Dissertations / Theses on the topic 'CLASSIFICATION OF BRAIN TUMOR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'CLASSIFICATION OF BRAIN TUMOR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kalvakolanu, Anjaneya Teja Sarma. "Brain Tumor Detection and Classification from MRI Images." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2267.
Full textChang, Spencer J. "Brain Tumor Classification Using Hit-or-Miss Capsule Layers." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2006.
Full textKampouraki, Vasileia. "Patch-level classification of brain tumor tissue in digital histopathology slides with Deep Learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177361.
Full textHrabovszki, Dávid. "Classification of brain tumors in weakly annotated histopathology images with deep learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177271.
Full textKanli, Georgia. "Method for the classification of brain cancer treatment's responsiveness via physical parameters of DCE-MRI data." Thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116822.
Full textKirsch, Matthias, Thomas Santarius, Peter M. Black, and Gabriele Schackert. "Therapeutic Anti-Angiogenesis for Malignant Brain Tumors." Karger, 2001. https://tud.qucosa.de/id/qucosa%3A27619.
Full textMaligne Hirntumoren, insbesondere die malignen Gliome, haben trotz multimodaler Therapieansätze eine unverändert schlechte Prognose. Diese Aggressivität korreliert mit der Tatsache, daß maligne Gliome zu den gefäßreichsten Tumoren zählen, die wir kennen. Die Quantifizierung der Gefäßdichte in diesen Tumoren erlaubte die Korrelation zur Überlebenszeit der Patienten. Da das Tumorwachstum von einer begleitenden Neovaskularisierung abhängt, wurden erste experimentelle Therapieansätze durchgeführt, um das Tumorwachstum durch Inhibierung der Neovaskularisierung zu verhindern. Inhibitoren der Angiogenese, z.B. TNP-470, Suramin und Angiostatin hemmen die Proliferation von Endothelzellen und die Ausbildung eines funktionsfähigen Gefäßbettes. Erste experimentelle Ansätze haben ihre tumorstatische Wirksamkeit in vivo bewiesen. Zur klinischen Behandlung wären diese Substanzen in Verbindung mit bestehenden Therapien einsetzbar, insbesondere für die Behandlung multipler Tumoren und zur postoperativen Therapie. Diese Übersichtsarbeit beschreibt die neuesten anti-angiogenen Therapiekonzepte besonders mit Hinblick auf Substanzen, die in ersten klinischen Studien eingesetzt werden.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Shen, Shan. "MRI brain tumour classification using image processing and data mining." Thesis, University of Strathclyde, 2004. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21543.
Full textZhang, Nan. "Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701545.
Full textVicente, Robledo Javier. "Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches." Doctoral thesis, Editorial Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17468.
Full textVicente Robledo, J. (2012). Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17468
Palancia
Alberts, Esther [Verfasser], Björn [Akademischer Betreuer] Menze, Björn [Gutachter] Menze, and Claus [Gutachter] Zimmer. "Multi-modal Multi-temporal Brain Tumor Segmentation, Growth Analysis and Texture-based Classification / Esther Alberts ; Gutachter: Björn Menze, Claus Zimmer ; Betreuer: Björn Menze." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/118744393X/34.
Full textOpstad, Kirstie Suzanne. "Quantification and pattern recognition of ¹H magnetic resonance brain tumour spectra for automated classification." Thesis, St George's, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413702.
Full textMohan, Vandana. "Computer vision and machine learning methods for the analysis of brain and cardiac imagery." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39628.
Full textBen, Naceur Mostefa. "Deep Neural Networks for the segmentation and classification in Medical Imaging." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2014.
Full textNowadays, getting an efficient segmentation of Glioblastoma Multiforme (GBM) braintumors in multi-sequence MRI images as soon as possible, gives an early clinical diagnosis, treatment, and follow-up. The MRI technique is designed specifically to provide radiologists with powerful visualization tools to analyze medical images, but the challenge lies more in the information interpretation of radiological images with clinical and pathologies data and their causes in the GBM tumors. This is why quantitative research in neuroimaging often requires anatomical segmentation of the human brain from MRI images for the detection and segmentation of brain tumors. The objective of the thesis is to propose automatic Deep Learning methods for brain tumors segmentation using MRI images.First, we are mainly interested in the segmentation of patients’ MRI images with GBMbrain tumors using Deep Learning methods, in particular, Deep Convolutional NeuralNetworks (DCNN). We propose two end-to-end DCNN-based approaches for fully automaticbrain tumor segmentation. The first approach is based on the pixel-wise techniquewhile the second one is based on the patch-wise technique. Then, we prove that thelatter is more efficient in terms of segmentation performance and computational benefits. We also propose a new guided optimization algorithm to optimize the suitable hyperparameters for the first approach. Second, to enhance the segmentation performance of the proposed approaches, we propose new segmentation pipelines of patients’ MRI images, where these pipelines are based on deep learned features and two stages of training. We also address problems related to unbalanced data in addition to false positives and false negatives to increase the model segmentation sensitivity towards the tumor regions and specificity towards the healthy regions. Finally, the segmentation performance and the inference time of the proposed approaches and pipelines are reported along with state-of-the-art methods on a public dataset annotated by radiologists and approved by neuroradiologists
Herpers, Marcellinus Johannes Hubertus Maria. "Intermediate filament expression in human neuro-ectodermal brain tumors." Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1986. http://arno.unimaas.nl/show.cgi?fid=5304.
Full textDave, Nimita D. "Brain/Brain Tumor Pharmacokinetics and Pharmacodynamics of Letrozole." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1368013158.
