Academic literature on the topic 'Classification des réseaux de neurones'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification des réseaux de neurones.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Classification des réseaux de neurones"

1

Postadjian, Tristan, Arnaud Le Bris, Hichem Sahbi, and Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.

Full text
Abstract:
Les algorithmes de classification constituent un outil essentiel pour le calcul de cartes d'occupation des sols. Les récents progrès en apprentissage automatique ont montré les très grandes performances des réseaux de neurones convolutifs pour de nombreuses applications, y compris la classification d'images aériennes et satellites. Ce travail établit une stratégie quant à l'utilisation d'un réseau de neurone convolutif pour la classification d'images satellites à très haute résolution spatiale, couvrant de très larges régions géographiques, avec pour perspective future le calcul de cartes d'occupation des sols à l'échelle d'un pays.
APA, Harvard, Vancouver, ISO, and other styles
2

El kharki, Omar. "Panorama sur les méthodes de classification des images satellites et techniques d'amélioration de la précision de la classification." Revue Française de Photogrammétrie et de Télédétection, no. 210 (April 7, 2015): 23–38. http://dx.doi.org/10.52638/rfpt.2015.259.

Full text
Abstract:
Au cours des dernières années, de nombreuses approches avancées de classification, tels que les réseaux de neurones artificiels, arbres de décision, les ensembles flous, etc. ont été largement appliquées à la classification des images satellites. Chaque méthode de classification a son propre mérite. Sélectionner une approche de classification appropriéepour une étude spécifique n'est pas facile. Différents résultats de classification peuvent être obtenus selon le(s) classificateur(s) choisi(s). Dans cet article, nous passons en revue diverses méthodes de classification avec une analyse et étude comparative. Nous présentons également les techniques pour améliorer la précision de la classification de lacouverture terrestre.
APA, Harvard, Vancouver, ISO, and other styles
3

Kerkeni, N., R. Ben Cheikh, M. H. Bedoui, F. Alexandre, and M. Dogui. "Classification des stades de sommeil par des réseaux de neurones artificiels hiérarchiques." IRBM 33, no. 1 (February 2012): 35–40. http://dx.doi.org/10.1016/j.irbm.2011.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Le Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant, and Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.

Full text
Abstract:
La fusion d'images multispectrales à très haute résolution spatiale (THR) avec des séries temporelles d'images moins résolues spatialement mais comportant plus de bandes spectrales permet d'améliorer la classification de l'occupation du sol. Elle tire en effet le meilleur parti des points forts géométriques et sémantiques de ces deux sources. Ce travail s'intéresse à un processus d'extraction automatique de la tache urbaine fondé sur la fusion tardive de classifications calculées respectivement à partir d'images satellitaires Sentinel-2 et SPOT-6/7. Ces deux sources sont d'abord classées indépendamment selon 5 classes, respectivement par forêts aléatoires et réseaux de neurones convolutifs. Les résultats sont alors fusionnés afin d'extraire les bâtiments le plus finement possible. Cette étape de fusion inclut une fusion au niveau pixellaire suivie d'une étape de régularisation spatiale intégrant un terme lié au contraste de l'image. Le résultat obtenu connaît ensuite une seconde fusion afin d'en déduire une tache urbaine : une mesure a priori de se trouver en zone urbaine est calculée à partir des objets bâtiments détectés précédemment et est fusionnée avec une classification binaire dérivée de la classification originale des données Sentinel-2.
APA, Harvard, Vancouver, ISO, and other styles
5

Aristizábal, Maria Clara. "Evaluación asimétrica de una red neuronal: aplicación al caso de la inflación en Colombia." Lecturas de Economía, no. 65 (October 29, 2009): 73–116. http://dx.doi.org/10.17533/udea.le.n65a2641.

Full text
Abstract:
El objetivo de este trabajo es explorar la relación no lineal entre el dinero y la inflación en Colombia a través de una red neuronal artificial, utilizando información mensual de la variación del Índice de Precios al Consumidor y del agregado monetario M3, desde enero de 1982 hasta febrero de 2005. Las redes neuronales artificiales aparecen como una excelente alternativa para las autoridades monetarias de contar con los mejores modelos para pronosticar la inflación y guiar sus decisiones de política. El presente artículo incorpora algunas innovaciones en la modelación del dinero e inflación que permiten generar pronósticos más confiables, debido a que el modelo se aproxima con mayor exactitud a la realidad. Palabras Clave: red neuronal artificial, no linealidad, unidad escondida, función de activación, rolling de pronósticos, función de pérdida asimétrica. Clasificación JEL: D87, C53. Abstract: The objective of the present work is to explore the non-linear relationship between money and inflation in Colombia through an artificial neural network using monthly information for the variation of the consumer price index and the monetary aggregate M3 since January 1982 through February 2005. Artificial neural networks turn up as an excellent alternative for monetary authorities to count on the best models to forecast inflation and guide their policy decisions. This article incorporates some innovations in money and inflation modeling that allow to generate more reliable forecasts given that the model approximates reality with greater accuracy. Keywords: artificial neural network, non-linearity, hidden unit, activation function, rolling test, asymmetric lost function. JEL classification: D87, C53. Résumé: L’objectif de ce travail consiste à explorer la relation non linéaire entre la quantité de monnaie et l’inflation en Colombie à travers la technique des réseaux de neurones artificiels. Nous utilisons les statistiques mensuelles concernant la variation de l’indice des prix à la consommation et l’agrégat monétaire M3 entre janvier 1982 et février 2005. Les réseaux neuronaux artificiels constituent une excellente alternative pour les autorités monétaires en vue d’améliorer leurs modèles qui servent à anticiper l’inflation. Cet article intègre quelques nouveautés dans la modélisation de la quantité de monnaie et l’inflation. Cette modélisation permet d’établir des prévisions plus précises car elle se rapproche avec plus d’exactitude de la réalité économique. Mots clés: Réseaux de neurones artificiels, unité cachée, fonction d’activation, Rolling test, fonction de perte asymétrique. Classification JEL: D87, C53.
APA, Harvard, Vancouver, ISO, and other styles
6

