Academic literature on the topic 'Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classification"
Thomas, Pravin, Anand Kumar, Ahamed Subir, Brian E. McGeeney, Madhav Raje, Divyani Garg, Chaithra D. Aroor, Arunmozhimaran Elavarasi, and Kris Castle. "Classification of Head, Neck, and Face Pains First Edition (WHS-MCH1): Position paper of the WHS Classification Committee." Headache Medicine Connections 1, no. 1 (August 20, 2021): 1–108. http://dx.doi.org/10.52828/hmc.v1i1.classifications.
Full textWillatt, D. J., M. S. McCormick, R. P. Morton, and P. M. Stell. "Staging of Maxillary Cancer." Annals of Otology, Rhinology & Laryngology 96, no. 2 (March 1987): 137–41. http://dx.doi.org/10.1177/000348948709600201.
Full textJacob, Elin K. "Proposal for a Classification of Classifications built on Beghtol’s Distinction between “Naïve Classification” and “Professional Classification”." KNOWLEDGE ORGANIZATION 37, no. 2 (2010): 111–20. http://dx.doi.org/10.5771/0943-7444-2010-2-111.
Full textFeleke, Tekabe Legesse. "Ethiosemitic languages: Classifications and classification determinants." Ampersand 8 (2021): 100074. http://dx.doi.org/10.1016/j.amper.2021.100074.
Full textDozic, Slobodan, Dubravka Cvetkovic-Dozic, Milica Skender-Gazibara, and Branko Dozic. "Review of the World Health Organization classification of tumors of the nervous system." Archive of Oncology 10, no. 3 (2002): 175–77. http://dx.doi.org/10.2298/aoo0203175d.
Full textFedorova, Natalia. "BASIC CLASSIFIERS OF FORMAL CLASSIFICATION THEORY OF TECHNICAL SYSTEMS: HIERARCHIES, VECTORS AND MATRICES, BANDS." Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics 2021, no. 3 (July 30, 2021): 28–40. http://dx.doi.org/10.24143/2072-9502-2021-3-28-40.
Full textVu, Catphuong, and David Gendelberg. "Classifications in Brief: AO Thoracolumbar Classification System." Clinical Orthopaedics & Related Research 478, no. 2 (December 9, 2019): 434–40. http://dx.doi.org/10.1097/corr.0000000000001086.
Full textDi Lauro, Salvatore, Mustafa R. Kadhim, David G. Charteris, and J. Carlos Pastor. "Classifications for Proliferative Vitreoretinopathy (PVR): An Analysis of Their Use in Publications over the Last 15 Years." Journal of Ophthalmology 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7807596.
Full textKozhanov, Anton L., and Oleg V. Voevodin. "ON RECLAMATION PUMPING STATIONS CLASSIFICATION." Land Reclamation and Hydraulic Engineering 14, no. 3 (2024): 261–83. http://dx.doi.org/10.31774/2712-9357-2024-14-3-261-283.
Full textFortune, Nicola, Stephanie Short, and Richard Madden. "Building a statistical classification: A new tool for classification development and testing." Statistical Journal of the IAOS 36, no. 4 (November 25, 2020): 1213–21. http://dx.doi.org/10.3233/sji-200633.
Full textDissertations / Theses on the topic "Classification"
Bogers, Toine, Willem Thoonen, and den Bosch Antal van. "Expertise classification: Collaborative classification vs. automatic extraction." dLIST, 2006. http://hdl.handle.net/10150/105709.
Full textRavindra, Dilip. "Firmware and classification algorithm development for vehicle classification." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1603749.
Full textVehicle classification is one of the active research topic in Intelligent Transport System. This project proposes an approach to classify the vehicles on freeway with respect to the size of the vehicle. This vehicle classification is based on threshold based algorithm. This system consists of two AMR magneto-resistive sensors connected to TI msp430 development board. The data collected from the two magneto resistive sensors is analyzed and supplied to threshold based algorithm to differentiate the vehicles. With the use of minimum number features extracted from the data it was possible to produce very efficient algorithm that is capable of differentiating the vehicles.
Phillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Full textPh. D.
Матусевич, Олександр Павлович. "Classification Fonts." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7344.
Full textЯрмак, Любов Павлівна, Любовь Павловна Ярмак, Liubov Pavlivna Yarmak, Оксана Робертівна Гладченко, Оксана Робертовна Гладченко, and Oksana Robertivna Hladchenko. "Test classification." Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34677.
Full textTaylor, Paul Clifford. "Classification trees." Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306312.
Full textBonneau, Jean-Christophe. "La classification des contrats : essai d'une analyse systémique des classifications du Code civil." Grenoble, 2010. http://www.theses.fr/2010GREND017.
Full textThe classification of contracts as it is stated in the civil Code articles 1102 onwards structurally distinguishes itself from modern classifications having been added to it. Looking thoroughly at the matter of a global approach of classification, the classifications of the civil Code, separated from a legal regime which does not in fact depend on them and on notions which are foreign to it, such as the concept of “cause”, were considered in their connections of logic and complementarity. The existence of the chains of classifications, a new classification resulting from the coherent assembly of the various classifications provided for the civil Code, were brought to light thanks to a study aiming at understanding how these classifications are bound and harmonized. The features of the classification of contracts were then deducted from the very structure of the classifications of the civil Code combined in chains. These have for feature to reveal what constitutes the essence of the contract, by allowing to distinguish it from certain figures which try to assimilate to it but nevertheless distinguish themselves from it since the capacity of a legal object to become integrated into the chains of classifications is perceived as conditional on the contractual qualification itself. Considered as a preferred criterion of the definition of the contract, which can give rise to projects aiming at the elaboration of a body of European contract laws, the chains of classifications were then conceptualised in their connections with the variety of the named contracts. The chains of classifications absorb these contracts as well as their legal regime which can, consequently, be transposed into the unnamed contracts. Allowing a renewal of the groupings generally perceived, the chains of classifications bring a new light to the process of qualification of the contract. They contribute to specify the domain of the modification of the contract, and finally supply a foundation for the direct contractual action which is applied to the chains of contracts
Van, der Westhuizen Cornelius Stephanus. "Nearest hypersphere classification : a comparison with other classification techniques." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95839.
Full textENGLISH ABSTRACT: Classification is a widely used statistical procedure to classify objects into two or more classes according to some rule which is based on the input variables. Examples of such techniques are Linear and Quadratic Discriminant Analysis (LDA and QDA). However, classification of objects with these methods can get complicated when the number of input variables in the data become too large ( ≪ ), when the assumption of normality is no longer met or when classes are not linearly separable. Vapnik et al. (1995) introduced the Support Vector Machine (SVM), a kernel-based technique, which can perform classification in cases where LDA and QDA are not valid. SVM makes use of an optimal separating hyperplane and a kernel function to derive a rule which can be used for classifying objects. Another kernel-based technique was proposed by Tax and Duin (1999) where a hypersphere is used for domain description of a single class. The idea of a hypersphere for a single class can be easily extended to classification when dealing with multiple classes by just classifying objects to the nearest hypersphere. Although the theory of hyperspheres is well developed, not much research has gone into using hyperspheres for classification and the performance thereof compared to other classification techniques. In this thesis we will give an overview of Nearest Hypersphere Classification (NHC) as well as provide further insight regarding the performance of NHC compared to other classification techniques (LDA, QDA and SVM) under different simulation configurations. We begin with a literature study, where the theory of the classification techniques LDA, QDA, SVM and NHC will be dealt with. In the discussion of each technique, applications in the statistical software R will also be provided. An extensive simulation study is carried out to compare the performance of LDA, QDA, SVM and NHC for the two-class case. Various data scenarios will be considered in the simulation study. This will give further insight in terms of which classification technique performs better under the different data scenarios. Finally, the thesis ends with the comparison of these techniques on real-world data.