Full textTore, Aas Alf. "Experimental brain tumor metabolism and therapy." Lund, Sweden : Dept. of Neurosurgey, University Hospital, 1994. http://books.google.com/books?id=4XlrAAAAMAAJ.
Full textMercier, Laurence. "Ultrasound-guided brain tumor resection." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107629.
Full textLes gliomes malins sont les tumeurs primaires les plus répandues chez l'adulte. Contrairement aux métastases cérébrales qui ont des contours bien définis, les gliomes malins infiltre le cerveau environnant et ont souvent des contours plus indistincts. En présence d'un gliome, en général la résection chirurgicale est l'approche privilégiée. Par ailleurs, dans un cas sur deux les neurochirurgiens laissent involontairement une partie de la tumeur. Deux facteurs principaux sont responsables de cet état de fait. Premièrement, la plupart des systèmes de neuronavigation actuels sont basés sur des images préopératoires. Parce que le cerveau subit d'importants changements lors de la chirurgie, ces images perdent en précision au fil de l'opération. En second lieu, les limites d'un gliome sont souvent difficiles à déterminer de façon précise, à la fois avec le sens de la vue et du toucher. Cette situation est regrettable puisqu'une résection à la fois maximale et sécuritaire de ces tumeurs est corrélée avec une survie prolongée des patients présentant un gliome de bas ou de haut grade. L'imagerie peropératoire permet d'obtenir des images en temps réel, aidant ainsi le chirurgien à faire une résection plus complète, tout en protégeant les tissus sains. Dans cette thèse j'ai étudié l'usage de l'ultrason peropératoire afin de guider la résection d'un gliome. À cette fin, j'ai utilisé le prototype de système de neuronavigation développé dans notre groupe de recherche : le système IBIS NeuroNav. Le but du premier article était d'évaluer la précision d'IBIS NeuroNav. Quatre composants du système ont été considérés : 1) le calibrage de la sonde ultrason 2) le calibrage temporel 3) le recalage patient-image et 4) le recalage IRM-ultrason. Nous avons constaté qu'IBIS NeuroNav avait une précision similaire aux autres systèmes comparables présentés dans la littérature. Le but du deuxième article était de présenter une nouvelle technique de recalage rigide entre l'IRM préopératoire et l'ultrason pré-résection intraopératoire. Au départ, ces images sont généralement légèrement désalignées. Or, les chirurgiens trouvent l'interprétation des images ultrasons plus facile lorsqu'elles sont correctement alignées avec l'IRM. Nos résultats montrent que la nouvelle technique proposée améliore de façon significative l'alignement IRM-ultrason.Le but du troisième article était de tester des méthodes de recalage rigide et non-rigide pour améliorer l'alignement des images ultrasons pré- et post-opératoires, afin de faciliter l'interprétation des seconds. Nous avons trouvé qu'une méthode de recalage utilisant un simple coefficient de corrélation améliorait significativement cet alignement. Un des nombreux défis des scientifiques techniques du domaine de l'imagerie médicale est de trouver des images cliniques sur lesquelles valider leurs nouveaux algorithmes. L'objectif du quatrième papier était précisément de pallier à cette difficulté en partageant avec la communauté scientifique les images acquises pour les papiers précédents. Nous sommes confiants que les résultats présentés dans cette thèse faciliteront l'utilisation par les neurochirurgiens des ultrasons peropératoires. Une survie prolongée de trop nombreux patients en dépend!
Felix, Francisco HÃlder Cavalcante. "Rat brain Walker tumor implantation model." Universidade Federal do CearÃ, 2001. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=34.
Full textCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
The disabling effects of central nervous system (CNS) tumors are out of proportion to their low incidence. Theyâre second only to stroke as neurologic mortality causes. Brain metastases are the commonest intracranial tumors in adults, almost 10 times more frequent than primary brain tumors. Their diagnosis and treatment have met significant advances, although much more research about drug resistance and new treatment modalities are needed. New and even better brain tumor animal models will help to evaluate novel drug regimens and adjuvant therapies for CNS neoplasms. In the present work, the author presents a simple and easily reproducible brain tumor model utilizing the tumor cell line W256 transplanted to Wistar rats. They tested a drug widely used for palliative treatment of tumoral brain edema (dexamethasone), for survival impact. They also have tested the effects of a drug newly proposed as multidrug resistance reversal agent (cyclosporin â CS). Wistar albino rats had stereotaxic intracranial tumor inoculation after the surgical installation of a permanent canulla on the area of interest (right subfrontal caudate). The brain tumor model, as a model of metastatic brain disease, was successful, with reproducible tumor growth (95%), low incidence of extracranial tumor implantation (21% local, no distant metastasis) and few evidence of surgical site infection (21%). The median survival of the animals was 12.5 days (control), 13 days (CS vehicle treated), 11 days (CS treated), 9.5 and 9 days (dexamethasone 0.3 and 3.0 mg/kg/day). These differences were not significant, although the survival rates on