Academic literature on the topic 'Classification and spatiotemporal forecasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification and spatiotemporal forecasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification and spatiotemporal forecasting"
Wang, Guosong, Xidong Wang, Xinrong Wu, Kexiu Liu, Yiquan Qi, Chunjian Sun, and Hongli Fu. "A Hybrid Multivariate Deep Learning Network for Multistep Ahead Sea Level Anomaly Forecasting." Journal of Atmospheric and Oceanic Technology 39, no. 3 (March 2022): 285–301. http://dx.doi.org/10.1175/jtech-d-21-0043.1.
Full textPlain, M. B., B. Minasny, A. B. McBratney, and R. W. Vervoort. "Spatially explicit seasonal forecasting using fuzzy spatiotemporal clustering of long-term daily rainfall and temperature data." Hydrology and Earth System Sciences Discussions 5, no. 3 (May 14, 2008): 1159–89. http://dx.doi.org/10.5194/hessd-5-1159-2008.
Full textJiang, Hongxun, Xiaotong Wang, and Caihong Sun. "Predicting PM2.5 in the Northeast China Heavy Industrial Zone: A Semi-Supervised Learning with Spatiotemporal Features." Atmosphere 13, no. 11 (October 23, 2022): 1744. http://dx.doi.org/10.3390/atmos13111744.
Full textYusro, Muhammad, and Isnaini Nurisusilawati. "Forecasting Approach to Investigate Dynamic Growth of Organoid within 3D Matrix for Distinct Perspective." Journal of Biomimetics, Biomaterials and Biomedical Engineering 59 (February 14, 2023): 107–17. http://dx.doi.org/10.4028/p-99od29.
Full textAkarsu, Osman Nuri. "A Bibliometric Review of Earthquake and Machine Learning Research." January 2024 5, no. 1 (April 1, 2024): 1–10. http://dx.doi.org/10.36937/cebel.2024.1908.
Full textRotti, Sumanth, and Petrus C. Martens. "Analysis of SEP Events and Their Possible Precursors Based on the GSEP Catalog." Astrophysical Journal Supplement Series 267, no. 2 (August 1, 2023): 40. http://dx.doi.org/10.3847/1538-4365/acdace.
Full textHushtan, Tetiana, and Anatoliy Kolodiychuk. "DEFINING CONDITIONS FOR INCREASING INNOVATION ACTIVITY IN THE INDUSTRIAL COMPLEX: ESSENCE, SYSTEMATIZATION, IDENTIFICATION." Baltic Journal of Economic Studies 7, no. 4 (September 27, 2021): 54–62. http://dx.doi.org/10.30525/2256-0742/2021-7-4-54-62.
Full textZhang, Yi, Fang Liu, Sheng Yue, Yuxuan Li, and Qianwei Dong. "Accident Detection and Flow Prediction for Connected and Automated Transport Systems." Journal of Advanced Transportation 2023 (April 17, 2023): 1–9. http://dx.doi.org/10.1155/2023/5041509.
Full textKhokhlov, V., О. Umanska, and I. Deriabina. "Objective classification of atmospheric processes for the East European region." Physical Geography and Geomorphology 90, no. 2 (2018): 84–90. http://dx.doi.org/10.17721/phgg.2018.2.10.
Full textFossa, Manuel, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal. "Spatiotemporal and cross-scale interactions in hydroclimate variability: a case-study in France." Hydrology and Earth System Sciences 25, no. 11 (November 4, 2021): 5683–702. http://dx.doi.org/10.5194/hess-25-5683-2021.
Full textDissertations / Theses on the topic "Classification and spatiotemporal forecasting"
Kirchmeyer, Matthieu. "Out-of-distribution Generalization in Deep Learning : Classification and Spatiotemporal Forecasting." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS080.
Full textDeep learning has emerged as a powerful approach for modelling static data like images and more recently for modelling dynamical systems like those underlying times series, videos or physical phenomena. Yet, neural networks were observed to not generalize well outside the training distribution, in other words out-of-distribution. This lack of generalization limits the deployment of deep learning in autonomous systems or online production pipelines, which are faced with constantly evolving data. In this thesis, we design new strategies for out-of-distribution generalization. These strategies handle the specific challenges posed by two main application tasks, classification of static data and spatiotemporal dynamics forecasting. The first two parts of this thesis consider the classification problem. We first investigate how we can efficiently leverage some observed training data from a target domain for adaptation. We then explore how to generalize to unobserved domains without access to such data. The last part of this thesis handles various generalization problems specific to spatiotemporal forecasting
Fu, Kaiqun. "Spatiotemporal Event Forecasting and Analysis with Ubiquitous Urban Sensors." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104165.
