Academic literature on the topic 'CLASSIFICATION OF BRAIN TUMOR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CLASSIFICATION OF BRAIN TUMOR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CLASSIFICATION OF BRAIN TUMOR"
Manasa, P. Venkata Sai, J. Jeevitha, M. Lakshmi Chandana, M. Jeevana Sravanthi, and M. Ali Shaik. "Brain Tumor Radiogenomic Classification Using Deep Learning." International Journal of Research Publication and Reviews 4, no. 3 (March 17, 2023): 1830–36. http://dx.doi.org/10.55248/gengpi.2023.4.33058.
Full textA, Ms Vidhya, Dr Parameswari R, and Ms Sathya S. "Brain Tumor Classification Using Various Machine Learning Algorithms." International Journal of Research in Arts and Science 5, Special Issue (August 30, 2019): 258–70. http://dx.doi.org/10.9756/bp2019.1002/25.
Full textPunam, Saudagar. "Deep Learning Approach for Brain Tumor Classification." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 3094–98. http://dx.doi.org/10.22214/ijraset.2021.35648.
Full textPol, Jay. "Brain Tumor Image Classification using CNN." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1934–41. http://dx.doi.org/10.22214/ijraset.2022.44191.
Full textDozic, Slobodan, Dubravka Cvetkovic-Dozic, Milica Skender-Gazibara, and Branko Dozic. "Review of the World Health Organization classification of tumors of the nervous system." Archive of Oncology 10, no. 3 (2002): 175–77. http://dx.doi.org/10.2298/aoo0203175d.
Full textNarawade, Vaibhav, Chaitali Shetty, Purva Kharsambale, Samruddhi Bhosale, and Sushree Rout. "Brain Tumor Classification using Transfer Learning." Journal of Trends in Computer Science and Smart Technology 5, no. 3 (September 2023): 223–47. http://dx.doi.org/10.36548/jtcsst.2023.3.002.
Full textWedad Abdul Khuder Naser *. "Brain tumor classification and diagnosis techniques." Global Journal of Engineering and Technology Advances 10, no. 2 (February 28, 2022): 071–74. http://dx.doi.org/10.30574/gjeta.2022.10.2.0036.
Full textKadam, Ankita. "Brain Tumor Classification using Deep Learning Algorithms." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 417–26. http://dx.doi.org/10.22214/ijraset.2021.39280.
Full textA., Afreen Habiba. "Diagnosis of Brain Tumor using Semantic Segmentation and Advance-CNN Classification." International Journal of Psychosocial Rehabilitation 24, no. 5 (March 31, 2020): 1204–24. http://dx.doi.org/10.37200/ijpr/v24i5/pr201795.
Full textHavaei, Mohammad, Hugo Larochelle, Philippe Poulin, and Pierre-Marc Jodoin. "Within-brain classification for brain tumor segmentation." International Journal of Computer Assisted Radiology and Surgery 11, no. 5 (November 3, 2015): 777–88. http://dx.doi.org/10.1007/s11548-015-1311-1.
Full textDissertations / Theses on the topic "CLASSIFICATION OF BRAIN TUMOR"
Kalvakolanu, Anjaneya Teja Sarma. "Brain Tumor Detection and Classification from MRI Images." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2267.
Full textChang, Spencer J. "Brain Tumor Classification Using Hit-or-Miss Capsule Layers." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2006.
Full textKampouraki, Vasileia. "Patch-level classification of brain tumor tissue in digital histopathology slides with Deep Learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177361.
Full textHrabovszki, Dávid. "Classification of brain tumors in weakly annotated histopathology images with deep learning." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177271.
Full textKanli, Georgia. "Method for the classification of brain cancer treatment's responsiveness via physical parameters of DCE-MRI data." Thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-116822.
Full textKirsch, Matthias, Thomas Santarius, Peter M. Black, and Gabriele Schackert. "Therapeutic Anti-Angiogenesis for Malignant Brain Tumors." Karger, 2001. https://tud.qucosa.de/id/qucosa%3A27619.
Full textMaligne Hirntumoren, insbesondere die malignen Gliome, haben trotz multimodaler Therapieansätze eine unverändert schlechte Prognose. Diese Aggressivität korreliert mit der Tatsache, daß maligne Gliome zu den gefäßreichsten Tumoren zählen, die wir kennen. Die Quantifizierung der Gefäßdichte in diesen Tumoren erlaubte die Korrelation zur Überlebenszeit der Patienten. Da das Tumorwachstum von einer begleitenden Neovaskularisierung abhängt, wurden erste experimentelle Therapieansätze durchgeführt, um das Tumorwachstum durch Inhibierung der Neovaskularisierung zu verhindern. Inhibitoren der Angiogenese, z.B. TNP-470, Suramin und Angiostatin hemmen die Proliferation von Endothelzellen und die Ausbildung eines funktionsfähigen Gefäßbettes. Erste experimentelle Ansätze haben ihre tumorstatische Wirksamkeit in vivo bewiesen. Zur klinischen Behandlung wären diese Substanzen in Verbindung mit bestehenden Therapien einsetzbar, insbesondere für die Behandlung multipler Tumoren und zur postoperativen Therapie. Diese Übersichtsarbeit beschreibt die neuesten anti-angiogenen Therapiekonzepte besonders mit Hinblick auf Substanzen, die in ersten klinischen Studien eingesetzt werden.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Shen, Shan. "MRI brain tumour classification using image processing and data mining." Thesis, University of Strathclyde, 2004. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21543.