the 12th day post-inoculation have showed a significant survival decrease for the case of dexamethasone 3,0 mg/kg/day (p < 0.05), but not for CS treatment (Fischerâs Exact Test). The estimated tumor volume was 17.08 Â 6.7 mm3 (control) and 12.61 Â 3.6 mm3 (CS treatment, not significant, Studentâs t-test). The tumor volume in the 9th day post-inoculation was estimated in 67,25 Â 19,8 mm3. The doubling time was 24.25 h. This model behaved as an undifferentiated tumor, with local invasiveness features compared with that of primary brain tumors. It fits well, in this way, for the study of tumor cell migration on CNS parenchyma. Phenomena like neuronal degeneration, neuron cell edema and death, and gliosis, as well as perivascular cell infiltrates, were seen frequently. One could find, also, neoangiogenesis, satellite tumor growth, and tumor cell migration in normal brain parenchyma. Besides heavy parenchymatous infiltration, it was also disclosed markedly tumor cell migration along white matter tracts, such as callosal fibers and infiltration in the Virchow-Robins perivascular space. The model presents as a dual brain tumor and leptomeningeal carcinomatosis model. It could be used for the study and treatment test in the scenario of these two pathologies. The intracerebral tumor growth induced peripheral blood neutrophil count elevation (ANOVA, p < 0.01), higher chance for neutrophilia (Fischerâs Exact Test, p < 0.01), higher chance for lymphopenia (Fischerâs Exact Test, p < 0.01) and brain weight increase (Studentâs t-test, p < 0.001) comparing to control. There was no significant change in any of the other hematologic, biochemical and biological parameters tested. CS treatment did not alter any of the tests, as compared to non-treated brain tumor animals. The only exception was the mean animal weight on the first week post-inoculation (ANOVA, p < 0.05). CS, in this way, was responsible for an early cachexia in the brain tumor inoculated animals. CS treatment of brain tumor animals did show non-significant effects indicating a volume (26%) and weight tumor decrease, and tumor infiltrating neutrophil increase (odds ratio - OR = 5.6). This indicates the necessity to further study morphologically and functionally the local inflammation in brain tumor inoculated animals, as well the effects of CS administration. In conclusion, the W256 intracerebral tumor model is simple, easily performed, reproducible and of great potential utility. In this model, tumor inoculation can lead to hematologic and biologic modifications in the experimental animals. CS could apparently lead to early tumor caquexia in this tumor model. However, CS treatment did not modify the survival chance of the brain tumor animals, in sharp contrast to dexamethasone 3.0mg/kg/day, a much-used drug in the treatment of brain tumors, which decreased the animal survival.
Os importantes efeitos incapacitantes dos tumores do sistema nervoso central (SNC) sÃo desproporcionais a sua baixa incidÃncia. Mesmo assim, entre as doenÃas neurolÃgicas, ficam atrÃs apenas dos acidentes vasculares do SNC como causa de morte. MetÃstases cerebrais constituem os tumores intracranianos mais comuns do adulto, ocorrendo atà 10 vezes mais freqÃentemente que tumores primÃrios. AvanÃos significativos ocorreram em seu diagnÃstico e tratamento, embora mais pesquisa sobre os fenÃmenos que diminuem o efeito de drogas em metÃstases cerebrais e tratamentos eficazes para estas patologias sejam cada vez mais necessÃrios. O desenvolvimento de melhores modelos animais de tumores do SNC serà necessÃrio para a avaliaÃÃo in vivo de novas formas de quimioterapia (QT) e terapia adjuvante para tumores cerebrais. No presente trabalho, o autor objetivou desenvolver um modelo de tumor cerebral simples e de fÃcil reproduÃÃo utilizando a linhagem W256, alÃm de testar o efeito na sobrevida animal de uma droga largamente usada para o tratamento de efeitos secundÃrios a edema cerebral (dexametasona). O autor tambÃm testou uma droga envolvida numa nova proposta de reversÃo de multirresistÃncia a drogas anti-neoplÃsicas em tumores cerebrais (ciclosporina â CS). Ratos albinos (Wistar) tiveram o tumor inoculado atravÃs de estereotaxia, apÃs a instalaÃÃo cirÃrgica de uma cÃnula no ponto escolhido (caudato subfrontal direito). O modelo de tumor implantado no cÃrebro de ratos, simulando uma metÃstase cerebral, mostrou-se bem sucedido e reprodutÃvel (95% de crescimento tumoral), com baixa incidÃncia de disseminaÃÃo tumoral extracraniana local (21%), baixa evidÃncia de infecÃÃo local (21%), ausÃncia de metÃstases à distÃncia e ausÃncia de sinais de infecÃÃo sistÃmica. Os animais sobreviveram uma mediana de 12,5 dias (grupo controle), 13 dias (tratados com veÃculo da CS), 11 dias (tratados com CS), 9,5 e 9 dias (dexametasona 0,3 e 3,0 mg/kg/dia, respectivamente). As diferenÃas entre estas medianas nÃo foram significantes (teste de Kruskal-Wallis), embora as diferenÃas entre as taxas de sobrevida no 12o dia apÃs a inoculaÃÃo tenham mostrado reduÃÃo significante no grupo que recebeu dexametasona 3,0 mg/kg/dia (p < 0,05), mas nÃo no grupo tratado com CS (teste de Fischer). O volume tumoral estimado (VTE) no sÃtimo dia pÃs-inoculaÃÃo (7DPI) foi de 17,08  6,7 mm3 no controle e 12,61 3,6 mm3 apÃs tratamento com CS, sem diferenÃa significante (teste t-Student). O VTE no 9DPI de animais do grupo Tumor foi de 67,25  19,8 mm3. O tempo de duplicaÃÃo foi de 