Academic literature on the topic 'Classical Brownian Motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classical Brownian Motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classical Brownian Motion"
Tsekov, Roumen, and Georgi N. Vayssilov. "Quantum Brownian motion and classical diffusion." Chemical Physics Letters 195, no. 4 (July 1992): 423–26. http://dx.doi.org/10.1016/0009-2614(92)85628-n.
Full textOrd, G. N. "Schrödinger's Equation and Classical Brownian Motion." Fortschritte der Physik 46, no. 6-8 (November 1998): 889–96. http://dx.doi.org/10.1002/(sici)1521-3978(199811)46:6/8<889::aid-prop889>3.0.co;2-z.
Full textTsekov, Roumen. "Brownian Motion and Quantum Mechanics." Fluctuation and Noise Letters 19, no. 02 (November 19, 2019): 2050017. http://dx.doi.org/10.1142/s0219477520500170.
Full textSantos, Willien O., Guilherme M. A. Almeida, and Andre M. C. Souza. "Noncommutative Brownian motion." International Journal of Modern Physics A 32, no. 23n24 (August 24, 2017): 1750146. http://dx.doi.org/10.1142/s0217751x17501469.
Full textRajput, B. S. "Quantum equations from Brownian motion." Canadian Journal of Physics 89, no. 2 (February 2011): 185–91. http://dx.doi.org/10.1139/p10-111.
Full textAnders, J., C. R. J. Sait, and S. A. R. Horsley. "Quantum Brownian motion for magnets." New Journal of Physics 24, no. 3 (March 1, 2022): 033020. http://dx.doi.org/10.1088/1367-2630/ac4ef2.
Full textAmbegaokar, Vinay. "Quantum Brownian Motion and its Classical Limit." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 3 (March 1991): 400–404. http://dx.doi.org/10.1002/bbpc.19910950331.
Full textKhalili Golmankhaneh, Ali, Saleh Ashrafi, Dumitru Baleanu, and Arran Fernandez. "Brownian Motion on Cantor Sets." International Journal of Nonlinear Sciences and Numerical Simulation 21, no. 3-4 (May 26, 2020): 275–81. http://dx.doi.org/10.1515/ijnsns-2018-0384.
Full textPARK, MOONGYU, and JOHN H. CUSHMAN. "THE COMPLEXITY OF BROWNIAN PROCESSES RUN WITH NONLINEAR CLOCKS." Modern Physics Letters B 25, no. 01 (January 10, 2011): 1–10. http://dx.doi.org/10.1142/s0217984911025481.
Full textUlrich, Michaël. "Construction of a free Lévy process as high-dimensional limit of a Brownian motion on the unitary group." Infinite Dimensional Analysis, Quantum Probability and Related Topics 18, no. 03 (September 2015): 1550018. http://dx.doi.org/10.1142/s0219025715500186.
Full textDissertations / Theses on the topic "Classical Brownian Motion"
Romero-Rochin, Victor Manuel. "Brownian motion and weak coupling in classical and quantum systems." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14383.
Full textLange, Rutger-Jan. "Brownian motion and multidimensional decision making." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243402.
Full textSantos, Joao Rafael Lucio dos. "Tópicos em defeitos deformados e o movimento Browniano." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/5748.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The non-linear science is a central topic covering several investigation areas, such as biology, chemistry, mathematics and physics. In the first part of this thesis, we studied the non-linearity in the scope of classical field theory. The discussions are based on static solutions in (1, 1) space-time dimensions, and they are focused on kinks and lumps defects. In the related procedures, we show several techniques which allowed us to determine new models with their respective analytical solutions. The main mathematical tool to obtain these results is the so called deformation method, which was also an essential piece in the construction of a new extension method. This method presents the determination of new two scalar fields models from the coupling between two one scalar field systems. The method was analyzed carefully, as well as the linear stability, the zero modes, the total energy and the superpotentials, related with the new families of potentials. Furthermore, in the second part we presented the basics concepts about the Brownian Motion, where we analised the features of the solution of the Langevin Equation, and we also introduced a path integral approach to this problem in a quantum field theory way.
