Academic literature on the topic 'Classes of recursive functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Classes of recursive functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Classes of recursive functions"
Wainer, Stanley S. "Accessible Recursive Functions." Bulletin of Symbolic Logic 5, no. 3 (September 1999): 367–88. http://dx.doi.org/10.2307/421185.
Full textStephan, Frank, and Thomas Zeugmann. "Learning classes of approximations to non-recursive functions." Theoretical Computer Science 288, no. 2 (October 2002): 309–41. http://dx.doi.org/10.1016/s0304-3975(01)00405-4.
Full textMazzanti, Stefano. "Plain Bases for Classes of Primitive Recursive Functions." MLQ 48, no. 1 (January 2002): 93–104. http://dx.doi.org/10.1002/1521-3870(200201)48:1<93::aid-malq93>3.0.co;2-8.
Full textSEMIGRODSKIKH, A. P. "On Closed Classes of Primitive Recursive Functions, II." Multiple-Valued Logic 8, no. 2 (January 1, 2002): 183–91. http://dx.doi.org/10.1080/10236620215292.
Full textKummer, Martin. "A learning-theoretic characterization of classes of recursive functions." Information Processing Letters 54, no. 4 (May 1995): 205–11. http://dx.doi.org/10.1016/0020-0190(95)00036-c.
Full textVolkov, S. A. "Generating some classes of recursive functions by superpositions of simple arithmetic functions." Doklady Mathematics 76, no. 1 (August 2007): 566–67. http://dx.doi.org/10.1134/s1064562407040217.
Full textAUSIELLO, G., and M. PROTASI. "LIMITING POLYNOMIAL APPROXIMATION OF COMPLEXITY CLASSES." International Journal of Foundations of Computer Science 01, no. 02 (June 1990): 111–22. http://dx.doi.org/10.1142/s0129054190000096.
Full textZhukov, Vladimir V., and Sergey A. Lozhkin. "Asymptotically best method for synthesis of Boolean recursive circuits." Discrete Mathematics and Applications 30, no. 2 (April 28, 2020): 137–46. http://dx.doi.org/10.1515/dma-2020-0013.
Full textCalude, Cristian, and Gabriel Istrate. "Determining and stationary sets for some classes of partial recursive functions." Theoretical Computer Science 82, no. 1 (May 1991): 151–55. http://dx.doi.org/10.1016/0304-3975(91)90178-5.
Full textRout, Ranjeet Kumar, Pabitra Pal Choudhury, and Sudhakar Sahoo. "Classification of Boolean Functions Where Affine Functions Are Uniformly Distributed." Journal of Discrete Mathematics 2013 (October 31, 2013): 1–12. http://dx.doi.org/10.1155/2013/270424.
Full textDissertations / Theses on the topic "Classes of recursive functions"
Cooper, D. "Classes of low complexity." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375251.
Full textGomes, Victor pereira. "Funções recursivas primitivas: caracterização e alguns resultados para esta classe de funções." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/8514.
Full textMade available in DSpace on 2016-08-10T14:17:41Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 975005 bytes, checksum: 6f8194b9c0cb9c0bbd07b1d2b0ba4b9e (MD5) Previous issue date: 2016-06-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The class of primitive recursive functions is not a formal version to the class of algorithmic functions, we study this special class of numerical functions due to the fact of that many of the functions known as algorithmic are primitive recursive. The approach on the class of primitive recursive functions aims to explore this special class of functions and from that, present solutions for the following problems: (1) given the class of primitive recursive derivations, is there an algorithm, that is, a mechanical procedure for recognizing primitive recursive derivations? (2) Is there a universal function for the class of primitive recursive functions? If so, is this function primitive recursive? (3) Are all the algorithmic functions primitive recursive? To provide solutions to these issues, we base on the hypothetical-deductive method and argue based on the works of Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), among others. We present the theory of Turing machines which is a formal version to the intuitive notion of algorithm, and after that the famous Church-Turing tesis which identifies the class of algorithmic functions with the class of Turing-computable functions. We display the class of primitive recursive functions and show that it is a subclass of Turing-computable functions. Having explored the class of primitive recursive functions we proved as results that there is a recognizer algorithm to the class of primitive recursive derivations; that there is a universal function to the class of primitive recursive functions which does not belong to this class; and that not every algorithmic function is primitive recursive.