24,25 h. O modelo comportou-se como um tumor de caracterÃsticas indiferenciadas, apresentando invasividade local comparada à de tumores primÃrios do SNC, prestando-se ao estudo da migraÃÃo de cÃlulas tumorais no SNC. Observaram-se fenÃmenos como degeneraÃÃo neuronal hidrÃpica, edema celular neuronal, sinais de morte celular neuronal e gliose, alÃm da presenÃa de infiltrados celulares tumorais e inflamatÃrios perivasculares. Observaram-se, tambÃm, neoformaÃÃo vascular, formaÃÃo de nÃdulos tumorais satÃlites ao tumor principal e migraÃÃo celular tumoral no parÃnquima cerebral normal. Observou-se, alÃm da infiltraÃÃo parenquimatosa, marcante migraÃÃo celular tumoral ao longo de tratos de substÃncia branca (corpo caloso) e ao longo dos espaÃos perivasculares de Virchow-Robins. O modelo apresenta-se como um misto de tumor cerebral intraparenquimatoso e carcinomatose leptomenÃngea, podendo ser utilizado para estudar o comportamento e testar formas de tratamento para ambas as patologias. O crescimento tumoral intracerebral induziu aumento do nÃmero de neutrÃfilos no sangue perifÃrico (ANOVA, p < 0,01), maior chance de apresentar neutrofilia (teste de Fischer, p < 0,01), maior chance de apresentar linfopenia (teste de Fischer, p < 0,01) e aumento do peso dos cÃrebros dos animais experimentais (teste t-Student, p < 0,001) em relaÃÃo ao controle. Nenhum dos outros valores hematolÃgicos, bioquÃmicos e biolÃgicos foi alterado de maneira significante. O tratamento de animais inoculados com tumor com a CS, nÃo alterou nenhuma das medidas hematolÃgicas, bioquÃmicas ou biolÃgicas em relaÃÃo aos animais inoculados com tumor e nÃo tratados, exceto o peso dos animais na primeira semana apÃs inoculaÃÃo tumoral (ANOVA, p < 0,05). A CS, dessa forma, induziu significantemente uma caquexia precoce nos animais inoculados com tumor cerebral. O tratamento com CS de animais inoculados com tumor mostrou tendÃncias nÃo significantes a diminuir volume (26%) e massa (7%) tumorais e aumentar nÃmero de neutrÃfilos infiltrantes de tumor (razÃo de chance - RC = 5,6) e necrose tumoral, indicando a necessidade de posteriores estudos para caracterizar morfolÃgica e funcionalmente a resposta inflamatÃria local em animais inoculados com tumor e a influÃncia da CS neste processo, alÃm do efeito da CS na angiogÃnese tumoral. Concluindo, o modelo de W256 intracerebral mostrou-se simples, de fÃcil execuÃÃo, reprodutÃvel e Ãtil. Neste modelo, a inoculaÃÃo tumoral induz modificaÃÃes hematolÃgicas e biolÃgicas nos animais. A CS pareceu exarcebar a caquexia tumoral neste modelo. A CS, todavia, nÃo alterou a chance de sobrevida de animais inoculados com tumor cerebral, ao contrÃrio da dexametasona 3,0 mg/kg/dia, que reduziu esta chance. A CS, assim, parece ser mais segura neste modelo tumoral que uma droga largamente utilizada para tratamento de pacientes com metÃstase cerebral.
Mühle, Richard, Hannes Ernst, Stephan B. Sobottka, and Ute Morgenstern. "Workflow and hardware for intraoperative hyperspectral data acquisition in neurosurgery." Walter de Gruyter GmbH, 2020. https://tud.qucosa.de/id/qucosa%3A74394.
Full textCarter, Ashley. "AN EXAMINATION OF OBESITY IN PEDIATRIC BRAIN TUMOR SURVIVORS: FOOD FOR THOUGHT." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/528118.
Full textBackground: Great strides have been made in childhood cancer treatment efficacy over the past two decades leading to improved survival rates, and now attention is being directed toward identifying and understanding complications that affect many of these patients as they reach adulthood. Obesity is a well‐recognized late effect that has many potential long‐term consequences some of which include cardiovascular disease, type II diabetes mellitus, dyslipidemia and even death. Materials/Methods: We conducted a retrospective chart review to determine the prevalence of obesity among survivors of pediatric brain tumors 5 years after the completion of therapy and compare this to the general pediatric population of the same age. We also sought to identify potential risk factors for the development of obesity among survivors of childhood brain tumors. Obesity was defined as a body mass index (BMI) greater than the 95th percentile for age and gender as defined by the most recent Center for Disease Control growth curves. Results: We identified 96 patients who met our inclusion criteria, however only 43 had follow‐up data at 5 years after the completion of therapy to be included in final analysis. Of 43 patients, 5 (11.63%) were obese 5 years after completion of therapy. The CDC sites general population obesity rates in three age groups: 2‐5 years (8.4% obesity rate), 6‐ 11 years (18% obesity rate), 12‐19 years (21% obesity rate). Using CDC guidelines, we found no significant difference between the obesity rate among the brain tumor survivor population for each age group and the general population, p‐values of 0.865, 0.865, and 0.249 respectively. Conclusion: Our small sample size was likely not adequate to find a significant difference between the two groups or identify risk factors associated with the development of obesity. Larger studies are needed to further examine the risk of obesity among pediatric brain tumor survivors and to identify risk factors associated with this late effect.
Havaei, Seyed Mohammad. "Machine learning methods for brain tumor segmentation." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10260.
