Academic literature on the topic 'Classification of network devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification of network devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification of network devices"
Mhetre, Nalini A., Arvind V. Deshpande, and Parikshit Narendra Mahalle. "Device Classification-Based Context Management for Ubiquitous Computing using Machine Learning." International Journal of Engineering and Advanced Technology 10, no. 5 (June 30, 2021): 135–42. http://dx.doi.org/10.35940/ijeat.e2688.0610521.
Full textGanesan, Elaiyasuriyan, I.-Shyan Hwang, Andrew Tanny Liem, and Mohammad Syuhaimi Ab-Rahman. "SDN-Enabled FiWi-IoT Smart Environment Network Traffic Classification Using Supervised ML Models." Photonics 8, no. 6 (June 4, 2021): 201. http://dx.doi.org/10.3390/photonics8060201.
Full textBezerra, Vitor Hugo, Victor Guilherme Turrisi da Costa, Sylvio Barbon Junior, Rodrigo Sanches Miani, and Bruno Bogaz Zarpelão. "IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices." Sensors 19, no. 14 (July 19, 2019): 3188. http://dx.doi.org/10.3390/s19143188.
Full textLi, Xiu, Rujiao Long, Jiangpeng Yan, Kun Jin, and Jihae Lee. "TANet: A Tiny Plankton Classification Network for Mobile Devices." Mobile Information Systems 2019 (April 3, 2019): 1–8. http://dx.doi.org/10.1155/2019/6536925.
Full textNiewiadomska-Szynkiewicz, Ewa. "Localization in wireless sensor networks: Classification and evaluation of techniques." International Journal of Applied Mathematics and Computer Science 22, no. 2 (June 1, 2012): 281–97. http://dx.doi.org/10.2478/v10006-012-0021-x.
Full textKim, Jiyeon, Minsun Shim, Seungah Hong, Yulim Shin, and Eunjung Choi. "Intelligent Detection of IoT Botnets Using Machine Learning and Deep Learning." Applied Sciences 10, no. 19 (October 8, 2020): 7009. http://dx.doi.org/10.3390/app10197009.
Full textLu, Peng, Yang Gao, Hao Xi, Yabin Zhang, Chao Gao, Bing Zhou, Hongpo Zhang, Liwei Chen, and Xiaobo Mao. "KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement." Journal of Healthcare Engineering 2021 (April 24, 2021): 1–10. http://dx.doi.org/10.1155/2021/6684954.
Full textFeng, Kai, Xitian Pi, Hongying Liu, and Kai Sun. "Myocardial Infarction Classification Based on Convolutional Neural Network and Recurrent Neural Network." Applied Sciences 9, no. 9 (May 7, 2019): 1879. http://dx.doi.org/10.3390/app9091879.
Full textEt. al., Gopal Patil,. "REVIEW THE DEEP LEARNING TECHNIQUE FOR MISSING DATA CLASSIFICATION IN IOT APPLICATIONS FOR NETWORK PERFORMANCE IMPROVEMENT." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (March 25, 2021): 365–69. http://dx.doi.org/10.17762/itii.v9i2.356.
Full textCotrim, Jeferson Rodrigues, and João Henrique Kleinschmidt. "LoRaWAN Mesh Networks: A Review and Classification of Multihop Communication." Sensors 20, no. 15 (July 31, 2020): 4273. http://dx.doi.org/10.3390/s20154273.
Full textDissertations / Theses on the topic "Classification of network devices"
Eis, Pavel. "Datová sada pro klasifikaci síťových zařízení pomocí strojového učení." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445543.
Full textSleem, Lama. "Design and implementation of lightweight and secure cryptographic algorithms for embedded devices." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD018.