Ruan, S., P. Decazes, and R. Modzelewski. "Contribution des cartes d’activation de classe des réseaux de neurones profonds pour la classification des tumeurs primaires en TEP-FDG." Médecine Nucléaire 44, no. 2 (March 2020): 133. http://dx.doi.org/10.1016/j.mednuc.2020.01.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Katlane, Faten, and Mohamed Saber Naceur. "La combinaison d'indicateurs de changement pour le suivi de l'évolution de l'occupation du sol à partir d'imagerie satellitales." Revue Française de Photogrammétrie et de Télédétection, no. 203 (April 8, 2014): 43–48. http://dx.doi.org/10.52638/rfpt.2013.29.

Full text
Abstract:
L'apparition de capteurs d'observation de la terre ayant une haute résolution spatiale a permis la réalisation de beaucoup d'applications liées à l'analyse de la surface terrestre ou de l'environnement comme le suivi de la végétation, la mise à jour de la cartographie et aussi la gestion des risques.Il existe plusieurs approches pour la détection de changement en imagerie : des méthodes qui se sont fondées sur l'analyse par vecteurs de changement, les détecteurs simples et la régression, des méthodes d'analyse de texture, d'analyse en composantes principales, d'analyse de formes, de différence de l'indice de végétation, et des ondelettes et finalement les méthodes de classification multi-dates directes, de comparaison post classification et de comparaison post classification flou, d'intelligence artificielle, de réseaux artificiels de neurones et des systèmes experts.\\ La détection de changement peut se faire entre deux images ayant différentes dates, tandis que le suivi de l'évolution de l'occupation du sol se fait à partir d'une multitude d'images multidates.L'application de l'approche a contrario en traitement d'images, repose sur la détection de structures non attendues. Ainsi, on peut détecter des "évènements" sans faire d'hypothèse sur la forme de ces événements, ce qui justifie le qualitatif de détection a contrario.Au cours de ce travail, nous avons appliqué l'approche a contrario pour faire le suivi de l'évolution de l'occupation du sol en combinant plusieurs indicateurs de changement.
APA, Harvard, Vancouver, ISO, and other styles
8

Fortin, V., T. B. M. J. Ouarda, P. F. Rasmussen, and B. Bobée. "Revue bibliographique des méthodes de prévision des débits." Revue des sciences de l'eau 10, no. 4 (April 12, 2005): 461–87. http://dx.doi.org/10.7202/705289ar.

Full text
Abstract:
Dans le domaine de la prévision des débits, une grande variété de méthodes sont disponibles: des modèles stochastiques et conceptuels mais aussi des approches plus novatrices telles que les réseaux de neurones artificiels, les modèles à base de règles floues, la méthode des k plus proches voisins, la régression floue et les splines de régression. Après avoir effectué une revue détaillée de ces méthodes et de leurs applications récentes, nous proposons une classification qui permet de mettre en lumière les différences mais aussi les ressemblances entre ces approches. Elles sont ensuite comparées pour les problèmes différents de la prévision à court, moyen et long terme. Les recommandations que nous effectuons varient aussi avec le niveau d'information a priori. Par exemple, lorsque l'on dispose de séries chronologiques stationnaires de longue durée, nous recommandons l'emploi de la méthode non paramétrique des k plus proches voisins pour les prévisions à court et moyen terme. Au contraire, pour la prévision à plus long terme à partir d'un nombre restreint d'observations, nous suggérons l'emploi d'un modèle conceptuel couplé à un modèle météorologique basé sur l'historique. Bien que l'emphase soit mise sur le problème de la prévision des débits, une grande partie de cette revue, principalement celle traitant des modèles empiriques, est aussi pertinente pour la prévision d'autres variables.
APA, Harvard, Vancouver, ISO, and other styles
9

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Classification des réseaux de neurones"

1

Biela, Philippe. "Classification automatique d'observations multidimensionnelles par réseaux de neurones compétitifs." Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-469.pdf.