Full textDoctor of Philosophy
The ubiquitously deployed urban sensors such as traffic speed meters, street-view cameras, and even smartphones in everybody's pockets are generating terabytes of data every hour. How do we refine the valuable intelligence out of such explosions of urban data and information became one of the profitable questions in the field of data mining and urban computing. In this dissertation, four innovative applications are proposed to solve real-world problems with big data of the urban sensors. In addition, the foreseeable ethical vulnerabilities in the research fields of urban computing and event predictions are addressed. The first work explores the connection between urban perception and crime inferences. StreetNet is proposed to learn crime rankings from street view images. This work presents the design of a street view images retrieval algorithm to improve the representation of urban perception. A data-driven, spatiotemporal algorithm is proposed to find unbiased label mappings between the street view images and the crime ranking records. The second work proposes a traffic incident duration prediction model that simultaneously predicts the impact of the traffic incidents and identifies the critical groups of temporal features via a multi-task learning framework. Such functionality provided by this model is helpful for the transportation operators and first responders to judge the influences of traffic incidents. In the third work, a social media-based traffic status monitoring system is established. The system is initiated by a transportation-related keyword generation process. A state-of-the-art tweets summarization algorithm is designed to eliminate the redundant tweets information. In addition, we show that the proposed tweets query expansion algorithm outperforms the previous methods. The fourth work aims to investigate the viability of an automatic multiclass cyberbullying detection model that is able to classify whether a cyberbully is targeting a victim's age, ethnicity, gender, religion, or other quality. This work represents a step forward for establishing an active anti-cyberbullying presence in social media and a step forward towards a future without cyberbullying. Finally, a discussion of the ethical issues in the urban computing community is addressed. This work seeks to identify ethical vulnerabilities from three primary research directions of urban computing: urban safety analysis, urban transportation analysis, and social media analysis for urban events. Visions for future improvements in the perspective of ethics are pointed out.
Khalid, Shehzad. "Motion classification using spatiotemporal approximation of object trajectories." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492915.
Full textLau, Ada. "Probabilistic wind power forecasts : from aggregated approach to spatiotemporal models." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:f5a66568-baac-4f11-ab1e-dc79061cfb0f.
Full textLeasor, Zachary T. "Spatiotemporal Variations of Drought Persistence in the South-Central United States." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1497444478957738.
Full textRosswog, James. "Improving classification of spatiotemporal data using adaptive history filtering." Diss., Online access via UMI:, 2007.
Find full textLo, Shin-Lian. "High-dimensional classification and attribute-based forecasting." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37193.
Full textHaensly, Paul J. "The Application of Statistical Classification to Business Failure Prediction." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278187/.
Full textAlbanwan, Hessah AMYM. "Remote Sensing Image Enhancement through Spatiotemporal Filtering." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492011122078055.
Full textWei, Xinyu. "Modelling and predicting adversarial behaviour using large amounts of spatiotemporal data." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/101959/1/Xinyu_Wei_Thesis.pdf.
Full textBooks on the topic "Classification and spatiotemporal forecasting"
Wisconsin. Dept. of Development. Division of Policy Development. Bureau of Research., ed. Employment potential of Wisconsin industry groups: An analysis and industry classification. Madison, Wis: Wisconsin Dept. of Development, Division of Policy Development, Bureau of Research, 1985.
Find full textWoo, Ming-Ko. Hydrological classification of Canadian prairie wetlands and prediction of wetland inundation in response to climatic variability. Ottawa: Canadian Wildlife Service, 1993.
Find full textA, Kulikowski Casimir, ed. Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Mateo, Calif: M. Kaufmann Publishers, 1991.
Find full textCanada. Human Resources Development Canada., ed. Job futures. [Ottawa, ON: Human Resources Development Canada], 1996.
Find full textLen'kov, Roman. Social forecasting and planning. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1058988.
Full textNguyen, Van O. Analysis of the U.S. Marine Corps' steady state Markov model for forecasting annual first-term enlisted classification requirements. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textZhuravlev, Yu I. Raspoznavanie, klassifikatsiya, prognoz: Matematicheskie metody i ikh primenie = Pattern recognition, classification, forecasting : mathematical techniques and their application, vol. 1. Moskva: Nauka, 1989.
Find full textLabor, United States Department of. Occupational outlook handbook: 2008-2009. 2nd ed. Indianapolis: Jist Pub., 2008.
Find full textAlig, Ralph J. Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050. Portland, Or: Pacific Northwest Research Station, 2004.
Find full textAlig, Ralph J. Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050. [Portland, OR]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 2004.
Find full textBook chapters on the topic "Classification and spatiotemporal forecasting"
Jiao, Xiaoying, and Jason Li Chen. "Spatiotemporal econometric models." In Econometric Modelling and Forecasting of Tourism Demand, 126–43. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003269366-6.
Full textMaithili, K., S. Leelavathy, G. Karthi, and M. Adimoolam. "Spatiotemporal and Intelligent Transportation Forecasting." In Spatiotemporal Data Analytics and Modeling, 161–78. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9651-3_8.