AFRIKAANSE OPSOMMING: Klassifikasie is ’n statistiese metode wat gebruik word om objekte in twee of meer klasse te klassifiseer gebaseer op ’n reël wat gebou is op die onafhanklike veranderlikes. Voorbeelde van hierdie metodes sluit in Lineêre en Kwadratiese Diskriminant Analise (LDA en KDA). Wanneer die aantal onafhanklike veranderlikes in ’n datastel te veel raak, die aanname van normaliteit nie meer geld nie of die klasse nie meer lineêr skeibaar is nie, raak die toepassing van metodes soos LDA en KDA egter te moeilik. Vapnik et al. (1995) het ’n kern gebaseerde metode bekendgestel, die Steun Vektor Masjien (SVM), wat wel vir klassifisering gebruik kan word in situasies waar metodes soos LDA en KDA misluk. SVM maak gebruik van ‘n optimale skeibare hipervlak en ’n kern funksie om ’n reël af te lei wat gebruik kan word om objekte te klassifiseer. ’n Ander kern gebaseerde tegniek is voorgestel deur Tax and Duin (1999) waar ’n hipersfeer gebruik kan word om ’n gebied beskrywing op te stel vir ’n datastel met net een klas. Dié idee van ’n enkele klas wat beskryf kan word deur ’n hipersfeer, kan maklik uitgebrei word na ’n multi-klas klassifikasie probleem. Dit kan gedoen word deur slegs die objekte te klassifiseer na die naaste hipersfeer. Alhoewel die teorie van hipersfere goed ontwikkeld is, is daar egter nog nie baie navorsing gedoen rondom die gebruik van hipersfere vir klassifikasie nie. Daar is ook nog nie baie gekyk na die prestasie van hipersfere in vergelyking met ander klassifikasie tegnieke nie. In hierdie tesis gaan ons ‘n oorsig gee van Naaste Hipersfeer Klassifikasie (NHK) asook verdere insig in terme van die prestasie van NHK in vergelyking met ander klassifikasie tegnieke (LDA, KDA en SVM) onder sekere simulasie konfigurasies. Ons gaan begin met ‘n literatuurstudie, waar die teorie van die klassifikasie tegnieke LDA, KDA, SVM en NHK behandel gaan word. Vir elke tegniek gaan toepassings in die statistiese sagteware R ook gewys word. ‘n Omvattende simulasie studie word uitgevoer om die prestasie van die tegnieke LDA, KDA, SVM en NHK te vergelyk. Die vergelyking word gedoen vir situasies waar die data slegs twee klasse het. ‘n Verskeidenheid van data situasies gaan ook ondersoek word om verdere insig te toon in terme van wanneer watter tegniek die beste vaar. Die tesis gaan afsluit deur die genoemde tegnieke toe te pas op praktiese datastelle.
Olin, Per. "Evaluation of text classification techniques for log file classification." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166641.
Full textAnteryd, Fredrik. "Information Classification in Swedish Governmental Agencies : Analysis of Classification Guidelines." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11493.
Full textBooks on the topic "Classification"
Library of Congress. Subject Cataloging Division. Classification. 3rd ed. Washington, D.C: The Library, 1989.
Find full textLibrary of Congress. Subject Cataloging Division. Classification. Washington: The Library, 1988.
Find full textSabzwari, Ghaniul Akram. Classification. Karachi: s.n., 2005.
Find full textLibrary of Congress. Cataloging Policy and Support Office. Classification. Washington: Library of Congress, 1993.
Find full textLibrary of Congress. Office for Subject Cataloging Policy. Classification. 5th ed. Washington, DC: Library of Congress, 1992.
Find full textHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Find full textHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Find full textJames, Mike. Classification algorithms. New York: Wiley, 1985.
Find full textBandyopadhyay, Sanghamitra, and Sriparna Saha. Unsupervised Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32451-2.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. Multilabel Classification. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8.