Full text
Abstract:
L'objet du travail présenté dans ce mémoire est la classification d'observations multidimensionnelles à l'aide d'outils connexionistes appelés réseaux de neurones compétitifs. Le premier chapitre expose les principales techniques dites classique dédiées à la classification automatique d'un ensemble d'observations. Le second chapitre positionne le champ d'investigation de nos recherches dans le domaine de la classification automatique par réseaux de neurones. Nous y présentons quelques développements récents faits en classification dans le domaine cognitif en distinguant les techniques probabilistes utilisant une approche statistique et celles dédiées au domaine métrique avec une approche itérative. Le troisième chapitre présente dans le détail l'architecture et les spécificités comportementales de l'outil que nous avons développé à des fins de classification : le réseau de neurones compétitif. Enfin, le dernier chapitre montre comment, par l'action simultanée et coopérative des réseaux compétitifs, nous pouvons engendrer une action de classification cohérente parmi un ensemble d'observations disponibles d'origines inconnues. Pour illustrer et valider notre méthode nous utilisons différents échantillons d'observations issus de la simulation ou d'applications réelles comme le contrôle qualité de bouteilles en verre par vision artificielle.
APA, Harvard, Vancouver, ISO, and other styles
2

Chakik, Fadi El. "Maximum d'entropie et réseaux de neurones pour la classification." Grenoble INPG, 1998. http://www.theses.fr/1998INPG0091.

Full text
Abstract:
Cette these s'inscrit dans le cadre de la classification. Elle porte particulierement sur l'etude des methodes basees sur le principe du maximum d'entropie (maxent). Ces approches ont ete utilisees dans le laboratoire leibniz, par exemple, pour apprendre des comportements a un robot autonome. Le but du travail a ete de comparer cette approche a celles basees sur des reseaux de neurones. Une analyse theorique de la classification a permis de montrer qu'il existe une equivalence entre le maxent et l'apprentissage hebbien des reseaux neuronaux. Apprendre les valeurs des poids de ces derniers est equivalent a apprendre les valeurs moyennes de certains observables du maxent. L'inclusion de nouveaux observables permet d'apprendre a apprendre avec des regles d'apprentissage plus performantes dans le cadre des reseaux de neurones. Le maxent a ete applique a deux problemes particuliers : la classification des ondes de breiman (probleme standard en apprentissage), et la reconnaissance de textures d'images spot. Ces applications ont montre que le maxent permet d'atteindre des performances comparables, voire meilleures, que les methodes neuronales. La robustesse du code du maxent mis au point au cours de cette these est en train d'etre etudiee dans le laboratoire tima. Il est prevu qu'il soit telecharge sur un satellite americain (projet mptb), pour l'evaluer en presence de rayonnements ionisants, dans la perspective de faire des traitements d'images en systemes embarques.
APA, Harvard, Vancouver, ISO, and other styles
3

Ayache, Mohammad. "Application des réseaux de neurones à la classification automatisée des grades placentaires." Tours, 2007. http://www.theses.fr/2007TOUR3315.

Full text
Abstract:
Le placenta est un organe provisoire joignant la mère et le fœtus qui transfère l’oxygène et des nutriments de la mère au fœtus et permet l’évacuation de l’anhydride carbonique et des produits du métabolisme du fœtus. Le but de notre travail était d’étudier la fonction de transfert des tissus placentaires selon son développement en se basant sur les images ultrasonores. Nous avons développé au cours de ce travail une nouvelle approche de la classification du développement placentaire en ultrasons par des techniques de traitement d’images avancées basée sur une représentation par réseau neuronal. Le modèle réalisé par la transformée en ondelettes basé sur le réseau neuronal MLP représente donc un outil efficace et rapide répondant à nos critères et bien adapté à nos applications concernant l’étude de la maturation placentaire. L’application du modèle réalisée en cas de traitement d’images placentaires ouvre des portes intéressantes en terme de classification des grades placentaires afin d’identifier des stades de maturation autorisant la définition d’une maturation normale et de classes à risque
The placenta is a temporary organ joins the mother and the fœtus, which transfers oxygen from the mother to the foetus, allows the evacuation of the carbon dioxide and the products of foetus metabolism. The goal of our work is to study the transfer function of placental development using ultrasound images. A new approach is developed during this work to classify the placental development by image processing techniques based on supervised neural network. The realized model by the wavelet transform based on MLP neural network, represents an effective tool answering our criteria and adapted to our applications concerning the study of placental maturation. The realized model application in the event of placental image processing opens interesting doors in terms of placental grades classification in order to identify the stages of maturation, authorizing the definition of a normal maturation and an abnormal maturation
APA, Harvard, Vancouver, ISO, and other styles
4

Zaki, Sabit Fawzi Philippe. "Classification par réseaux de neurones dans le cadre de la scattérométrie ellipsométrique." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES070/document.