Full textZhang, Nan. "Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701545.
Full textVicente, Robledo Javier. "Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches." Doctoral thesis, Editorial Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17468.
Full textVicente Robledo, J. (2012). Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17468
Palancia
Alberts, Esther [Verfasser], Björn [Akademischer Betreuer] Menze, Björn [Gutachter] Menze, and Claus [Gutachter] Zimmer. "Multi-modal Multi-temporal Brain Tumor Segmentation, Growth Analysis and Texture-based Classification / Esther Alberts ; Gutachter: Björn Menze, Claus Zimmer ; Betreuer: Björn Menze." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/118744393X/34.
Full textBooks on the topic "CLASSIFICATION OF BRAIN TUMOR"
K, Kokula Krishna Hari, ed. An Image Segmentation and Classification for Brain Tumor Detection using Pillar K-Means Algorithm. Chennai, India: Association of Scientists, Developers and Faculties, 2016.
Find full text1913-, Fields William S., ed. Primary brain tumors: A review of histologic classification. New York: Springer-Verlag, 1989.
Find full textBuell, Duncan A. Binary quadratic forms: Classical theory and modern computations. New York: Springer-Verlag, 1989.
Find full textNagai, Masakatsu, ed. Brain Tumor. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66887-9.
Full textLiau, Linda M., Donald P. Becker, Timothy F. Cloughesy, and Darell D. Bigner. Brain Tumor Immunotherapy. New Jersey: Humana Press, 2000. http://dx.doi.org/10.1385/1592590357.
Full textGoldfarb, Ronald H., ed. Brain Tumor Invasiveness. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2622-3.
Full textLiau, Linda M., Donald P. Becker, Timothy F. Cloughesy, and Darell D. Bigner, eds. Brain Tumor Immunotherapy. Totowa, NJ: Humana Press, 2001. http://dx.doi.org/10.1007/978-1-59259-035-3.
Full textHattingen, Elke, and Ulrich Pilatus, eds. Brain Tumor Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-45040-2.
Full textH, Goldfarb Ronald, ed. Brain tumor invasiveness. Dordrecht: Kluwer Academic, 1994.
Find full textSingh, Sheila K., and Chitra Venugopal, eds. Brain Tumor Stem Cells. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8805-1.
Full textBook chapters on the topic "CLASSIFICATION OF BRAIN TUMOR"
Wechsler, Wolfgang, and Guido Reifenberger. "Histopathological Classification of Brain Tumors According to the Revised WHO Classification: Current State and Perspectives." In Brain Tumor, 3–20. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66887-9_1.
Full textLerousseau, Marvin, Eric Deutsch, and Nikos Paragios. "Multimodal Brain Tumor Classification." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 475–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72087-2_42.
Full textKathawala, Fatema, Ami Shah, Jugal Shah, Shranik Vora, and Sonali Patil. "Brain Tumor Detection and Classification." In Advances in Computing and Intelligent Systems, 547–56. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0222-4_52.
Full textWechsler, W., and G. Reifenberger. "Immunohistochemistry in Brain Tumor Classification." In Neuro-Oncology, 11–19. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3152-0_2.
Full textTeoh, Teik Toe. "CNN for Brain Tumor Classification." In Convolutional Neural Networks for Medical Applications, 19–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8814-1_2.
Full textPatil, Saraswati, Sangita Jaybhaye, Sanjyot Kotgire, Shravan Raina, Somanshu Bhat, and Saksham Sharma. "Brain Tumor Detection and Classification." In IOT with Smart Systems, 379–91. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3761-5_35.
Full textPfister, Stefan M., David Capper, and David T. W. Jones. "Modern Principles of CNS Tumor Classification." In Brain Tumors in Children, 117–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-43205-2_6.
Full textWaghmare, Vishal K., and Maheshkumar H. Kolekar. "Brain Tumor Classification Using Deep Learning." In Studies in Big Data, 155–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4112-4_8.
Full textMeena, S. Divya, Srirama V. S. S. Bulusu, V. Sai Siddharth, S. Prathik Reddy, and J. Sheela. "Brain Tumor Classification Using Transfer Learning." In Machine Learning and Artificial Intelligence in Healthcare Systems, 191–209. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003265436-9.
Full textBahuguna, Aman, Azhar Ashraf, Kavita, Sahil Verma, and Poonam Negi. "Brain Tumor Classification from MRI Scans." In International Conference on Innovative Computing and Communications, 713–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3010-4_57.