Full textLiving in an era where new devices are astonishing considering their high capabilities, new visions and terms have emerged. Moving to smart phones, Wireless Sensor Networks, high-resolution cameras, pads and much more, has mandated the need to rethink the technological strategy that is used today. Starting from social media, where apparently everything is being exposed, moving to highly powerful surveillance cameras, in addition to real time health monitoring, it can be seen that a high amount of data is being stored in the Cloud and servers. This introduced a great challenge for their storage and transmission especially in the limited resourced platforms that are characterized by: (a) limited computing capabilities, (b) limited energy and source of power and (c) open infrastructures that transmit data over wireless unreliable networks. One of the extensively studied platforms is the Vehicular Ad-hoc Networks which tends to have many limitations concerning the security field. In this dissertation, we focus on improving the security of transmitted multimedia contents in different limited platforms, while preserving a high security level. Limitations of these platforms are taken into consideration while enhancing the execution time of the secure cipher. Additionally, if the proposed cipher is to be used for images, the intrinsic voluminous and complex nature of the managed images is also taken into account. In the first part, we surveyed one of the limited platforms that is interesting for many researchers, which is the Vehicular Ad-hoc Networks. In order to pave the way for researchers to find new efficient security solutions, it is important to have one reference that can sum most of the recent works. It almost investigates every aspect in this field shedding the light over different aspects this platform possesses. Then, in order to propose any new security solution and validate its robustness and the level of randomness of the ciphered image, a simple and efficient test is proposed. This test proposes using the randomness tools, TestU01 and Practrand, in order to assure a high level of randomness. After running these tests on well known ciphers, some flaws were exposed. Proceeding to the next part, a novel proposal for enhancing the well-known ultra lightweight cipher scheme, Speck, is proposed. The main contribution of this work is to obtain a better version compared to Speck. In this proposal, 26 rounds in Speck were reduced to 7 rounds in Speck-R while enhancing the execution time by at least 50%. First, we validate that Speck-R meets the randomness tests that are previously proposed. Additionally, a dynamic substitution layer adds more security against key related attacks and highly fortifies the cipher. Speck-R was implemented on different limited arduino chips and in all cases, Speck-R was ahead of Speck. Then, in order to prove that this cipher can be used for securing images, especially in VANETS/IoV, where images can be extensively re/transmitted, several tests were exerted and results showed that Speck-R indeed possesses the high level of security desired in any trusted cipher. Extensive experiments validate our proposal from both security and performance point of views and demonstrate the robustness of the proposed scheme against the most-known types of attacks
Erlandsson, Niklas. "Utilizing machine learning in wildlife camera traps for automatic classification of animal species : An application of machine learning on edge devices." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104952.
Full textLuckhardt, Christoph [Verfasser]. "Development of thermo-analytical prediction and classification models for food in thermal devices using a multi sensor system and artificial neural networks / Christoph Luckhardt." Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/1043361863/34.
Full textAkarapu, Deepika. "Object Identification Using Mobile Device for Visually Impaired Person." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1628092619349812.
Full textWolf, Robert, Niko Joram, Stefan Schumann, and Frank Ellinger. "Dual-band impedance transformation networks for integrated power amplifiers." Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70680.
Full textKühnert, Wolfram. "Dynamic Devices Network Architecture." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10952962.
Full textAlexander, David. "A Network Metadata Infrastructure for Locating Network Devices." Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088176648.
Full textZenteno, Efrain. "Vector Measurements for Wireless Network Devices." Licentiate thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-111863.
Full textQC 20130204
Omer, Mahgoub Saied Khalid. "Network Latency Estimation Leveraging Network Path Classification." Thesis, KTH, Network Systems Laboratory (NS Lab), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229955.
Full textMed utvecklingen av Internet har nya nätverkstjänster med strikta fördröjningskrav möjliggjorts. Dessa tjänster är implementerade som distribuerade system spridda över flera geografiska platser. För att tillgodose låg svarstid kräver dessa tjänster kunskap om svarstiden i det nuvarande nätverket. Tyvärr ändras ofta nätverksfördröjningen bland geodistribuerade webbplatser, således är distribuerade tjänster beroende av kontinuerliga mätvärden för nätverksfördröjning. Ett mål med sådana mätningar är att skilja mellan momenta ökade svarstider från relativt långsiktiga förändringar av svarstiden. Differentieringen uppnås genom statistisk bearbetning av de samlade mätningarna. Denna högfrekventa insamling av mätningar av nätverksfördröjningen har höga overheadkostnader, identifierar ändringar långsamt och saknar noggrannhet. Vi föreslår ett nytt tillvägagångssätt för beräkningen av nätverksfördröjning genom att korrelera nätverksvägar till nätverksfördröjning. Vi visar att nätverksfördröjningen kan vara exakt uppskattad genom att man först mäter och identifierar den nätverksväg som används och sedan hämtar den förväntade fördröjningen för den nätverksvägen baserad på en tidigare uppsättning av mätningar. Baserat på dessa principer introducerar vi Sudan traceroute, ett Verktyg för att uppskatta nätverksfördröjning. Sudan traceroute kan användas för att både minska tiden att uppskatta fördröjningen samt att minska overhead för mätningarna i nätverket. Sudan traceroute använder en förbättrad vägdetekteringsmekanism som bara skickar några försiktigt valda prober för att identifiera den aktuella vägen i nätverket. Vi har utvecklat och utvärderat Sudan traceroute i en testmiljö och utvärderade genomförbarheten av Sudan traceroute i verkliga nätverk med hjälp av Amazon EC2. Med hjälp av Sudan traceroute har vi förkortat den tid det tar för värdar att identifiera nätverksfördröjnings förändringar jämfört med befintliga tillvägagångssätt.