Full textMetcalfe, Mike. "An Historical Classification." In Forecasting Profit, 51–62. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2255-3_3.
Full textIezzi, Domenica Fioredistella, and Maurizio Vichi. "Forecasting a Classification." In Studies in Classification, Data Analysis, and Knowledge Organization, 27–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60126-2_4.
Full textLi, Zhigang, Margaret H. Dunham, and Yongqiao Xiao. "STIFF: A Forecasting Framework for SpatioTemporal Data." In Mining Multimedia and Complex Data, 183–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39666-6_12.
Full textWang, Rui, Robin Walters, and Rose Yu. "Physics-Guided Deep Learning for Spatiotemporal Forecasting." In Knowledge-Guided Machine Learning, 179–210. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-8.
Full textPavlyuk, Dmitry. "Spatiotemporal Forecasting of Urban Traffic Flow Volatility." In Lecture Notes in Networks and Systems, 63–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68476-1_6.
Full textLi, Zhigang, Liangang Liu, and Margaret H. Dunham. "Considering Correlation between Variables to Improve Spatiotemporal Forecasting." In Advances in Knowledge Discovery and Data Mining, 519–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36175-8_52.
Full textKailas, Siva, Wenhao Luo, and Katia Sycara. "Multi-robot Adaptive Sampling for Supervised Spatiotemporal Forecasting." In Progress in Artificial Intelligence, 349–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49008-8_28.
Full textPathak, Jaideep, and Edward Ott. "Reservoir Computing for Forecasting Large Spatiotemporal Dynamical Systems." In Natural Computing Series, 117–38. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-1687-6_6.
Full textConference papers on the topic "Classification and spatiotemporal forecasting"
Zhao, Liang, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. "Spatiotemporal Event Forecasting in Social Media." In Proceedings of the 2015 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. http://dx.doi.org/10.1137/1.9781611974010.108.
Full textWu, Dongxia, Liyao Gao, Matteo Chinazzi, Xinyue Xiong, Alessandro Vespignani, Yi-An Ma, and Rose Yu. "Quantifying Uncertainty in Deep Spatiotemporal Forecasting." In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3467325.
Full textFu, Xingbo, Feng Gao, Jiang Wu, Xinyu Wei, and Fangwei Duan. "Spatiotemporal Attention Networks for Wind Power Forecasting." In 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019. http://dx.doi.org/10.1109/icdmw.2019.00032.
Full textSouto, Yania Molina, Fabio Porto, Ana Maria Moura, and Eduardo Bezerra. "A Spatiotemporal Ensemble Approach to Rainfall Forecasting." In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489693.
Full textDeng, Songgaojun, Huzefa Rangwala, and Yue Ning. "Robust Event Forecasting with Spatiotemporal Confounder Learning." In KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539427.
Full textChen, Yirong, Ziyue Li, Wanli Ouyang, and Michael Lepech. "Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting." In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023. http://dx.doi.org/10.1109/case56687.2023.10260424.
Full textLi, Shaoying, Given Dan Meng, Wenhao Tao, Baiting Cui, Xu Zhu, and Chao Kong. "Spatiotemporal Data Forecasting for Biological Invasion Detection." In 2021 7th International Conference on Big Data and Information Analytics (BigDIA). IEEE, 2021. http://dx.doi.org/10.1109/bigdia53151.2021.9619653.
Full textSawhney, Ramit, Shivam Agarwal, Arnav Wadhwa, and Rajiv Ratn Shah. "Spatiotemporal Hypergraph Convolution Network for Stock Movement Forecasting." In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00057.
Full textPavlyuk, Dmitry. "Spatiotemporal Traffic Forecasting as a Video Prediction Problem." In 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, 2019. http://dx.doi.org/10.1109/mtits.2019.8883353.
Full textJenish, Justin, and M. Prabu. "A Neural Network Architecture for Spatiotemporal PM2.5 Forecasting." In 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). IEEE, 2022. http://dx.doi.org/10.1109/ic3sis54991.2022.9885669.
Full textReports on the topic "Classification and spatiotemporal forecasting"
Allen-Dumas, Melissa, Kuldeep Kurte, Haowen Xu, Jibonananda Sanyal, and Guannan Zhang. A Spatiotemporal Sequence Forecasting Platform to Advance the Predictionof Changing Spatiotemporal Patterns of CO2 Concentrationby Incorporating Human Activity and Hydrological Extremes. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769653.
Full textVesselinov, Velimir, Richard Middleton, and Carl Talsma. COVID-19: Spatiotemporal social data analytics and machine learning for pandemic exploration and forecasting. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1774409.
Full textCook, Samantha, Matthew Bigl, Sandra LeGrand, Nicholas Webb, Gayle Tyree, and Ronald Treminio. Landform identification in the Chihuahuan Desert for dust source characterization applications : developing a landform reference data set. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45644.
Full text