Full textBook chapters on the topic "Classification"
Herrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Multilabel Classification." In Multilabel Classification, 17–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_2.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Introduction." In Multilabel Classification, 1–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_1.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Case Studies and Metrics." In Multilabel Classification, 33–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_3.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Transformation-Based Classifiers." In Multilabel Classification, 65–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_4.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Adaptation-Based Classifiers." In Multilabel Classification, 81–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_5.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Ensemble-Based Classifiers." In Multilabel Classification, 101–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_6.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Dimensionality Reduction." In Multilabel Classification, 115–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_7.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Imbalance in Multilabel Datasets." In Multilabel Classification, 133–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_8.
Full textHerrera, Francisco, Francisco Charte, Antonio J. Rivera, and María J. del Jesus. "Multilabel Software." In Multilabel Classification, 153–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_9.
Full textAbe, Shigeo. "Introduction." In Pattern Classification, 3–20. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_1.
Full textConference papers on the topic "Classification"
Besse, P., P. Boisson, and J. McGregor. "What Classification Rules For The Future And What Future For Classification?" In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.15.
Full textBień, Jan, and Małgorzata Gładysz-Bień. "Multi-level Classification of Bridge Defects in Asset Management." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1100.
Full textKhan, Mysha, and Pushpa Bhat. "Higgs event classification using Machine Learning." In Higgs event classification using Machine Learning. US DOE, 2023. http://dx.doi.org/10.2172/1997111.
Full textFadaie, Gholamreza. "The Influence of Classification on World View and Epistemology." In InSITE 2008: Informing Science + IT Education Conference. Informing Science Institute, 2008. http://dx.doi.org/10.28945/3279.
Full textBruhns, H. "The New Imo Regulation For The Protection Of Fuel Tanks Affects Ship Designs." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.12.
Full textMotok, M. D., and J. Jovovic. "Wave Induced Shear Force And Bending Moment For Series Of Ships - Comparison & Some Interpolation Procedures." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.14.
Full textJankowski, J., and M. Bogdaniuk. "Risk Model Used To Develop Goal-Based Standards For Ship Structures Of Single Side Bulk Carrier." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.09.
Full textRizzo, C. M., and E. Rizzuto. "A Comparison Of Common Structural Rules With Previous Class Rules." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.01.
Full textCazzulo, R., and A. Alderson. "Performance Standards Of Coatings In Ballast Tanks - Where A Class Society Could Help." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.06.
Full textMoore, W., M. Arai, P. Besse, P. R. Birmingham, H. Boonstra, E. Bruenner, Y. Chen, et al. "Goal-Based Standards (GBS): The International Ship & Offshore Structures Congress (ISSC) View." In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.04.
Full textReports on the topic "Classification"
Robinson, David Gerald. Tissue Classification. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1177377.
Full textSHpinev, YU S. Investment classification. Институт государства и права РАН, 2020. http://dx.doi.org/10.18411/1311-1972-2020-00011.
Full textLi, C., O. Havel, A. Olariu, P. Martinez-Julia, J. Nobre, and D. Lopez. Intent Classification. RFC Editor, October 2022. http://dx.doi.org/10.17487/rfc9316.
Full textHersey, Anne, ed. ChEMBL Assay Classification. EMBL-EBI, June 2018. http://dx.doi.org/10.6019/chembl.assayclassification.
Full textSchau, M. Classification of granulites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128123.
Full textBrereton, S. J. Hazard classification methodology. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/273808.
Full textDEPARTMENT OF THE ARMY WASHINGTON DC. Classification Management Tutorial. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada458946.
Full textBogdanovic, D., B. Claise, and C. Moberg. YANG Module Classification. RFC Editor, July 2017. http://dx.doi.org/10.17487/rfc8199.
Full textMarrs, Frank. Multiclass classification experiments. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1669069.
Full textAiken, Catherine. Classifying AI Systems. Center for Security and Emerging Technology, November 2021. http://dx.doi.org/10.51593/20200025.
Full text