Full text
Abstract:
La miniaturisation des composants impose à l’industrie de la micro-électronique de trouver des techniques de caractérisation fiables rapides et si possible à moindre coût. Les méthodes optiques telles que la scattérométrie se présentent aujourd’hui comme des alternatives prometteuses répondant à cette problématique de caractérisation. Toutefois, l’ensemble des méthodes scattérométriques nécessitent un certain nombre d’hypothèses pour assurer la résolution d’un problème inverse et notamment la connaissance de la forme géométrique de la structure à tester. Le modèle de structure supposé conditionne la qualité même de la caractérisation. Dans cette thèse, nous proposons l’utilisation des réseaux de neurones comme outils d’aide à la décision en amont de toute méthode de caractérisation. Nous avons validé l’utilisation des réseaux de neurones dans le cadre de la reconnaissance des formes géométriques de l’échantillon à tester par la signature optique utilisée dans toute étape de caractérisation scattérométrique. Tout d’abord, le cas d’un défaut lithographique particulier lié à la présence d’une couche résiduelle de résine au fond des sillons est étudié. Ensuite, nous effectuons une analyse de détection de défaut de modèle utilisé dans la résolution du problème inverse. Enfin nous relatons les résultats obtenus dans le cadre de la sélection de modèles géométriques par réseaux de neurones en amont d’un processus classique de caractérisation scattérométrique. Ce travail de thèse a montré que les réseaux de neurones peuvent bien répondre à la problématique de classification en scattérométrie ellipsométrique et que l’utilisation de ces derniers peut améliorer cette technique optique de caractérisation
The miniaturization of components in the micro-electronics industry involves the need of fast reliable technique of characterization with lower cost. Optical methods such as scatterometry are today promising alternative to this technological need. However, scatterometric method requires a certain number of hypothesis to ensure the resolution of an inverse problem, in particular the knowledge of the geometrical shape of the structure under test. The assumed model of the structure determines the quality of the characterization. In this thesis, we propose the use of neural networks as decision-making tools upstream of any characterization method. We validated the use of neural networks in the context of recognition of the geometrical shapes of the sample under testing by the use of optical signature in any scatterometric characterization process. First, the case of lithographic defect due to the presence of a resist residual layer at the bottom of the grooves is studied. Then, we carry out an analysis of model defect in the inverse problem resolution. Finally, we report results in the context of selection of geometric models by neural networks upstream of a classical scatterometric characterization process. This thesis has demonstrated that neural networks can well answer the problem of classification in ellipsometric scatterometry and their use can improve this optical characterization technique
APA, Harvard, Vancouver, ISO, and other styles
5

Gatet, Laurent. "Intégration de Réseaux de Neurones pour la Télémétrie Laser." Phd thesis, Toulouse, INPT, 2007. http://oatao.univ-toulouse.fr/7595/1/gatet.pdf.

Full text
Abstract:
Grandes lignes : Un réseau de neurones est une architecture paramétrable composée de plusieurs modules appelés neurones. Ils peuvent être utilisés pour compenser des variations non souhaitées de certains phénomènes physiques ou pour effectuer des tâches de discrimination. Un réseau de neurones a été intégré en technologie CMOS basse tension pour être implanté au sein d'un télémètre laser par déphasage. Deux études ont été menées en parallèle. La première consiste à lever l'indétermination sur la mesure de distance déduite de la mesure de déphasage. La seconde étude permet la classification de différents types de surfaces à partir de deux signaux issus du télémètre. Résumé détaillé : Un réseau de neurones a la faculté de pouvoir être entraîné afin d'accomplir une tâche d'approximation de fonction ou de classification à partir d'un nombre limité de données sur un intervalle bien défini. L'objectif de cette thèse est de montrer l'intérêt d'adapter les réseaux de neurones à un type de système optoélectronique de mesure de distance, la télémétrie laser par déphasage. La première partie de ce manuscrit développe de manière succincte leurs diverses propriétés et aptitudes, en particulier leur reconfigurabilité par l'intermédiaire de leurs paramètres et leur capacité à être intégré directement au sein de l'application. La technique de mesure par télémétrie laser par déphasage est développée dans le deuxième chapitre et comparée à d'autres techniques télémétriques. Le troisième chapitre montre qu'un réseau de neurones permet d'améliorer nettement le fonctionnement du télémètre. Une première étude met en valeur sa capacité à accroître la plage de mesure de distance sans modifier la résolution. Elle est réalisée à partir de mesures expérimentales afin de prouver le réel intérêt de la méthode comportementale développée. La deuxième étude ouvre une nouvelle perspective relative à l'utilisation d'un télémètre laser par déphasage, celle d'effectuer la classification de différents types de surfaces sur des plages de distances et d'angles d'incidence variables. Pour valider expérimentalement ces deux études, les cellules de base du neurone de type perceptron multi-couches ont été simulées puis implantées de manière analogique. Les phases de simulation, de conception et de test du neurone analogique sont détaillées dans le quatrième chapitre. Un démonstrateur du réseau de neurones global a été réalisé à partir de neurones élémentaires intégrés mis en parallèle. Une étude de la conception des mêmes cellules en numérique est détaillée succinctement dans le cinquième chapitre afin de justifier les avantages associés à chaque type d'intégration. Le dernier chapitre présente les phases d'entraînement et de validation expérimentales du réseau intégré pour les deux applications souhaitées. Ces phases de calibrage sont effectuées extérieurement à l'ASIC, par l'intermédiaire de l'équation de transfert déterminée après caractérisation expérimentale et qualification du réseau de neurones global. Les résultats expérimentaux issus de la première étude montrent qu'il est possible d'obtenir à partir des signaux de sorties du télémètre et du réseau de neurones, une mesure de distance de précision (50µm) sur un intervalle de mesure 3 fois plus important que celui limité à la mesure du déphasage. Concernant l'application de discrimination de surfaces, le réseau de neurones analogique implanté est capable de classer quatre types de cibles sur l'intervalle [0.5m ; 1.25m] pour un angle d'incidence pouvant varier de - π /6 à + π /6.
APA, Harvard, Vancouver, ISO, and other styles
6

Delsert, Stéphane. "Classification interactive non supervisée de données multidimensionnelles par réseaux de neurones à apprentissage cométitif." Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-214.pdf.