Books on the topic "Classification of network devices"
Interconnecting Cisco network devices. Indianapolis, IN: Cisco Press, 2008.
Find full textRusen, Ciprian Adrian. Network your computers & devices step by step. Sebastopol, CA: O'Reilly Media, 2010.
Find full textMcQuerry, Steve. Authorized self-study guide: Interconnecting Cisco network devices. 2nd ed. Indianapolis, Ind: Cisco Press, 2008.
Find full textErrington, Phillip Anthony. Application of neural network models to chromosome classification. Manchester: University of Manchester, 1995.
Find full textWichert, Terry S. Feature based neural network acoustic transient signal classification. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textTodd, Ian K. A new neural network algorithm for classification problems. [s.l: The author], 1999.
Find full textAdamski, M. Design of Digital Systems and Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Find full textA modular and extensible network storage architecture. Cambrdige: Cambridge University Press, 1995.
Find full textVarghese, George. Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices. Burlington: Elsevier, 2004.
Find full textNetwork algorithmics: An interdisciplinary approach to designing fast networked devices. Amsterdam: Elsevier/Morgan Kaufmann, 2005.
Find full textBook chapters on the topic "Classification of network devices"
Khatun, Ferdousi, and Pratikshya Sharma. "Strahler Order Classification and Analysis of Drainage Network by Satellite Image Processing." In Advances in Communication, Devices and Networking, 915–22. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7901-6_98.
Full textSelver, M. Alper, and Cüneyt Güzeliş. "Multilevel Data Classification and Function Approximation Using Hierarchical Neural Networks." In Computational Methods for the Innovative Design of Electrical Devices, 147–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16225-1_8.
Full textBassene, Avewe, and Bamba Gueye. "A Group-Based IoT Devices Classification Through Network Traffic Analysis Based on Machine Learning Approach." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 185–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70572-5_12.
Full textGiannou, Olympia, Anastasios D. Giannou, Dimitra E. Zazara, Dörte Kleinschmidt, Tobias Mummert, Björn Ole Stüben, Michael Gerhard Kaul, Gerhard Adam, Samuel Huber, and Georgios Pavlidis. "Liver Cancer Trait Detection and Classification Through Machine Learning on Smart Mobile Devices." In Proceedings of the International Neural Networks Society, 95–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80568-5_8.
Full textNajadat, Hassan, Maad Ebrahim, Mohammad Alsmirat, Obadah Shatnawi, Mohammed Nour Al-Rashdan, and Ahmad Al-Aiad. "Investigating the Classification of Human Recognition on Heterogeneous Devices Using Recurrent Neural Networks." In Sustainable and Energy Efficient Computing Paradigms for Society, 67–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51070-1_4.
Full textRathinasabapathy, Ramadevi, Sheela Rani Balasubramaniam, Manoharan Narayanasamy, Prakash Vasudevan, Kalyasundaram Perumal, and Baldev Raj. "Classification of Pressure Drop Devices of Proto Type Fast Breeder Reactor through Seven Layered Feed Forward Neural Network." In Advances in Intelligent and Soft Computing, 157–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11282-9_17.
Full textHolman, Blake A., Joy Hauser, and George T. Amariucai. "Toward Home Area Network Hygiene: Device Classification and Intrusion Detection for Encrypted Communications." In Advances in Security, Networks, and Internet of Things, 195–209. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71017-0_14.
Full textRoopa, V., A. ChristyJeba Malar, R. Rekanivetha, R. Thanga Pradeep Kumar, R. Sarveshwaran, and A. Prithiksha Parameshwari. "Customized Music Classification and Recommendation System Based on Classifiers of Neural Networks and Sensor Embedded on Smart Devices." In Smart Computing Techniques and Applications, 805–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0878-0_79.
Full textChowdhury, Dhiman Deb. "Timing Devices." In NextGen Network Synchronization, 65–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71179-5_5.
Full textRamamurthy, Byrav. "Optical Network Devices." In Design of Optical WDM Networks, 9–31. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1675-0_2.
