178.
Full textOuyang, Jihong, Yiming Wang, Ximing Li, and Changchun Li. "Weakly-supervised Text Classification with Wasserstein Barycenters Regularization." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/468.
Full textFontanille, Jacques. "La sémiotique est-elle un art ? Le faire sémiotique comme « art libéral »." In Arts du faire : production et expertise. Limoges: Université de Limoges, 2009. http://dx.doi.org/10.25965/as.3343.
Full textShamardina, Tatiana, Vladislav Mikhailov, Daniil Chernianskii, Alena Fenogenova, Marat Saidov, Anastasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena Tutubalina, and Ekaterina Artemova. "Findings of the The RuATD Shared Task 2022 on Artificial Text Detection in Russian." In Dialogue. RSUH, 2022. http://dx.doi.org/10.28995/2075-7182-2022-21-497-511.
Full textChen, Jun, Quan Yuan, Chao Lu, and Haifeng Huang. "A Novel Sequence-to-Subgraph Framework for Diagnosis Classification." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/496.
Full textSubramaniam, Raghav. "Examining Accuracy Heterogeneities in Classification of Multilingual." In 8th International Conference on Software Engineering. Academy & Industry Research Collaboration, 2023. http://dx.doi.org/10.5121/csit.2023.131221.
Full textReports on the topic "Classification texte"
Furey, John, Austin Davis, and Jennifer Seiter-Moser. Natural language indexing for pedoinformatics. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41960.
Full textSeo, Young-Woo, Joseph Giampapa, and Katia Sycara. Text Classification for Intelligent Portfolio Management. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada595830.
Full textDasigi, V. R., R. C. Mann, and V. Protopopescu. Multi-sensor text classification experiments -- a comparison. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/638201.
Full textHan, Euihong, George Karypis, and Vipin Kumar. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada439688.
Full textKuzmina, Aleksandra, Amalia Kuregyan, and Ekaterina Pertsevaya. PSUDOINTERNATIONAL WORDS IN THE TRANSLATION OF ECONOMIC TEXTS CARRIED OUT BY THE STUDENTS OF NON-LINGUISTIC UNIVERSITIES. Crimean Federal University named after V.I. Vernadsky, 2023. http://dx.doi.org/10.12731/ttxnbz.
Full textChew, Robert F., Kirsty J. Weitzel, Peter Baumgartner, Caroline W. Oppenheimer, Brianna D'Arcangelo, Autumn Barnes, Shirley Liu, Adam Bryant Miller, Ashley Lowe, and Anna C. Yaros. Improving Text Classification with Boolean Retrieval for Rare Categories: A Case Study Identifying Firearm Violence Conversations in the Crisis Text Line Database. RTI Press, March 2023. http://dx.doi.org/10.3768/rtipress.2023.mr.0050.2304.
Full textDasigi, V. R., and R. C. Mann. Toward a multi-sensor-based approach to automatic text classification. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/130610.
Full textDewdney, Nigel, Carol VanEss-Dykema, and Richard MacMillan. The Form is the Substance: Classification of Genres in Text. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada460898.
Full textPavlicheva, E. N., V. P. Meshalkin, and N. S. CHikunov. Algorithm for processing text data for an automatic classification problem using the word2vec method. OFERNIO, February 2021. http://dx.doi.org/10.12731/ofernio.2021.24759.
Full textKNYAZEVA, V., A. BILYALOVA, and E. IBRAGIMOVA. INTERTEXT AS A LEXICAL AND SEMANTIC TOOL OF SUGGESTION. Science and Innovation Center Publishing House, 2022. http://dx.doi.org/10.12731/2077-1770-2022-14-2-3-39-49.
Full text