Full text
Abstract:
L'idée de base de la classification interactive consiste à fournir à l'opérateur humain une représentation plane des données multidimensionnelles et un ensemble d'outils lui permettant de découvrir des groupements ou classes au sein de la population étudiée. Dans ce mémoire, nous étudions l'apport des réseaux de neurones à apprentissage compétitif dans le cadre de la classification interactive non supervisée. Après avoir abordé de manière succincte les méthodes de classification statistiques et neuronales dans le chapitre 1, nous présentons de manière détaillée les réseaux de neurones à apprentissage compétitif et les améliorations apportées ces dernières années dans le chapitre 2. Le chapitre 3 est consacré à la projection plane non linéaire par la carte de kohonen. Chaque neurone de la carte est représenté sous la forme d'un pixel sur 6'écran d'un ordinateur. Le niveau de gris d'un pixel reflète la position relative du vecteur poids du neurone dans l'espace d'observation. Nous proposons dans le chapitre 4, une méthodologie intégrant différentes méthodes de projection et des outils logiciels pour aider l'analyste dans sa tache de classification. Le dernier chapitre applique la démarche adoptée sur un exemple réel tire de la biométrie des abeilles et sur des exemples artificiels non linéairement séparables
APA, Harvard, Vancouver, ISO, and other styles
7

Bouaziz, Mohamed. "Réseaux de neurones récurrents pour la classification de séquences dans des flux audiovisuels parallèles." Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0224/document.

Full text
Abstract:
Les flux de contenus audiovisuels peuvent être représentés sous forme de séquences d’événements (par exemple, des suites d’émissions, de scènes, etc.). Ces données séquentielles se caractérisent par des relations chronologiques pouvant exister entre les événements successifs. Dans le contexte d’une chaîne TV, la programmation des émissions suit une cohérence définie par cette même chaîne, mais peut également être influencée par les programmations des chaînes concurrentes. Dans de telles conditions,les séquences d’événements des flux parallèles pourraient ainsi fournir des connaissances supplémentaires sur les événements d’un flux considéré.La modélisation de séquences est un sujet classique qui a été largement étudié, notamment dans le domaine de l’apprentissage automatique. Les réseaux de neurones récurrents de type Long Short-Term Memory (LSTM) ont notamment fait leur preuve dans de nombreuses applications incluant le traitement de ce type de données. Néanmoins,ces approches sont conçues pour traiter uniquement une seule séquence d’entrée à la fois. Notre contribution dans le cadre de cette thèse consiste à élaborer des approches capables d’intégrer conjointement des données séquentielles provenant de plusieurs flux parallèles.Le contexte applicatif de ce travail de thèse, réalisé en collaboration avec le Laboratoire Informatique d’Avignon et l’entreprise EDD, consiste en une tâche de prédiction du genre d’une émission télévisée. Cette prédiction peut s’appuyer sur les historiques de genres des émissions précédentes de la même chaîne mais également sur les historiques appartenant à des chaînes parallèles. Nous proposons une taxonomie de genres adaptée à de tels traitements automatiques ainsi qu’un corpus de données contenant les historiques parallèles pour 4 chaînes françaises.Deux méthodes originales sont proposées dans ce manuscrit, permettant d’intégrer les séquences des flux parallèles. La première, à savoir, l’architecture des LSTM parallèles(PLSTM) consiste en une extension du modèle LSTM. Les PLSTM traitent simultanément chaque séquence dans une couche récurrente indépendante et somment les sorties de chacune de ces couches pour produire la sortie finale. Pour ce qui est de la seconde proposition, dénommée MSE-SVM, elle permet de tirer profit des avantages des méthodes LSTM et SVM. D’abord, des vecteurs de caractéristiques latentes sont générés indépendamment, pour chaque flux en entrée, en prenant en sortie l’événement à prédire dans le flux principal. Ces nouvelles représentations sont ensuite fusionnées et données en entrée à un algorithme SVM. Les approches PLSTM et MSE-SVM ont prouvé leur efficacité dans l’intégration des séquences parallèles en surpassant respectivement les modèles LSTM et SVM prenant uniquement en compte les séquences du flux principal. Les deux approches proposées parviennent bien à tirer profit des informations contenues dans les longues séquences. En revanche, elles ont des difficultés à traiter des séquences courtes.L’approche MSE-SVM atteint globalement de meilleures performances que celles obtenues par l’approche PLSTM. Cependant, le problème rencontré avec les séquences courtes est plus prononcé pour le cas de l’approche MSE-SVM. Nous proposons enfin d’étendre cette approche en permettant d’intégrer des informations supplémentaires sur les événements des séquences en entrée (par exemple, le jour de la semaine des émissions de l’historique). Cette extension, dénommée AMSE-SVM améliore remarquablement la performance pour les séquences courtes sans les baisser lorsque des séquences longues sont présentées
In the same way as TV channels, data streams are represented as a sequence of successive events that can exhibit chronological relations (e.g. a series of programs, scenes, etc.). For a targeted channel, broadcast programming follows the rules defined by the channel itself, but can also be affected by the programming of competing ones. In such conditions, event sequences of parallel streams could provide additional knowledge about the events of a particular stream. In the sphere of machine learning, various methods that are suited for processing sequential data have been proposed. Long Short-Term Memory (LSTM) Recurrent Neural Networks have proven its worth in many applications dealing with this type of data. Nevertheless, these approaches are designed to handle only a single input sequence at a time. The main contribution of this thesis is about developing approaches that jointly process sequential data derived from multiple parallel streams. The application task of our work, carried out in collaboration with the computer science laboratory of Avignon (LIA) and the EDD company, seeks to predict the genre of a telecast. This prediction can be based on the histories of previous telecast genres in the same channel but also on those belonging to other parallel channels. We propose a telecast genre taxonomy adapted to such automatic processes as well as a dataset containing the parallel history sequences of 4 French TV channels. Two original methods are proposed in this work in order to take into account parallel stream sequences. The first one, namely the Parallel LSTM (PLSTM) architecture, is an extension of the LSTM model. PLSTM simultaneously processes each sequence in a separate recurrent layer and sums the outputs of each of these layers to produce the final output. The second approach, called MSE-SVM, takes advantage of both LSTM and Support Vector Machines (SVM) methods. Firstly, latent feature vectors are independently generated for each input stream, using the output event of the main one. These new representations are then merged and fed to an SVM algorithm. The PLSTM and MSE-SVM approaches proved their ability to integrate parallel sequences by outperforming, respectively, the LSTM and SVM models that only take into account the sequences of the main stream. The two proposed approaches take profit of the information contained in long sequences. However, they have difficulties to deal with short ones. Though MSE-SVM generally outperforms the PLSTM approach, the problem experienced with short sequences is more pronounced for MSE-SVM. Finally, we propose to extend this approach by feeding additional information related to each event in the input sequences (e.g. the weekday of a telecast). This extension, named AMSE-SVM, has a remarkably better behavior with short sequences without affecting the performance when processing long ones
APA, Harvard, Vancouver, ISO, and other styles
8

Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.

Full text
Abstract:
L’intelligence artificielle est un domaine de recherche relativement récent. Grâce à lui, plusieurs percées ont été faites sur une série de problèmes qui étaient autrefois considérés comme très difficiles. La classification fine est l’un de ces problèmes. Cependant, même si résoudre cette tâche pourrait représenter des avancées tant au niveau scientifique qu’au niveau industriel, peu de recherche y a été effectué. Dans ce mémoire, nous abordons la problématique de l’application de la classification fine sur des problèmes concrets, soit la classification d’essence d’arbres uniquement grâce à des images de l’écorce et la classification visuelle des moisissures en culture. Nous commençons par présenter plusieurs concepts sur lesquels se basent l’apprentissage profond, à la base de notre solution ainsi que plusieurs expériences qui ont été menées afin de tenter de résoudre le problème de classification d’essence d’arbres à partir d’images de l’écorce. Par la suite, nous détaillons le jeu de données nommé BarkNet 1. 0 que nous avons construit dans le cadre de ce projet. Grâce à celui-ci, nous avons été en mesure de développer une méthode permettant d’obtenir une précision de 93,88% en utilisant une seule crop aléatoire dans une image et une précision de 97,81% en utilisant un vote de majorité sur toutes les images d’un arbre. Finalement, nous concluons en démontrant la faisabilité d’appliquer notre méthode dans d’autres contextes en montrant quelques applications concrètes sur lesquelles nous l’avons essayée, soit la classification d’essence d’arbres en industrie et la classification de moisissures.
Artificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
APA, Harvard, Vancouver, ISO, and other styles
9

Mercadier, Yves. "Classification automatique de textes par réseaux de neurones profonds : application au domaine de la santé." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS068.