Full textRésumé: Les tumeurs malignes au cerveau sont la deuxième cause principale de décès chez les enfants de moins de 20 ans. Il y a près de 700 000 personnes aux États-Unis vivant avec une tumeur au cerveau, et 17 000 personnes sont chaque année à risque de perdre leur vie suite à une tumeur maligne primaire dans le système nerveu central. Pour identifier de façon non-invasive si un patient est atteint d'une tumeur au cerveau, une image IRM du cerveau est acquise et analysée à la main par un expert pour trouver des lésions (c.-à-d. un groupement de cellules qui diffère du tissu sain). Une tumeur et ses régions doivent être détectées à l'aide d'une segmentation pour aider son traitement. La segmentation de tumeur cérébrale et principalement faite à la main, c'est une procédure qui demande beaucoup de temps et les variations intra et inter expert pour un même cas varient beaucoup. Pour répondre à ces problèmes, il existe beaucoup de méthodes automatique et semi-automatique qui ont été proposés ces dernières années pour aider les praticiens à prendre des décisions. Les méthodes basées sur l'apprentissage automatique ont suscité un fort intérêt dans le domaine de la segmentation des tumeurs cérébrales. L'avènement des méthodes de Deep Learning et leurs succès dans maintes applications tels que la classification d'images a contribué à mettre de l'avant le Deep Learning dans l'analyse d'images médicales. Dans cette thèse, nous explorons diverses méthodes d'apprentissage automatique et de Deep Learning appliquées à la segmentation des tumeurs cérébrales.
Maria, Marreiros Filipe Miguel. "Guidance and Visualization for Brain Tumor Surgery." Doctoral thesis, Linköpings universitet, Avdelningen för radiologiska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130791.
Full textGering, David T. (David Thomas) 1971. "Recognizing deviations from normalcy for brain tumor segmentation." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/28275.
Full textIncludes bibliographical references (p. 180-189).
A framework is proposed for the segmentation of brain tumors from MRI. Instead of training on pathology, the proposed method trains exclusively on healthy tissue. The algorithm attempts to recognize deviations from normalcy in order to compute a fitness map over the image associated with the presence of pathology. The resulting fitness map may then be used by conventional image segmentation techniques for honing in on boundary delineation. Such an approach is applicable to structures that are too irregular, in both shape and texture, to permit construction of comprehensive training sets. We develop the method of diagonalized nearest neighbor pattern recognition, and we use it to demonstrate that recognizing deviations from normalcy requires a rich understanding of context. Therefore, we propose a framework for a Contextual Dependency Network (CDN) that incorporates context at multiple levels: voxel intensities, neighborhood coherence, intra-structure properties, inter-structure relationships, and user input. Information flows bi-directionally between the layers via multi-level Markov random fields or iterated Bayesian classification. A simple instantiation of the framework has been implemented to perform preliminary experiments on synthetic and MRI data.
by David Thomas Gering.
Ph.D.
Blahovcova, E., R. Richterova, B. Kolarovszki, E. Halašova, and J. Hatok. "Global methylation status in malignant brain tumor tissue." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/44932.
Full textMcCormack, Sarah (Sarah Smith). "Memory Functions among Children Irradiated for Brain Tumor." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc278041/.
Full textBautista, Cynthia A. "Survivorship of a low-grade glioma brain tumor /." View online ; access limited to URI, 2004. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3135892.
Full textKiebish, Michael Andrew. "Mitochondrial lipidome and genome alterations in mouse brain and experimental brain tumors." Thesis, Boston College, 2008. http://hdl.handle.net/2345/27.
Full textMitochondria are the key regulators of the bioenergetic state of the cell. Damage to mitochondrial protein, DNA, or membrane lipids can result as the cause or affect of disease pathology. Regardless, this damage can impair mitochondrial function resulting in a decreased ability to produce ATP to support cellular viability. This thesis research examined the mitochondrial lipidome by shotgun lipidomics in different populations of C57BL/6J (B6) brain mitochondria (non-synaptic and synaptic) and correlated lipid changes to differences in electron transport chain (ETC) activities. Furthermore, a comparison was made for non-synaptic mitochondria between the B6 and the VM mouse strain. The VM strain has a 1.5% incidence of spontaneous brain tumors, which is 210 fold greater than the B6 strain. I determined that differences in the brain mitochondrial lipidome existed in the VM strain compared to the B6 strain, likely corresponding to an increased rate of spontaneous brain tumor formation. Analysis of the mitochondrial genome in the CT-2A, EPEN, VM-NM1, and VM-M3 brain tumors compared to their syngeneic controls mouse strains, C57BL/6J (B6) and VM mice, was examined to determine if mutations existed in experimental brain cancer models. No pathogenic mtDNA mutations were discovered that would likely cause a decrease in the mitochondrial functionality. A novel hypothesis was devised to examine the tumor mitochondrial lipidome to determine if quantitative or molecular species differences existed that could potentially alter the functionality of the ETC. Brain tumor mitochondria were examined from tumors grown in vivo as well as in vitro. Numerous lipid differences were found in the mitochondria of brain tumors, of which the most interesting involved the unique molecular speciation of cardiolipin. ETC activities were significantly decreased in the primary ETC complexes which contribute protons to the gradient as well as the linked complexes of brain tumor mitochondria compared to controls. Taken together, it is likely that differences in the mitochondrial lipidome of brain tumors results in severe impairment of the mitochondria’s ability to produce ATP through the ETC. This research has provided a new understanding of the role of mitochondrial lipids in brain as well as brain cancer and offers an alternative explanation for metabolic dysfunction in cancer
Thesis (PhD) — Boston College, 2008
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Zhou, Mu. "Knowledge Discovery and Predictive Modeling from Brain Tumor MRIs." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5809.
Full textLau, Kiu Wai. "Representation Learning on Brain MR Images for Tumor Segmentation." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234827.
Full textCui, Yixiao. "Recapitulating Brain Tumor Microenvironment with In Vitro Engineered Models." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595545538654859.