A classe das funções recursivas primitivas não constitui uma versão formal para a classe das funções algorítmicas, estudamos esta classe especial de funções numéricas devido ao fato de que muitas das funções conhecidas como algorítmicas são recursivas primitivas. A abordagem acerca da classe das funções recursivas primitivas tem como objetivo explorar esta classe especial de funções e, a partir disto, apresentar soluções para os seguintes problemas: (1) dada a classe das derivações recursivas primitivas, há um algoritmo, ou seja, um procedimento mecânico, para reconhecer derivações recursivas primitivas? (2) Existe uma função universal para a classe das funções recursivas primitivas? Se sim, essa função é recursiva primitiva? (3) Toda função algorítmica é recursiva primitiva? Para apresentar soluções para estas questões, nos pautamos no método hipotético-dedutivo e argumentamos com base nos manuais de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), entre outros. Apresentamos a teoria das máquinas de Turing, que constitui uma versão formal para a noção intuitiva de algoritmo, e, em seguida, a famosa tese de Church-Turing, a qual identifica a classe das funções algorítmicas com a classe das funções Turing-computáveis. Exibimos a classe das funções recursivas primitivas, e mostramos que a mesma constitui uma subclasse das funções Turing-computáveis. Tendo explorado a classe das funções recursivas primitivas, como resultados, provamos que existe um algoritmo reconhecedor para a classe das derivações recursivas primitivas; que existe uma função universal para a classe das funções recursivas primitivas a qual não pertence a esta classe; e que nem toda função algorítmica é recursiva primitiva.
Ferizis, George Computer Science & Engineering Faculty of Engineering UNSW. "Mapping recursive functions to reconfigurable hardware." Awarded by:University of New South Wales. Computer Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/23366.
Full textFrancis, Johanna Leigh 1970. "Three essays in recursive utility functionals." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61285.
Full textHouse, Robert Simpson. "Airy functions and the Recursive Ray Acoustics Algorithm." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA290182.
Full textThesis advisor(s): Lawrence J. Ziomek. "December 1994." Includes bibliographical references. Also available online.
McVeigh, Brian. "Multiple functions in equivalence classes." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414095.
Full textClouâtre, André. "Implementation and applications of recursively defined relations." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75694.
Full textThis approach has led to the following general results: (1) design, classification, and analysis of many iterative methods for evaluating recursive relations, as well as analysis of experimental results; (2) formalization of the concept of iterative evaluation of a relation; (3) demonstration that domain algebra can be used to solve problems of concatenation and aggregation of the information associated with a recursive structure; (4) proof that relational division and general containment joins are left-monotone.
More specific results consist of a collection of original algorithms which run well on secondary storage, as shown by simulations. Among them, we wish to emphasize the differencing logarithmic transitive closure (TC) algorithms, which are superior to the previously known relational TC algorithms, and the shortest path algorithms, which are in fact generic algorithms for path algebra problems.
Kabanets, Valentine. "Nonuniformly hard Boolean functions and uniform complexity classes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58599.pdf.
Full textDarus, M. "Extreme problems for certain classes of analytic functions." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636350.
Full textPedron, Mark [Verfasser]. "Zero Partition Cycles : A Recursive Formula for Characteristic Classes of Surface Bundles / Mark Pedron." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1132711517/34.
Full textBooks on the topic "Classes of recursive functions"
Sanchis, Luis E. Recursive functionals. Amsterdam: North-Holland, 1992.
Find full textMurawski, Roman. Recursive Functions and Metamathematics. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2866-9.
Full textRecursive algorithms. Norwood, N.J: Ablex Pub. Corp., 1994.
Find full textMarcet, Albert. Recursive contracts. Florence: European University Institute, 1998.
Find full textZilles, Sandra. Uniform learning of recursive functions. Berlin: Akademische Verlagsgesellschaft Aka, 2003.
Find full textTheory of recursive functions and effective computability. Cambridge, Mass: MIT Press, 1987.
Find full textHong, Chew Soo. Recursive utility under uncertainty. Toronto: Dept. of Economics and Institute for Policy Analysis, University of Toronto, 1990.
Find full textRogers, Hartley. Theory of recursive functions and effective computability. Cambridge, Mass: MIT Press, 1987.
Find full textStokey, Nancy L. Recursive Methods in Economic Dynamics. Cambridge, MA, USA: Harvard University Press, 1989.
Find full textJ, Sargent Thomas, ed. Recursive macroeconomic theory. 3rd ed. Cambridge, MA: MIT Press, 2012.