Full textConference papers on the topic "Classification of network devices"
Isuyama, Vivian Kimie, and Bruno De Carvalho Albertini. "Comparison of Convolutional Neural Network Models for Mobile Devices." In Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/wperformance.2021.15724.
Full textPayvar, Saman, Mir Khan, Rafael Stahl, Daniel Mueller-Gritschneder, and Jani Boutellier. "Neural Network-based Vehicle Image Classification for IoT Devices." In 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019. http://dx.doi.org/10.1109/sips47522.2019.9020464.
Full textArora, Deepali, Kin Fun Li, and Alex Loffler. "Big Data Analytics for Classification of Network Enabled Devices." In 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). IEEE, 2016. http://dx.doi.org/10.1109/waina.2016.131.
Full textLelachaicharoeanpan, Jaroonwit, and Supachai Vongbunyong. "Classification of Surgical Devices with Artificial Neural Network Approach." In 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2021. http://dx.doi.org/10.1109/iceast52143.2021.9426258.
Full textCeron, Joao M., Christian Scholten, Aiko Pras, and Jair Santanna. "MikroTik Devices Landscape, Realistic Honeypots, and Automated Attack Classification." In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020. http://dx.doi.org/10.1109/noms47738.2020.9110336.
Full textIbrahimi, Memedhe, Hatef Abdollahi, Alessandro Giusti, Cristina Rottondi, and Massimo Tornatore. "Machine Learning Regression vs. Classification for QoT Estimation of Unestablished Lightpaths." In Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.nem3b.1.
Full textChang Chen, Liangwei Cai, Yang Xiang, and Jun Li. "SwinTop: Optimizing memory efficiency of packet classification in network devices." In 2015 IEEE International Conference on Communication Software and Networks (ICCSN). IEEE, 2015. http://dx.doi.org/10.1109/iccsn.2015.7296139.
Full textHolm, Mikayle A., Alex Deakyne, Erik Gaasedelen, Weston Upchurch, and Paul A. Iaizzo. "Classification of Left Atrial Appendage Morphology Using Deep Learning." In 2020 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dmd2020-9018.
Full textNazari, Najmeh, Seyed Ahmad Mirsalari, Sima Sinaei, Mostafa E. Salehi, and Masoud Daneshtalab. "Multi-level Binarized LSTM in EEG Classification for Wearable Devices." In 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2020. http://dx.doi.org/10.1109/pdp50117.2020.00033.
Full textHosseini, Morteza, Hirenkumar Paneliya, Utteja Kallakuri, Mohit Khatwani, and Tinoosh Mohsenin. "Minimizing Classification Energy of Binarized Neural Network Inference for Wearable Devices." In 2019 20th International Symposium on Quality Electronic Design (ISQED). IEEE, 2019. http://dx.doi.org/10.1109/isqed.2019.8697574.
Full textReports on the topic "Classification of network devices"
Chakraborty, I., B. Kelley, B. Gallagher, and D. Merl. Performance Evaluation of Network Flow and Device Classification using Network Features and Device Embeddings. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668490.
Full textBradner, S., and J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, March 1999. http://dx.doi.org/10.17487/rfc2544.
Full textBradner, S., and J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, May 1996. http://dx.doi.org/10.17487/rfc1944.
Full textBradner, S. Benchmarking Terminology for Network Interconnection Devices. RFC Editor, July 1991. http://dx.doi.org/10.17487/rfc1242.
Full textWilson, C. L., G. Candela, P. J. Grother, C. I. Watson, and R. A. Wilkinson. Massively parallel neural network fingerprint classification system. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4880.
Full textPopoviciu, C., A. Hamza, G. Van de Velde, and D. Dugatkin. IPv6 Benchmarking Methodology for Network Interconnect Devices. RFC Editor, May 2008. http://dx.doi.org/10.17487/rfc5180.
Full textHawkins, Rupert S., K. F. Heideman, and Ira G. Smotroff. Cloud Data Set for Neural Network Classification Studies. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada256181.
Full textWilson, Charles L., James L. Blue, and Omid M. Omidvar. Improving neural network performance for character and fingerprint classification by altering network dynamics. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5695.
Full textMu, Ruihui, and Xiaoqin Zeng. Improved Webpage Classification Technology Based on Feedforward Backpropagation Neural Network. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2018. http://dx.doi.org/10.7546/crabs.2018.09.11.
Full textGrother, P. J. Comparison of FFT fingerprint filtering methods for neural network classification. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5493.
Full text