Full textSkjerven, Brian M. "A parallel implementation of an agent-based brain tumor model." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-060507-172337/.
Full textKeywords: Visualization; Numerical analysis; Computational biology; Scientific computation; High-performance computing. Includes bibliographical references (p.19).
Ong, Qunya. "Local drug delivery for treatment of brain tumor associated edema." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95865.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 115-127).
Brain tumor associated edema, a common feature of malignant brain neoplasms, is a significant cause of morbidity from brain tumor. Systemic administration of corticosteroids, the standard of care, is highly effective but can introduce serious systemic complications. Agents that inhibit the vascular endothelial growth factor (VEGF) pathway, such as cediranib, are promising alternatives, but are also associated with systemic toxicity as VEGF is essential for normal physiological functions. A miniature drug delivery device was developed for local drug delivery in rodents. It comprises of a drug reservoir and a cap with orifice(s) through which drug is released. Drug release kinetics is dependent on the payload, the drug solubility, and the surface area for diffusion. Sustained releases of dexamethasone (DXM), dexamethasone sodium phosphate (DSP), and solid dispersion of cediranib (AZD/PVP) were achieved. Employing the solid dispersion technique to increase the solubility of cediranib was necessary to enhance its release. Therapeutic efficacy and systemic toxicity of local drug administration via our devices were examined in an intracranial 9L gliosarcoma rat model. Local delivery of DSP was effective in reducing edema but led to DXM induced weight loss at high doses in a pilot study. DXM, which is much less water-soluble than DSP, was used subsequently to reduce the dose delivered. The use of DXM enabled long-term, sustained zero-order release and a higher payload than DSP. Local deliveries of DXM and AZD/PVP were demonstrated to be as effective as systemic dosing in alleviating edema. Edema reduction was associated with survival benefit, despite continuous tumor progression. Animals treated with locally delivered DXM did not suffer from body weight loss and corticosterone suppression, which are adverse effects induced by systemic DXM. Local drug administration using our device is superior to traditional systemic administration as it minimizes systemic toxicity and allows increased drug concentration in the tumor by circumventing the blood brain barrier. A much lower dose can therefore be utilized to achieve similar efficacy. Our drug delivery system can be used with other therapeutic agents targeting brain tumor to achieve therapeutic efficacy without systemic toxicity.
by Qunya Ong.
Ph. D.
Balsiger, Fabian. "Brain Tumor Volume Calculation : Segmentation and Visualization Using MR Images." Thesis, Linköpings universitet, Biomedicinsk instrumentteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80351.
Full textHintergrund: Das Glioblastom ist ein hoch aggressiver und maligne Hirntumor, welcher schwer zu resektieren ist. Der Erfolg der operativen Entfernung hat einen direkten Einfluss auf die Überlebenszeit des Patienten. Um das Ausmass der Resektion festzustellen, wird das prä- und postoperative Tumorvolumen mithilfe von Magnetresonanztomografie (MRT)-Aufnahmen berechnet und verglichen. Materialien und Methoden: Eine aktive Kontur wurde zur Segmentierung von Glioblastom Hirntumoren auf präoperativen kontrastverstärkten T1-gewichteten MRTAufnahmen implementiert. Die selbstentwickelte Software erlaubt die Segmentierung auf axialen, koronalen und sagittalen MRT-Aufnahmen. Das Tumorvolumen wurde von den segmentierten Tumorkonturen mittels Delaunay-Triangulation berechnet und dargestellt. Um die Segmentierung, Tumordarstellung und Volumenberechnung zu erleichtern, wurde eine grafische Benutzeroberfläche in MATLAB (Version 7.2) entwickelt. Zwei MRT Datensätze von Glioblastom-Patienten wurden verwendet und die Wiederhol- und die Reproduzierbarkeit der Volumenberechnung wurden getestet. Ergebnisse: Die Tumorvolumina für den Datensatz 1 und Datensatz 2 betragen 62,7 bzw. 39,0 cm3. Die Segmentierung der Tumore durch verschiedene Benutzer (n=4) lieferte ein Volumen von 62,5 ± 0,3 und 42,6 ± 3,5 cm3. Die Segmentierung des zweiten Datensatzes verursachte Probleme wie Untersegmentierung durch Cerebrospinalflüssigkeit oder den Schädel sowie Übersegmentierung durch schwacheTumorkonturen. Schlussfolgerung: Aktive Konturen sind in der Lage Hirntumore korrekt zu segmentieren. Die Volumenberechnung und -darstellung erlaubt dem Benutzer, den Tumor, sein Gewebe und das umliegende Hirngewebe, interaktiv zu sondieren. Durch die Verwendung der Software wird das Tumorvolumen präzise berechnet.
Kaul, Aparna. "Mechanisms of Non-Conventional Cell Death in Brain Tumor Cells." University of Toledo Health Science Campus / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=mco1243364096.
Full textWestermark, Hanna. "Deep Learning with Importance Sampling for Brain Tumor MR Segmentation." Thesis, KTH, Optimeringslära och systemteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289574.