Full textConference papers on the topic "CLASSIFICATION OF BRAIN TUMOR"
Amin, Javeria, Muhammad Sharif, Mudassar Raza, Tanzila Saba, and Amjad Rehman. "Brain Tumor Classification: Feature Fusion." In 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE, 2019. http://dx.doi.org/10.1109/iccisci.2019.8716449.
Full textJairam, S. J. A., D. Lokeshwar, B. Divya, and P. Mohamed Fathimal. "Brain Tumor Detection Using Deep Learning." In International Research Conference on IOT, Cloud and Data Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-5d1g8v.
Full textPaul, Justin S., Andrew J. Plassard, Bennett A. Landman, and Daniel Fabbri. "Deep learning for brain tumor classification." In SPIE Medical Imaging, edited by Andrzej Krol and Barjor Gimi. SPIE, 2017. http://dx.doi.org/10.1117/12.2254195.
Full textSaleh, Ahmad, Rozana Sukaik, and Samy S. Abu-Naser. "Brain Tumor Classification Using Deep Learning." In 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech). IEEE, 2020. http://dx.doi.org/10.1109/icaretech49914.2020.00032.
Full textChaitanya, Koganti, Kolisetty Sai Saran, Inapanurthi Swarupa, and G. Jaya Lakshmi. "Brain Tumor Classification using DeepResidual Learning." In 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2022. http://dx.doi.org/10.1109/iciccs53718.2022.9787993.
Full textRochmawati, Naim, Hanik Badriyah Hidayati, Yuni Yamasari, Wiyli Yustanti, I. Made Suartana, Agus Prihanto, and Aditya Prapanca. "Brain Tumor Classification Using Transfer Learning." In 2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE). IEEE, 2022. http://dx.doi.org/10.1109/icvee57061.2022.9930403.
Full textSimon, Eliott, and Alexia Briassouli. "Vision Transformers for Brain Tumor Classification." In 9th International Conference on Bioimaging. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010834300003123.
Full textVenkata Subbarao, M., G. Challa Ram, D. Girish Kumar, and Sudheer Kumar Terlapu. "Brain Tumor Classification using Ensemble Classifiers." In 2022 International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2022. http://dx.doi.org/10.1109/icears53579.2022.9752177.
Full textSorte, Ashish, Ruchita Sathe, Shubham Yadav, and Chitra Bhole. "Brain Tumor Classification using Deep Learning." In 2022 5th International Conference on Advances in Science and Technology (ICAST). IEEE, 2022. http://dx.doi.org/10.1109/icast55766.2022.10039550.
Full textShaji, Thejus, K. Ravi, E. Vignesh, and A. Sinduja. "Brain Tumor Segmentation Using Modified Double U-Net Architecture." In International Research Conference on IOT, Cloud and Data Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-52096g.
Full textReports on the topic "CLASSIFICATION OF BRAIN TUMOR"
Hedyehzadeh, Mohammadreza, Shadi Yoosefian, Dezfuli Nezhad, and Naser Safdarian. Evaluation of Conventional Machine Learning Methods for Brain Tumour Type Classification. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2020. http://dx.doi.org/10.7546/crabs.2020.06.14.
Full textAnantharajan, Shenbagarajan, and Shenbagalakshmi Gunasekaran. Detection and Classification of MRI Brain Tumour Using GLCM and Enhanced K-NN. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2021. http://dx.doi.org/10.7546/crabs.2021.02.13.
Full textArun, Ramaiah, and Shanmugasundaram Singaravelan. Classification of Brain Tumour in Magnetic Resonance Images Using Hybrid Kernel Based Support Vector Machine. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2019. http://dx.doi.org/10.7546/crabs.2019.10.12.
Full textLaramore, G. E., B. R. Griffin, and A. Spence. American brain tumor patients treated with BNCT in Japan. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/421335.
Full textLojzim, Joshua Michael, and Marcus Fries. Brain Tumor Segmentation Using Morphological Processing and the Discrete Wavelet Transform. Journal of Young Investigators, August 2017. http://dx.doi.org/10.22186/jyi.33.3.55-62.
Full textMajewska, Anna, and Edward B. Brown. The Influence of Neuronal Activity on Breast Tumor Metastasis to the Brain. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada502596.
Full textMajewska, Anna K., and Edward B. Brown. The Influence of Neuronal Activity on Breast Tumor Metastasis to the Brain. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada513293.
Full textLi, Xiao-Nan. Harnessing Autopsied DIPG Tumor Tissues for Orthotopic Xenograft Model Development in the Brain Stems of SCID Mice. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568355.
Full textPhillips, Peter C. Early Detection of NF1 Brain Tumor Growth and Treatment Response by MRI, MRS and PET in a Trial of Novel Antitumor Drugs. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada376214.
Full textTian, Cong, Jianlong Shu, Wenhui Shao, Zhengxin Zhou, Huayang Guo, and Jingang Wang. The efficacy and safety of IL Inhibitors, TNF-α Inhibitors, and JAK Inhibitor on ankylosing spondylitis: A Bayesian network meta-analysis of a “randomized, double-blind, placebo-controlled” trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0117.
Full text