Full text
Abstract:
Cette thèse porte sur l'analyse de données textuelles dans le domaine de la santé et en particulier sur la classification supervisée multi-classes de données issues de la littérature biomédicale et des médias sociaux.Une des difficultés majeures lors de l'exploration de telles données par des méthodes d'apprentissage supervisées est de posséder un jeu de données suffisant en nombre d'exemples pour l'entraînement des modèles. En effet, il est généralement nécessaire de catégoriser les données manuellement avant de réaliser l'étape d'apprentissage. La taille importante des jeux de données rend cette tâche de catégorisation très coûteuse, qu'il convient de réduire par des systèmes semi-automatiques.Dans ce contexte, l’apprentissage actif, pendant lequel l’oracle intervient pour choisir les meilleurs exemples à étiqueter, s’avère prometteur. L’intuition est la suivante : en choisissant les exemples intelligemment et non aléatoirement, les modèles devraient s’améliorer avec moins d’efforts pour l’oracle et donc à moindre coût (c’est-a-dire avec moins d’exemples annotés). Dans cette thèse, nous évaluerons différentes approches d’apprentissage actif combinées avec des modèles d’apprentissage profond récents.Par ailleurs, lorsque l’on dispose de peu de données annotées, une possibilité d’amélioration est d’augmenter artificiellement la quantité de données pendant la phase d’entraînement du modèle, en créant de nouvelles données de manière automatique à partir des données existantes. Plus précisément, il s’agit d’injecter de la connaissance en tenant compte des propriétés invariantes des données par rapport à certaines transformations. Les données augmentées peuvent ainsi couvrir un espace d’entrée inexploré, éviter le sur-apprentissage et améliorer la généralisation du modèle. Dans cette thèse, nous proposerons et évaluerons une nouvelle approche d'augmentation de données textuelles
This Ph.D focuses on the analysis of textual data in the health domain and in particular on the supervised multi-class classification of data from biomedical literature and social media.One of the major difficulties when exploring such data by supervised learning methods is to have a sufficient number of data sets for models training. Indeed, it is generally necessary to label manually the data before performing the learning step. The large size of the data sets makes this labellisation task very expensive, which should be reduced with semi-automatic systems.In this context, active learning, in which the Oracle intervenes to choose the best examples to label, is promising. The intuition is as follows: by choosing the smartly the examples and not randomly, the models should improve with less effort for the oracle and therefore at lower cost (i.e. with less annotated examples). In this PhD, we will evaluate different active learning approaches combined with recent deep learning models.In addition, when small annotated data set is available, one possibility of improvement is to artificially increase the data quantity during the training phase, by automatically creating new data from existing data. More precisely, we inject knowledge by taking into account the invariant properties of the data with respect to certain transformations. The augmented data can thus cover an unexplored input space, avoid overfitting and improve the generalization of the model. In this Ph.D, we will propose and evaluate a new approach for textual data augmentation.These two contributions will be evaluated on different textual datasets in the medical domain
APA, Harvard, Vancouver, ISO, and other styles
10

Personnaz, Léon. "Etude des réseaux de neurones formels : conception, propriétés et applications." Paris 6, 1986. http://www.theses.fr/1986PA066569.

Full text
Abstract:
Etude de l'application des réseaux de neurones à résoudre des problèmes de classification et de reconnaissance de formes. Définition des conditions que les réseaux de neurones doivent satisfaire pour être efficaces. Evaluation des aspects fondamentaux des mécanismes d'apprentissage
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Classification des réseaux de neurones"

1

Personnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2nd ed. Toulouse: Cépaduès-Ed., 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Journées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biophysics of computation: Information processing in single neurons. New York: Oxford University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

K, Kaczmarek Leonard, ed. The neuron: Cell and molecular biology. 3rd ed. Oxford: Oxford University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Classification des réseaux de neurones"

1

Martaj, Dr Nadia, and Dr Mohand Mokhtari. "Réseaux de neurones." In MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kipnis, C., and E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie." In Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Quenet, B., J. M. Devaud, J. Gascuel, and C. Masson. "Is a Classification of Honeybee Antennal Lobe Neurones Grown in Culture Possible ? - Yes!" In The Neurobiology of Computation, 123–28. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2235-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.

Full text
Abstract:
Ce chapitre traite des méthodes d’analyse de séries chronologiques denses en télédétection. Il présente les principales exigences en termes de prétraitements des données, puis un aperçu des quatre principaux axes en détection de changement basée sur l'analyse de séries chronologiques denses : carte de classification, classification de trajectoire, frontières statistiques et approches d'ensemble. Il fournit aussi les détails sur deux des algorithmes les plus largement utilisés dans ce contexte d’analyse. Il aborde également la question de l'apprentissage profond pour la télédétection, en détaillant trois types d'architectures de réseau adaptées à l'analyse de séries chronologiques d'images satellitaires : les réseaux de neurones récurrents, les réseaux de neurones convolutifs et les modèles hybrides combinant ces deux derniers modèles de réseau.
APA, Harvard, Vancouver, ISO, and other styles
5

ATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER, and Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images." In Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.

Full text
Abstract:
Ce chapitre étudie les capacités de généralisation d’une bibliothèque de réseaux de neurones convolutifs pour la classification d’états de surface terrestre dans le temps, avec une granularité variable sur la nature des états. L’ensemble de données utilisé pour réaliser cette étude est constitué d'images à sémantique descriptible au sens de propriétés géophysiques et des impacts des conditions météorologiques en zone de glaciers.
APA, Harvard, Vancouver, ISO, and other styles
6

ZHANG, Hanwei, Teddy FURON, Laurent AMSALEG, and Yannis AVRITHIS. "Attaques et défenses de réseaux de neurones profonds : le cas de la classification d’images." In Sécurité multimédia 1, 51–85. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch2.