Full textSegmentering av magnetröntgenbilder är en viktig del i planeringen av strålbehandling av patienter med hjärntumörer. Det höga antalet bilder och den nödvändiga precisionsnivån gör dock manuellsegmentering till en tidskrävande uppgift. Faltningsnätverk har därför föreslagits som ett verktyg förautomatiserad segmentering och visat lovande resultat. Datamängderna som används för att träna dessa djupinlärningsmodeller är ofta obalanserade och innehåller data som inte bidrar till modellensprestanda. Det finns därför potential att både skynda på träningen och förbättra nätverkets förmåga att segmentera tumörer genom att noggrant välja vilken data som används för träning. Denna uppsats implementerar importance sampling för att träna ett faltningsnätverk för patch-baserad segmentering av tredimensionella multimodala magnetröntgenbilder av hjärnan. Modellensträningstid och prestanda jämförs mot ett nätverk tränat med standardmetoden. Detta görs förtvå olika storlekar på patches. Egenskaperna hos de mest valda volymerna analyseras också. Importance sampling uppvisar en snabbare träningsprocess med avseende på antal epoker och resulterar också i modeller med högre prestanda. Analys av de oftast valda volymerna indikerar att under träning med stora patches förekommer små tumörer i en något högre utsträckning. Vidareundersökningar är dock nödvändiga för att bekräfta vilka aspekter som påverkar hur ofta en volym används.
Richards, Homa Lisa Ann. "Perceptions of Caregivers Following Diagnosis of Primary Benign Brain Tumor." ScholarWorks, 2019. https://scholarworks.waldenu.edu/dissertations/7422.
Full textRombi, Barbara <1975>. "Proton radiotherapy: a therapeutic opportunity for pediatric brain tumor patients." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9567/1/Tesi%20dottorato%20depositata.pdf.
Full textWiklund, Victor, and Axel Karlsson. "Generalisation in brain computer interface classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 1992. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229999.
Full textBrain computer interfaces (BCIs) är system som gör det möjligt för användare att interagera med apparater utan behov av de neuromuskulära banorna. Den här interaktionen möjliggörs genom att systemet läser den elektriska aktiviteten i hjärnan och lär sig associera vissa mönster av aktivitet till vissa kommandon. Det finns många användningsområden för BCIs, från att kontrollera proteser till spel, men att anpassa både användaren och systemet till varandra är en process som kräver både tid och resurser. Än värre, BCIs tenderar att bara funka bra för en enskild användare och bara under en begränsad tid. Den här rapporten avser undersöka hur bra ett BCI system tränat på data för ett subjekt och en session är på klassificering av data för andra subjekt och andra sessioner. Tre typer av klassificerare, en Support Vector Machine (SVM), Convolutional Neural Network (CNN) och Long Short-Term Memory network (LSTM) byggs och utvärderas på data från fem subjekt över två sessioner på en binär klassificeringuppgift. Våra resultat indikerar att träning på data för ett subjekt, en session leder till en genomsnittlig pricksäkerhet på 45-50% på andra subjekt, 50-55% på andra sessioner. Vi finner även att det inte finns någon statistiskt signifikant skillnad i pricksäkerhet beroende på vilken typ av klassificerare som används och diskuterar faktorer som påverkar generalisering såsom modellkomplexitet och bra subjekt.
Amerineni, Rajesh. "BRAIN-INSPIRED MACHINE LEARNING CLASSIFICATION MODELS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1806.
Full textBarbee, Bonnie. "Genomic Heterogeneity of Glioblastoma: A Comparison of the Enhancing Tumor Core and the Brain Around the Tumor." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/603560.
Full textCox, Megan Christine. "Modeling the Heterogeneous Brain Tumor Microenvironment to Analyze Mechanisms of Vascular Development and Chemoresistance." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/95947.
Full textPHD
Roller, Benjamin Thomas. "A nanoencapsulated visible dye for intraoperative delineation of brain tumor margins." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42805.
Full textChai, Huayan. "Longitudinal Curves for Behaviors of Children Diagnosed with A Brain Tumor." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/math_theses/22.
Full textKoglin, Ryan W. "Efficient Image Processing Techniques for Enhanced Visualization of Brain Tumor Margins." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415835138.
Full textWang, Wei-Li, and 王韋力. "Automatic Brain Tumor classification with MRI." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/81588151370140922188.
Full text國立臺灣海洋大學
資訊工程學系
104
Magnetic resonance imaging (MRI) have recently played an important role in clinical research and quantitative analysis for medical doctor to study the structural features and the functional characteristics of the internal body parts. There is a practical limit on the signal-to-noise ratio (SNR) when acquiring MR image data. Therefore, it is important to improve the SNR of the MR images used during quantitative analysis. This is usually done by using a denoising method. We proposed a wavelet-based bilateral filter method, called Multi-Bilateral Filter (MBF) in the first part of this thesis. The experiment results show the proposed scheme is comparable to the traditional bilateral methods. The Computer-Aided Diagnosis (CAD) in detecting brain disease is progressively important in clinic diagnosis. The automatically classifying system can help physician analyzing and predicting the normal or tumor brains with magnetic resonance imaging. Secondly, we propose a brain tumor diagnosis algorithm with T2-weighted magnetic resonance images of brain. The detecting procedure includes the denoising method with MBF, feature extraction from space and wavelet domains, feature reduction with principal component analysis and final classification with support vector machine learning. In comparison, classification accuracy with a best way is obtained by the proposed method based on with cutting white matter and combined features with spatial Gary Level Co-occurrence Matrix, wavelet variance and Besov spaces texture characterization.
SHARMA, HIMANSHU. "BRAIN TUMOR DETECTION AND CLASSIFICATION USING METAHEURISTIC OPTIMIZATION TECHNIQUES." Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19013.
Full textMANGLA, RASHIKA, and CHETNA. "BRAIN TUMOR DETECTION AND CLASSIFICATION BY MRI IMAGES USING DEEP LEARNING TECHNIQUES." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19599.
Full textEspanha, Raphael Alves. "Combined MRI with non-image clinical data for brain tumor classification: a CNN/DL approach." Master's thesis, 2017. http://hdl.handle.net/1822/62544.