A ciência não-linear é tema central de diversas linhas de investigação, cobrindo áreas como a biologia, a física, a matemática e a química. Nossa primeira vertente de trabalho nesta tese, consiste no estudo de não-linearidades via abordagem de teoria clássica de campos. As discussões estão baseadas em soluções estáticas em (1, 1) dimensões, com destaque para o chamados defeitos tipo kink e lump. Nos procedimentos relatados, discorremos a respeito de diversas técnicas para a determinação de novos modelos com suas respectivas soluções analíticas. Um ferramental fundamental para a obtenção desses resultados é o chamado método de deformação, o qual também foi parte essencial para a criação de um método de extensão de modelos, onde visamos a construção de modelos de dois campos reais a partir do acoplamento entre dois modelos de um campo. Tal método também foi exposto em detalhes, bem como as análises sobre estabilidade linear, cálculo de modos zeros, determinação da energia total e dos superpotenciais, relativos às novas famílias de potenciais. Já a segunda linha de pesquisa, refere-se aos conceitos básicos do movimento browniano, onde analisamos as propriedades da solução da equação de Langevin, e na introdução de uma abordagem via integrais de trajetória para descrevê-lo nos moldes de teoria de quântica de campos.
Dahlqvist, Antoine. "Dualité de Schur-Weyl, mouvement brownien sur les groupes de Lie compacts classiques et étude asymptotique de la mesure de Yang-Mills." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00961035.
Full textMacháček, Adam. "Oceňování bariérových opcí." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-321410.
Full textBooks on the topic "Classical Brownian Motion"
Random walk and the heat equation. Providence, R.I: American Mathematical Society, 2010.
Find full textPort, Sidney. Brownian Motion and Classical Potential Theory. Elsevier Science & Technology Books, 2012.
Find full textMilonni, Peter W. An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199215614.001.0001.
Full textHarmonic Analysis. American Mathematical Society, 2018.
Find full textBook chapters on the topic "Classical Brownian Motion"
Lampo, Aniello, Miguel Ángel García March, and Maciej Lewenstein. "Classical Brownian Motion." In SpringerBriefs in Physics, 7–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16804-9_2.
Full textDoob, Joseph L. "Brownian Motion." In Classical Potential Theory and Its Probabilistic Counterpart, 570–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_26.
Full textDoob, Joseph L. "Conditional Brownian Motion." In Classical Potential Theory and Its Probabilistic Counterpart, 668–702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_29.
Full textD'Aristotile, Anthony, Persi Diaconis, and Charles M. Newman. "Brownian motion and the classical groups." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 97–116. Beachwood, OH: Institute of Mathematical Statistics, 2003. http://dx.doi.org/10.1214/lnms/1215091660.
Full textGlover, Joseph, and Murali Rao. "Inversion and Reflecting Brownian Motion." In Classical and Modern Potential Theory and Applications, 199–215. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1138-6_18.
Full textDoob, Joseph L. "Brownian Motion and Martingale Theory." In Classical Potential Theory and Its Probabilistic Counterpart, 627–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_28.
Full textDoob, Joseph L. "Brownian Motion and the PWB Method." In Classical Potential Theory and Its Probabilistic Counterpart, 719–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_31.
Full textDoob, Joseph L. "Brownian Motion on the Martin Space." In Classical Potential Theory and Its Probabilistic Counterpart, 727–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_32.
Full textMeilijson, Isaac. "Stochastic Orders and Stopping Times in Brownian Motion." In From Classical to Modern Probability, 207–20. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8053-4_6.
Full textCoffey, William T., Yuri P. Kalmykov, Serguey V. Titov, and William J. Dowling. "Longest Relaxation Time of Relaxation Processes for Classical and Quantum Brownian Motion in a Potential: Escape Rate Theory Approach." In Advances in Chemical Physics, 111–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118571767.ch3.
Full textConference papers on the topic "Classical Brownian Motion"
Nualart, David. "A white noise approach to fractional Brownian motion." In Stochastic Analysis: Classical and Quantum - Perspectives of White Noise Theory. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701541_0010.
Full textMansour, Nastaran, Mehdi Mohammad Kazemi, Rouhollah Karimzadeh, and Javid Zamir Anvari. "Statistical Speckle Study of Copper Nanofluids." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18406.
Full textFishman, Louis. "Symbol Analysis and the Construction of One-Way Forward and Inverse Wave Propagation Theories." In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.se3.
Full textHarish, S., Kei Ishikawa, Erik Einarsson, Taiki Inoue, Shohei Chiashi, Junichiro Shiomi, and Shigeo Maruyama. "Enhanced Thermal Conductivity of Water With Surfactant Encapsulated and Individualized Single-Walled Carbon Nanotube Dispersions." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75021.
Full textOrtigueira, Manuel Duarte, and Arnaldo Guimara˜es Batista. "A New Look at the Fractional Brownian Motion Definition." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35218.
Full textReports on the topic "Classical Brownian Motion"
Соловйов, В. М., В. В. Соловйова, and Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Full text