Find full textBook chapters on the topic "Classes of recursive functions"
Apsītis, Kalvis, Rūsinš Freivalds, Mārtinš Krikis, Raimonds Simanovskis, and Juris Smotrovs. "Unions of identifiable classes of total recursive functions." In Analogical and Inductive Inference, 99–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-56004-1_7.
Full textWette, Elisabeth. "Sequential representation of primitive recursive functions, and complexity classes." In Lecture Notes in Computer Science, 422–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52753-2_56.
Full textAmbainis, Andris, and Juris Smotrovs. "Enumerable classes of total recursive functions: Complexity of inductive inference." In Lecture Notes in Computer Science, 10–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58520-6_50.
Full textNessel, Jochen. "Learnability of Enumerable Classes of Recursive Functions from “Typical” Examples." In Lecture Notes in Computer Science, 264–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46769-6_22.
Full textGreitāne, Inguna. "Probabilistic inductive inference of indices in enumerable classes of total recursive functions." In Analogical and Inductive Inference, 277–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51734-0_68.
Full textFreivalds, Rūsiņš, Dace Gobleja, Marek Karpinski, and Carl H. Smith. "Co-learnability and FIN-identifiability of enumerable classes of total recursive functions." In Lecture Notes in Computer Science, 100–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58520-6_57.
Full textFernández, Maribel. "Recursive Functions." In Undergraduate Topics in Computer Science, 55–68. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-434-8_4.
Full textShen, A., and N. Vereshchagin. "Recursive functions." In The Student Mathematical Library, 139–57. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/stml/019/11.
Full textMurawski, Roman. "Recursive Functions." In Recursive Functions and Metamathematics, 19–95. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2866-9_2.
Full textKrantz, Steven G. "Recursive Functions." In Handbook of Logic and Proof Techniques for Computer Science, 85–94. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0115-1_6.
Full textConference papers on the topic "Classes of recursive functions"
Mayra, Hannu, and Mauno Ronkko. "Functional Classes: Cost of Recursive Method Call in Java." In International Conference on Software Engineering Advances (ICSEA 2007). IEEE, 2007. http://dx.doi.org/10.1109/icsea.2007.35.
Full textMotato, Eliot, and Clark J. Radcliffe. "Networked Assembly of Nonlinear Physical System Models." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41093.
Full textKneuss, Etienne, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. "Synthesis modulo recursive functions." In SPLASH '13: Conference on Systems, Programming, and Applications: Software for Humanity. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2509136.2509555.
Full textKVĚTOŇ, P., and V. KOUBEK. "FUNCTIONS PRESERVING CLASSES OF LANGUAGES." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792464_0008.
Full textChen, Yu-Fang, Bow-Yaw Wang, and Kai-Chun Yang. "Learning Summaries of Recursive Functions." In 2014 21st Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2014. http://dx.doi.org/10.1109/apsec.2014.53.
Full textFerizis, George, and Hossam Gindy. "Mapping Recursive Functions to Reconfigurable Hardware." In 2006 International Conference on Field Programmable Logic and Applications. IEEE, 2006. http://dx.doi.org/10.1109/fpl.2006.311226.
Full textFreivalds, Rūsiņš, Marek Karpinski, and Carl H. Smith. "Co-learning of total recursive functions." In the seventh annual conference. New York, New York, USA: ACM Press, 1994. http://dx.doi.org/10.1145/180139.181098.
Full textJeffrey, D. J., and A. D. Rich. "Recursive integration of piecewise-continuous functions." In the 1998 international symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281508.281649.
Full textVogt, A. "Should activation functions be affinely recursive?" In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. http://dx.doi.org/10.1109/ijcnn.2000.857850.
Full textDraggiotis, Petros. "Recursive relations for multiparton splitting functions." In “Loops and Legs in Quantum Field Theory ” 11th DESY Workshop on Elementary Particle Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.151.0054.
Full textReports on the topic "Classes of recursive functions"
Kailath, Thomas. Recursive Analysis of Matrix Scattering Functions. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada277264.
Full textGeisler-Moroder, David, Eleanor S. Lee, Gregory Ward, Bruno Bueno, Lars O. Grobe, Taoning Wang, Bertrand Deroisy, and Helen Rose Wilson. BSDF Generation Procedures for Daylighting Systems. IEA SHC Task 61, January 2021. http://dx.doi.org/10.18777/ieashc-task61-2021-0001.
Full text