Full textPrognosis and patient stratification for brain tumors is an important and clinically relevant task and a precise treatment outcome prediction would allow to choose an adequate therapy strategy and schedule the most appropriate follow-up examinations. Magnetic Resonance Imaging (MRI) is an already know imaging technique to assess these tumors. Next to medical imaging, other clinical information is important for patient management, e.g. genetic markers like O6-Methyl-Guanine-Methyl-Transferase (MGMT) methylation is a well-known prognostic marker in Glioblastoma (GBM) tumors. Therefore, the main goal of this thesis was to study Deep Learning (DL) approaches to combine MRI with non-image clinical data in two different classification scenarios: brain tumor segmentation and patient outcome prediction. There are studies that combine these two types of data, however, in two steps: extracting MRI features and then combining them with relevant non-image data. Here, end-to-end DL architectures with two input layers are presented, as well as an infrastructure that allows the easy development of future Machine Learning (ML) /DL models that consumes these two types of data in a clinical context. In this way, the classification in both scenarios is done in a single step, where Convolution Layers perform the feature extraction in MRI input. In brain tumor segmentation, the model with combined data achieved a slightly better Dice Similarity Coefficient (DSC) (0.894 ± 0.025) over image only model (0.882 ± 0.025). As for patient outcome prediction, when trying to predict the Progression-Free Survival (PFS) class (“bad”,” medium” and “good” outcomes), the combined model didn't improve when compared with the model where only MRI was used. Both models, however, outperformed models where only non-image data was used. The segmentation results point to a positive influence when adding the clinical information to MRI. Nevertheless, there is a lot more to investigate in this field, not only in the model architecture, but also in selecting relevant clinical information. In same way, more tests should be run for patient outcome prediction, especially using Overall Survival (OS) information.
O prognóstico de pacientes com tumores cerebrais é uma tarefa importante e clinicamente relevante. Uma previsão precisa do resultado do(s) tratamento(s) permitiria escolher uma estratégia de terapia adequada e agendar os exames de seguimento mais apropriados. A Ressonância Magnética (RM) é uma técnica de imagem já conhecida na avaliação deste tipo de tumores. Outras informações clínicas como o marcador tumoral MGMT, são também relevantes no prognóstico de tumores de Glioblastoma (GBM). Neste sentido, o objetivo principal desta tese foi estudar modelos de Deep Learning (DL) para combinar imagens de RM com informação clínica e aplicá-los em dois cenários de classificação: segmentação de tumores cerebrais e previsão do prognóstico do paciente. Existem estudos que combinam estes dois tipos de dados, porém, em duas fases: extraindo atributos das imagens de RM e combinando-as posteriormente com informação clínica relevante. Contrariamente, aqui são apresentadas arquiteturas end-to-end de DL com duas camadas de entrada, assim como uma infraestrutura que permite um fácil desenvolvimento de modelos de Machine Learning (ML) / DL capazes de consumir estes dois tipos de dados num ambiente hospitalar. Desta forma, a classificação em ambos os cenários é feita em um único passo, onde camadas de convolução realizam a extração de características das imagens na entrada de MRI. No cenário de segmentação de tumores, o modelo que utilizou os dados combinados obteve um DSC (Dice Similarity Coefficient) de 0.894 ± 0.025, superando ligeiramente o modelo que usou apenas imagens de RM (0.882 ± 0.025). Quanto à previsão do prognóstico do paciente, classificando com a medida de Progression-Free Survival (PFS) (“bad”,” medium” e “good”) o modelo combinado não melhorou quando comparado com o modelo que apenas utilizou imagens de RM. Ambos os modelos, no entanto, superaram modelos que utilizaram apenas os dados clínicos. Os resultados da segmentação apontam para uma influência positiva na adição de informação clínica às imagens de RM. No entanto, ainda há muito a investigar neste campo, não apenas na arquitetura do modelo, mas também na seleção de informações clínicas relevantes. Da mesma forma, mais testes deverão ser executados para a previsão do prognóstico do paciente, especialmente usando a medida de Overall Survival (OS).
SHARMA, VISHAL. "NOVEL SCHEME OF FEATURES EXTRACTION & CLASSIFICATION OF BRAIN TUMOR INFECTED MRI IMAGE USING NEURAL NETWORK." Thesis, 2012. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14130.
Full textKu, Yi-Chen, and 顧憶珍. "Automatic Processing of Pathological Reports for Classification of Brain Tumors." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/69502537101296003565.
Full text國立陽明大學
衛生資訊與決策研究所
92
There are over 120 different types of brain tumors, making effective treatment very complicated. Classification of brain tumors accurately can not only help the doctors to treat the patients correctly but also help doctors to do research and teaching in this field efficiently. The objective of our study was to classify pathological reports into different classes of brain tumors automatically according to World Health Organization 2000 classification of brain tumors. We developed pattern-matching rules called Brain-Tumor Classifier processing pathological reports and classifying brain tumors automatically. We compared Brain-Tumor Classifier against a gold standard that was established by three experts judging 276 records. In this testing set, Brain-Tumor Classifier had a specificity of 99.74% (versus 99.79 ~ 99.9 % for the physicians), a positive predictive value of 91.67% (versus 82.35 ~ 94.92 % for the physicians) while maintaining a reasonable sensitivity of 90.83% (versus 85.91 ~ 97.93 % for the physicians). In addition, it had accuracy of 91.1%. We conclude that automatic processing of pathological reports for classification of brain tumors is feasible and useful.