Full text
Abstract:
L’apprentissage automatique utilisant des réseaux neuronaux profonds appliqués à la reconnaissance d’images fonctionne extrêmement bien. Néanmoins, il est possible de modifier intentionnellement et très légèrement les images, modifications quasi invisibles à nos yeux, pour leurrer le système de classification et lui faire classer dans une catégorie visuelle erronée tel ou tel contenu. Ce chapitre dresse un panorama de ces attaques intentionnelles, mais aussi des mécanismes de défense visant à les déjouer.
APA, Harvard, Vancouver, ISO, and other styles
7

"4. Les réseaux de neurones artificiels." In L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.

Full text
Abstract:
Les réseaux de neurones convolutifs (CNN) utilisés pour l’analyse des signaux vidéo sont très gourmands en calculs. De telles applications embarquées nécessitent des implémentations efficaces en termes de coût et de puissance. Ce chapitre présente une solution basée sur un processeur de jeu d’instructions spécifique à l’application (ASIP) qui représente un bon compromis entre efficacité et programmabilité.
APA, Harvard, Vancouver, ISO, and other styles
9

BENMAMMAR, Badr, and Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive." In Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.

Full text
Abstract:
Dans ce chapitre, nous nous intéressons aux techniques de l’intelligence artificielle (IA) qui ont été les plus utilisées dans les trois dernières années dans la radio cognitive (RC). Nous nous intéressons à des métaheuristiques qui n’étaient pas discutées dans les précédents travaux, comme l’algorithme des lucioles, la recherche coucou, l’algorithme de recherche gravitationnel et l’optimisation par essaim de particules. Nous présentons également les travaux récents liés à l’application des autres techniques d’IA dans la RC, à savoir les algorithmes génétiques, les algorithmes de colonies d’abeilles, la logique floue, la théorie des jeux, les réseaux de neurones, les modèles de Markov, les machines à vecteurs de support, le raisonnement à partir de cas, les arbres de décision, les réseaux bayésiens, les systèmes multi-agents et l’apprentissage par renforcement.
APA, Harvard, Vancouver, ISO, and other styles
10

COGRANNE, Rémi, Marc CHAUMONT, and Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias." In Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.

Full text
Abstract:
Ce chapitre détaille comment analyser une image numérique en vue d’obtenir des informations sur les données cachées par une méthode de stéganographie. Après une présentation des objectifs, plusieurs stratégies de détection sont ensuite détaillées, notamment les méthodes statistiques utilisant le rapport de vraisemblance, les méthodes par apprentissage reposant soit sur l’extraction de caractéristiques, soit sur l’utilisation de réseaux de neurones profonds.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Classification des réseaux de neurones"

1

Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.

Full text
Abstract:
« L’intelligence artificielle connaît un essor fulgurant depuis ces dernières années. Lapprentissage automatique et plus précisément lapprentissage profond grâce aux réseaux de neurones convolutifs ont permis des avancées majeures dans le domaine de la reconnaissance des formes. Cette présentation fait suite à mon travail de thèse. La première partie retrace lhistorique et décrit les principes de fonctionnement de ces réseaux. La seconde présente une revue de la littérature de leurs applications dans la pratique médicale de plusieurs spécialités, pour des tâches diagnostiques nécessitant une démarche visuelle (classification dimages et détection de lésions). Quinze articles, évaluant les performances de ces solutions dautomatisation, ont été analysés. La troisième partie est une discussion à propos des perspectives et des limites présentées par les réseaux de neurones convolutifs, ainsi que leurs possibles applications en chirurgie orale. »
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier, and Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix." In XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez, and Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples." In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.

Full text
Abstract:
Les avancées récentes dans le domaine de l'intelligence artificielle (IA), en particulier dans la reconnaissance d'images et le traitement du langage naturel, ouvrent de nouvelles perspectives qui vont bien au-delà de la recherche académique. L'IA, portée par ces succès populaires, repose sur des algorithmes basés sur des "réseaux de neurones" et elle se nourrit des vastes quantités d'informations accessibles sur Internet, notamment via des ressources telles que l'encyclopédie en ligne Wikipédia, la numérisation de livres et de revues, ainsi que des bibliothèques de photographies. Si l'on en croit les propres dires du programme informatique ChatGPT, son réseau de neurones compte plus de 175 millions de paramètres. Quant à notre cerveau, qui était le modèle initial de cette approche connexionniste, il compte environ 86 milliards de neurones formant un vaste réseau interconnecté... Dans ce travail, nous proposons une approche plus modeste de l'IA en nous contentant de décrire les résultats que l'on peut obtenir avec un seul neurone synthétique isolé, le modèle historique du perceptron (proposé par Frank Rosenblatt dans les années 1950). C'est un "Retour vers le futur" de l'IA qui est entrepris pour fabriquer et tester un neurone artificiel à partir de composants électroniques simples. Celui-ci doit permettre de différencier un chien d'un chat à partir de données anatomiques collectées sur ces animaux.
APA, Harvard, Vancouver, ISO, and other styles
5

Walid, Tazarki, Fareh Riadh, and Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]." In International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard, and Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography