Academic literature on the topic 'Citrus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Citrus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Citrus"
Sulaymonov, Otabek Abdushukurovich, Guzal Tulaganovna Dusmurodova, and Bekzod Bekmurod Ugli Sobirov. "STUDYING THE EFFICACY OF ALLCHUNGKILL CYC.K. AGAINST CITRUS CITRUS WHITEFLY (DIALEURODES CITRI ASHM.) IN CULTURE LEMON." American Journal of Agriculture and Biomedical Engineering 04, no. 05 (May 1, 2022): 22–25. http://dx.doi.org/10.37547/tajabe/volume04issue05-07.
Full textApplequist, Wendy. "Citrus. The Genus Citrus." Economic Botany 58, no. 4 (December 2004): 749. http://dx.doi.org/10.1663/0013-0001(2004)058[0749:bredfa]2.0.co;2.
Full textBrandão, Henrique Cardoso Batista, Ana Laura Santos Anjos, Cristiane de Jesus Barbosa, Walter dos Santos Soares Filho, and Alessandra Selbach Schnadelbach. "Porta-enxertos híbridos de citros tolerantes ao Citrus tristeza vírus (CTV) / Hybrid Citrus Rootstocks Tolerant to Citrus Tristeza Virus (CTV)." Brazilian Journal of Animal and Environmental Research 4, no. 2 (June 25, 2021): 2714–16. http://dx.doi.org/10.34188/bjaerv4n2-093.
Full textNafisah, Sarah Nur, Suharno Suharno, and Netti Tinaprilla. "SIKAP DAN PERSEPSI KONSUMEN TERHADAP JERUK LOKAL DAN JERUK IMPOR DI PASAR MODERN KOTA BOGOR." Forum Agribisnis 4, no. 1 (March 1, 2014): 71–84. http://dx.doi.org/10.29244/fagb.4.1.71-84.
Full textBurrow, Jamie D., and Ariel Singerman. "Children's Citrus Activity: Citrus Counting." EDIS 2019, no. 4 (July 22, 2019): 1. http://dx.doi.org/10.32473/edis-4h402-2019.
Full textOzaki, Yoshihiko, Masaki Miyake, Hisao Maeda, Yasushi Ifuku, Raymond D. Bennett, Zareb Herman, Chi H. Fong, and Shin Hasegawa. "Ichangensin glucoside in Citrus junos, Citrus sudachi and Citrus sphaerocarpa." Phytochemistry 30, no. 8 (January 1991): 2659–61. http://dx.doi.org/10.1016/0031-9422(91)85118-j.
Full textIfmalinda, Ifmalinda, Khandra Fahmy, and Elsa Fitria. "Prediction of Siam Gunung Omeh Citrus Fruit (Citrus Nobilis Var Microcarpa) Maturity Using Image Processing." Jurnal Keteknikan Pertanian 6, no. 3 (December 1, 2018): 335–42. http://dx.doi.org/10.19028/jtep.06.3.335-342.
Full textE.B. "Citrus." Encyclopédie berbère, no. 13 (February 1, 1994): 2027–28. http://dx.doi.org/10.4000/encyclopedieberbere.2311.
Full textKender, Walter J. "Citrus." HortScience 38, no. 5 (August 2003): 1043–47. http://dx.doi.org/10.21273/hortsci.38.5.1043.
Full textBower, J. P. "Citrus." Scientia Horticulturae 62, no. 1-2 (April 1995): 147–48. http://dx.doi.org/10.1016/0304-4238(95)90014-4.
Full textDissertations / Theses on the topic "Citrus"
Silva, Michele Regina Lopes da. "Controle de Xanthomonas citri subsp. citri em citros (Citrus sinensis) mediado por neonicotinóides." Universidade Estadual de Londrina. Centro de Ciências Agrárias. Programa de Pós-Graduação em Agronomia, 2009. http://www.bibliotecadigital.uel.br/document/?code=vtls000149498.
Full textCitrus canker is a disease of global importance for citrus production. The development of alternative measures to control the disease is of great importance. This study aimed to determine if the aplication of neonicotinoid insecticides on citrus plants is capable to control the incidence of citrus canker by induced resistance, as well as to verify if citrus plants differ in vigor due to the treatment with these products. The antimicrobial activity of acetamiprid, imidacloprid (IMI) and thiamethoxan (TMX) was tested in vitro against six isolates of Xanthomonas citri subsp. citri (Xcc). Aliquots of bacterial suspensions (108 CFU / ml) were placed on nutrient agar medium containing the neonicotinoids in concentrations from 0 to 3000 µg/ml of active ingrediente (a.i). In greenhouse, plants of Valencia orange were treated with four doses of IMI by soil drench. Intervals of time ranging from 0 and 10 days, between the inoculation of Xcc by syringe infiltration and treatment with the neonicotinoid were tested. Check plants were treated with water and inoculated with the bacteria. The plants were evaluated by counting the incidence of citrus canker lesions per cm2 of leaf area, the population dynamics of bacteria by reisolations, and macronutrient and micronutrient content of the inoculated and treated plants. Field experiments were carried out in the counties of Paranavaí and São João do Caiuá, PR, on four months old Natal orange plants and eight months old Valencia orange plants, respectively. The plants were treated with five doses of IMI in the trunk or by soil drench. Doses of TMX and clothianidin by soil drench. Check plants were treated with water. The plants were evaluated every two months by determining the incidence of citrus canker, defoliation and citrus leafminer (CLM) incidence. The vigor of the plants was assessed by the volume of canopy, trunk diameter and plant height. The neonicotinoids showed no antimicrobial effect against the strain of Xcc in vitro. The treatment of plants with IMI in addition to reducing the number of lesions of citrus canker and bacterial population in the plant, also changed the characteristics of these injuries, regardless of dose, time of the year or interval between treatment and inoculation of plants with Xcc. In general, experiments in the field showed decrease in the incidence of citrus canker for all neonicotinoids tested, especially the lower dose of IMI applied in the trunk of the plants and the highest dose of IMI by soil drench. The neonicotinoids tested reduced the incidence of citrus canker, increased the levels of N and K and the vigor of citrus plants. Thus the neonicotinoids may be considered in the management of citrus canker not only by its activity as insecticide to control CLM, but also by the bioactivity on citrus plants.
FitzGerald, Véronique Chartier. "Screening of entomopathogenic fungi against citrus mealybug (Planococcus citri (Risso)) and citrus thrips (Scirtothrips aurantii (Faure))." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020887.
Full textCoqueiro, Danila Souza Oliveira 1984. "Expressão gênica diferencial induzida por eliciadores (quitosana e ácido salicílico) nos patossistemas citros-Xanthomonas citri subsp. citri e citros-Xylella fastidiosa = Differential gene expression induced by elicitors (chitosan and salicylic acid) in citrus-Xanthomonas citri subsp. citri and citrus-Xylella fastidiosa pathosystems." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/314472.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-24T04:53:23Z (GMT). No. of bitstreams: 1 Coqueiro_DanilaSouzaOliveira_D.pdf: 3034667 bytes, checksum: 7ce135c75da10c6b26032ec285344dc5 (MD5) Previous issue date: 2013
Resumo: Avaliou-se as alterações transcricionais em laranja 'Pera' (Citrus sinensis L. Osb.) promovidas por quitosana (CHI) e ácido salicílico (SA), utilizando RNA-seq, e o efeito destes compostos no controle do cancro cítrico (Xanthomonas citri subsp. citri) e da clorose variegada dos citros (CVC - Xylella fastidiosa). As plantas foram tratadas com CHI ou SA e após 48h e 24h, respectivamente, foram coletadas amostras foliares para avaliar seus transcriptomas. Para a avaliação dos eliciadores sobre o cancro cítrico e a CVC, as plantas foram tratadas com CHI ou SA e após 48h e 24h, respectivamente, inoculadas com as duas bactérias separadamente. A partir de 24h da inoculação, foram coletadas amostras foliares para avaliar a curva de crescimento de ambas as bactérias, a redução da severidade e/ou incidência das doenças e respostas de defesa da planta por RT-qPCR. Com os resultados do transcriptoma, observou-se que mais genes foram induzidos pelo tratamento com SA do que com CHI. O tratamento com SA aumentou a expressão de genes que participam da via de sinalização do SA na planta (WRKY50, PR2 e PR-9) e genes da biossíntese do etileno e ácido jasmônico (ACS 12, fator de transcrição contendo domínio AP2 e OPR3). Além disso, promoveu a indução de genes relacionados ao metabolismo secundário, processos redox e estresse biótico. No tratamento com CHI, foi observada maior indução de genes relacionados ao metabolismo secundário. Para ambos os tratamentos, a via da auxina foi reprimida. No experimento para controle do cancro cítrico, observou-se que ambos os eliciadores promoveram reduções na severidade e incidência da doença. Entretanto, a CHI pareceu não interferir diretamente na formação do biofilme pela bactéria, mas pode ter dificultado a multiplicação de X. citri na planta. O SA retardou a entrada da bactéria na planta e, aparentemente, inibiu mais a formação do biofilme bacteriano do que a CHI. Comparações da expressão gênica entre os eliciadores reforçam a ideia de que a CHI tem maior potencial de induzir resistência ao cancro cítrico do que SA. No experimento para o controle da CVC, observou-se que a CHI induziu importantes genes da via do SA (NPR1, TGA, EDS1) e etileno (EIN-3, PR-4) 24h após a inoculação. Aplicações exógenas de SA potencializaram o seu efeito endógeno na planta, pois houve indução de NPR1, TGA e PRs. Entretanto, não foi possível estabelecer uma relação clara entre a multiplicação de X. fastidiosa, a incidência da doença e o uso da CHI e SA em laranja 'Pera', já que na maioria das avaliações não houve redução da população bacteriana em amostras foliares e não houve redução da incidência em plantas tratadas. Com base nos resultados, observou-se que CHI e SA induziram diversos genes envolvidos em respostas de defesa em laranja 'Pera'. Entretanto, essas respostas podem ser moduladas diferencialmente a depender do patógeno que afeta a planta, pois os eliciadores foram eficientes no controle da X. citri, um patógeno que coloniza o mesófilo da planta, entretanto não foram efetivos no controle da X. fastidiosa, um patógeno que coloniza o xilema da planta, embora respostas de defesa tenham sido expressas nos momentos iniciais (24h) após a inoculação com X. fastidiosa
Abstract: This study was carried out to evaluate transcriptional modification in sweet orange 'Pera' (Citrus sinensis L. Osb.), promoted by chitosan (CHI) and salicylic acid (SA), using RNA-seq, and the effect of these compounds on citrus canker (Xanthomonas citri subsp. citri) and citrus variegated chlorosis (CVC - Xylella fastidiosa). Plants were treated with CHI or SA and after 48h and 24h, respectively, leaf samples were collected to assess the transcriptome. In the experiments for disease assessment, the plants were treated with CHI or SA and after 48h and 24h, respectively, inoculated. Starting from 24h after inoculation, leaf samples were collected to evaluate the multiplication of the pathogens (X. citri and X. fastidiosa), reduction of the severity and / or incidence and plant defense responses by RT-qPCR. Based upon the transcriptome results, it was observed that more genes were induced by SA than by CHI. SA treatment increased the expression of genes that participate in the SA signaling pathway in the plant (WRKY50, PR2 and-PR9), and genes involved in the biosynthesis of ethylene and jasmonic acid (ACS 12, transcription factor containing AP2 and OPR3 domain). Besides these, SA promoted induction of genes of secondary metabolism, redox processes and biotic stress. The treatment with CHI exhibited higher induction of genes related to secondary metabolism. For both treatments, the auxin pathway was suppressed. In the experiment for the control of citrus canker, it was observed that both elicitors reduced the severity and incidence of the disease. However, CHI seems not to interfere directly in biofilm formation, but may have hindered the multiplication of X. citri in the plant. The SA slowed down the entry of the bacteria into the plant and, apparently, inhibited the formation of biofilm more efficiently than the CHI. Comparisons of gene expression between elicitors reinforce the idea that CHI has higher potential to induce resistance to citrus canker than SA. In the experiment for the control of CVC, it was observed that the CHI induced important genes of the SA (NPR1, TGA, EDS1) and ethylene (EIN-3, PR-4) pathways 24h after inoculation. Exogenous applications of SA potentiated its endogenous effect in the plant, since there was induction of EDS-1, NPR1, TGA and PRs. However, it was not possible to establish a clear relationship between the multiplication of X. fastidiosa, the incidence of the disease and the use of CHI and SA in 'Pera' sweet orange, since most of the assessments did not show reduction of bacterial populations in leaf samples and there was no reduction of the incidence in treated plants. Based upon the results of this study, it was observed that CHI and SA induced several genes involved in defense responses in 'Pera' sweet orange. However, these responses can be modulated differentially depending on the pathogen that affects the plant. This fact was demonstrated in this study, as elicitors were effective in controlling X. citri, a pathogen that colonizes the mesophyll of the plant, but were not effective in controlling X. fastidiosa, a pathogen that colonizes the xylem of the plant, although defense responses were expressed in the early stages (24 h) after inoculation with X. fastidiosa
Doutorado
Bioquimica
Doutora em Biologia Funcional e Molecular
Wright, Glenn C., and Jack Kelly. "Pruning Citrus." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/146998.
Full textPublication contains an introduction to the rationale for pruning as well as sections on when to prune, what part of the tree to prune, techniques for best pruning, and how to protect the tree following pruning. Six figures are included.
Felisberto, Patrícia Aparecida de Carvalho. "Rutáceas como potenciais hospedeiros de Diaphorina citri e reservatório de Candidatus Liberibacter asiaticus." Jaboticabal, 2018. http://hdl.handle.net/11449/157512.
Full textResumo: Huanglongbing (HLB) é a doença mais devastadora dos citros. Está associada a bactérias de floema disseminadas eficientemente pelo psilídeo Diaphorina citri, inseto altamente prolífico e com ampla gama de hospedeiros dentre as rutáceas. Diversas espécies desta família ocorrem em matas onde o inseto poderia estar se reproduzindo e reinfestando pomares além de servir como fonte de multiplicação de Candidatus Liberibacter asiaticus (CLas), dificultando o controle do HLB. Nesse sentido foram realizados dois estudos, sendo o primeiro para avaliar a sobrevivência de D. citri em folhas jovens recém-diferenciadas e totalmente expandida e a reprodução de D. citri em brotos em 20 espécies de rutáceas. E o segundo para avaliar a reação dessas espécies após inoculação do patógeno por meio de enxertia de tecidos infectados e uso de adultos infectivos de D. citri. No primeiro, classificou-se as espécies quanto a favorabilidade em reproduzir D. citri em quatro grupos de plantas: Grupo I (altamente favorável ao inseto) incluiu Citrus ×aurantium 'Valência', Citrus limonia, Murraya paniculata (syn. Murraya exotica L.) (Aurantioideae: Aurantieae) e Bergera koenigii (Aurantioideae: Clauseneae). As espécies do Grupo II (de intermédiio a baixa favorabilidade) incluiu Citrus (Poncirus) trifoliata ‘Pomeroy’, Citrus wintersii, Swinglea glutinosa (Aurantieae) e Clausena lansium (Clauseneae). O grupo III (não favorável) incluiu Aegle marmelos, Atalantia buxifolia e Citrus (‘Microcitrus’) sp. (Aurantieae... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Huanglongbing (HLB) is the most devastating disease of citrus. It is associated with phloem bacteria efficiently disseminated by the psilid Diaphorina citri, a highly prolific insect with a wide range of hosts among the rutaceous. Several species of this family occur in forests where the insect could be reproducing and reinfesting orchards besides serving as a source of multiplication of Candidatus Liberibacter asiaticus (CLas), hindering the control of HLB. In this sense, two investigations were carried out, the first one to evaluate the survival of D. citri on newly differentiated and fully-expanded soft leaves and the shoots reproduction of D. citri in 20 species of rutaceous. And the second to evaluate the reaction of these species after inoculation of the pathogen by grafting of infected tissues and use of infective adults of D. citri. In the first, this allowed suitability of the plants as hosts of the psyllid to be separated into 4 groups of plants. Group I (highly suitable to the insect) species included Citrus ×aurantium ‘Valencia’, Citrus limonia, and Murraya paniculata (syn. Murraya exotica L.) (Aurantioideae: Aurantieae), and Bergera koenigii (Aurantioideae: Clauseneae). Group II (intermediate to low suitability) species included Citrus (Poncirus) trifoliata ‘Pomeroy’, Citrus wintersii, and Swinglea glutinosa (Aurantieae), and Clausena lansium (Clauseneae). Group III (not suitable) included Aegle marmelos, Atalantia buxifolia, and Citrus (‘Microcitrus’) sp. (Auran... (Complete abstract click electronic access below)
Doutor
Amaral, Ingrid [UNESP]. "Biologia e tabela de vida de Brevipalpus yothersi (Acari: Tenuipalpidae) oriundos de diferentes regiões citrícolas do Estado de São Paulo." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137926.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-13T14:55:59Z (GMT) No. of bitstreams: 1 mariano_jlm_dr_prud.pdf: 21534624 bytes, checksum: 2f32b2e3ce64ced881d3b801c0ff70c5 (MD5)
Made available in DSpace on 2016-04-13T14:55:59Z (GMT). No. of bitstreams: 1 mariano_jlm_dr_prud.pdf: 21534624 bytes, checksum: 2f32b2e3ce64ced881d3b801c0ff70c5 (MD5) Previous issue date: 2016-02-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O ácaro Brevipalpus yothersi Baker é vetor da leprose dos citros, principal doença viral da citricultura mundial. Informações sobre a biologia de B. yothersi são essenciais para compreender a dinâmica populacional do ácaro no campo e inferir se mudanças no manejo do pomar em função da região pode alterar a biologia do ácaro. O objetivo do trabalho foi determinar a biologia e elaborar a tabela de vida de fertilidade de B. yothersi coletados em diferentes regiões citrícolas do estado de São Paulo. Os experimentos foram realizados no Laboratório de Acarologia, pertencente à Faculdade de Ciências Agrárias e Veterinárias - FCAV/UNESP, Jaboticabal - SP. Os ácaros foram coletados em pomares cítricos das regiões de Barretos, Jales e Santa Cruz do Rio Pardo, posteriormente, em laboratório, foram multiplicados em frutos de laranja. Os parâmetros biológicos avaliados foram duração das fases de desenvolvimento, oviposição, período de incubação, viabilidade dos ovos, longevidade, taxa líquida de reprodução (Ro), tempo médio de geração (T), taxa intrínseca de crescimento populacional (rm) e taxa finita de crescimento populacional (λ). Estes parâmetros foram avaliados em dois experimentos, o primeiro consistiu na biologia de B. yothersi em frutos isentos de resíduos de produtos fitossanitários à 23±1ºC e o segundo sob frutos com resíduo de espirodiclofeno à 25±1ºC. As observações foram realizadas diariamente, pela manhã e ao fim da tarde. A duração do desenvolvimento, longevidade, período de pré-oviposição, taxa de oviposição e número de ovos de B. yothersi apresentaram diferenças entre as populações. O ciclo biológico de B. yothersi criados sobre frutos de laranja varia de 18 a 24 dias, considerando os intervalos de 22º a 26 ºC, 50 a 70% de umidade relativa e fotofase de 14 horas. As diferenças biológicas entre populações de B. yothersi indicam que há diferenças na dinâmica populacional do ácaro no campo, necessitando de manejos adequados para cada região para melhor controle da leprose.
The mite Brevipalpus yothersi Baker is the vector of the citrus leprosis, major viral disease of citrus worldwide. Information about B. yothersi's biology are essential to understanding the population dynamics of the mite in the field and infer whether changes in orchard management by region can change the mite biology. The objective was to determine the biology and prepare the fertility life table of B. yothersi collected in different citrus regions of São Paulo state. The experiments were performed in Acarology Laboratory, belonging to the Faculty of Agricultural and Veterinary Sciences - FCAV/UNESP, Jaboticabal - SP. The mites were collected in citrus orchards in the regions of Barretos, Jales and Santa Cruz do Rio Pardo, later in the laboratory were multiplied in orange fruits. The biological parameters assessed were duration of the stages of development, oviposition, incubation period, egg viability, longevity, net reproductive rate (Ro), mean generation time (T), intrinsic rate of increase (rm) and finite rate increase (λ). These parameters were evaluated in two experiments, the first consisted the biology of B. yothersi in fruits free of residues of pesticides at 23 ± 1°C and the second consisting of the biology of B. yothersi under fruit with spirodiclofen residue at 25 ± 1°C . The observations were performed daily, in the morning and in the afternoon. The duration of the development, longevity, pre-oviposition period, oviposition rate and number of B. yothersi eggs showed differences between populations. The life cycle of B. yothersi created on orange fruit ranges from 18 to 24 days, considering the ranges of 22 to 26°C, 50-70% relative humidity and 14 hours. The biological differences between populations of B. yothersi indicate that there are differences in the population dynamics of the mite in the field, requiring adequate management practices for each region for better control of leprosis.
McGinley, Susan. "Researching Desert Citrus: A Visit to the Citrus Ag Center." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1999. http://hdl.handle.net/10150/622296.
Full textLopes, Aline Cristina [UNESP]. "Expressão gênica de Xanthomonas citri subsp. citri colonizando laranja doce ‘pêra rio’ (Citrus sinensis (L.) Osbeck) e lima ácida ‘galego’ (Citrus aurantifolia Swingle)." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138221.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-04T14:14:37Z (GMT) No. of bitstreams: 1 lopes_ac_me_jabo.pdf: 1995885 bytes, checksum: 09268565881925cc85d0cdbe17aa6d6c (MD5)
Made available in DSpace on 2016-05-04T14:14:37Z (GMT). No. of bitstreams: 1 lopes_ac_me_jabo.pdf: 1995885 bytes, checksum: 09268565881925cc85d0cdbe17aa6d6c (MD5) Previous issue date: 2016-04-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A citricultura é uma das principais atividades do agronegócio brasileiro. Entretanto, inúmeras pragas e doenças atacam os citros, causando grandes prejuízos econômicos. O cancro cítrico, causado pela bactéria Xanthomonas citri subsp. citri (Xac), é um grave problema para o setor, não havendo ainda um método eficaz para o seu controle. Neste estudo, utilizando RNASeq, foram analisados os perfis transcricionais de Xac inoculada em duas espécies de citros contrastantes à doença: laranja doce ‘Pêra Rio’ (Citrus sinensis L. Osbeck), menos suscetível e lima ácida ‘Galego’ (Citrus aurantifolia Swingle), altamente suscetível, às 48 e 72 horas após a infecção (hai), com o objetivo de identificar genes de Xac envolvidos no processo de infecção. Foram identificados 80 genes de Xac diferencialmente expressos (GDEs) no hospedeiro laranja doce ‘Pêra Rio’, sendo 41 e 39 nos tempos de 48 e 72 hai, respectivamente. Em lima ácida ‘Galego’ foram identificados 82 GDEs, sendo 40 no tempo de 48 hai e 42 em 72 hai. Alguns destes genes diferencialmente expressos foram avaliados pela técnica de PCR quantitativa em tempo real, sendo estes hpa1, hrpE, hrpW, virK, ahpC, katE, katG, cydA e cydB, os quais estão envolvidos na patogenicidade e virulência, na defesa ao estresse oxidativo e na fosforilação oxidativa. Os genes de patogenicidade e virulência foram induzidos em Xac em ambos os hospedeiros, enquanto que os genes relacionados à cadeia respiratória foram inibidos em ambos os hospedeiros, com maior inibição em lima ácida ‘Galego’. No entanto, os genes relacionados ao estresse oxidativo apresentaram um perfil de expressão maior em Xac na interação com laranja doce ‘Pêra Rio’ do que em lima ácida ‘Galego’, principalmente ahpC e katG. A determinação da concentração de H2O2 nas folhas revelou que laranja doce ‘Pêra Rio’, espécie menos suscetível ao cancro cítrico, possui maior quantidade de H2O2 do que lima ácida ‘Galego’, espécie altamente suscetível. Isso sugere que a menor susceptibilidade ao cancro cítrico da laranja ‘Pêra Rio’ pode estar relacionada com a maior quantidade de H2O2 presente nesta espécie, o que leva a bactéria a ativar seu arsenal de enzimas para combater o estresse oxidativo do meio, retardando a infecção.
The citrus industry is one of the main activities of Brazilian agribusiness. However, many pests and diseases attack citrus, causing great economic losses. The citrus canker, caused by Xanthomonas citri subsp. citri (Xac), is a major problem for the sector, there is not yet an effective method for its control. In this study, the transcriptional profiles of Xac inoculated in two species of contrasting citrus disease were analyzed using RNA-Seq : sweet orange 'Pêra Rio' (Citrus sinensis L. Osbeck), moderately tolerant and Mexican Lime 'Galego' (Citrus aurantifolia Swingle) highly susceptible at 48 and 72 hours after infection (hai) aiming to identify Xac genes involved in the infection process. We identified 80 Xac differentially expressed genes (DGE) in sweet orange 'Pera Rio', 41 and 39 at 48 and 72 hai, respectively. In Mexican Lime 'Galego' 82 DGE were identified, 40 at 48 and 42 at 72 hai. Some of these differentially expressed genes were evaluated by real time quantitative PCR : hpa1, hrpE, hrpW, Virk, ahpC, KatE, katG, cyda and cydB, which are involved in pathogenicity and virulence, oxidative stress defense and oxidative phosphorylation. The pathogenicity and virulence genes were induced in Xac in both hosts, whereas the respiratory chain-related genes were inhibited in both hosts with greater inhibition in Mexican lime 'Galego'. However, genes related to oxidative stress showed a higher expression profile in Xac interaction with sweet orange 'Pera Rio' than with Mexican lime 'Galego', mainly ahpC and katG. The determination of H2O2 concentration in leaves revealed a higher amount of H2O2 in sweet orange 'Pêra Rio' moderately tolerant to citrus canker, than in Mexican Lime 'Galego' highly susceptible to citrus canker. The results suggests that the lower susceptibility to citrus canker orange 'Pera Rio' may be related to the greater amount of H2O2 present in this specie, which leads the bacteria to activate their arsenal of enzymes to fight oxidative stress environment, slowing the infection.
Lopes, Aline Cristina. "Expressão gênica de Xanthomonas citri subsp. citri colonizando laranja doce 'pêra rio' (Citrus sinensis (L.) Osbeck) e lima ácida 'galego' (Citrus aurantifolia Swingle) /." Jaboticabal, 2016. http://hdl.handle.net/11449/138221.
Full textCoorientador: Roberto Hirochi Herai
Coorientador: Juliana da Silva Vantini
Banca: José Belasque Júnior
Banca: Priscila Lupino gatão
Resumo: A citricultura é uma das principais atividades do agronegócio brasileiro. Entretanto, inúmeras pragas e doenças atacam os citros, causando grandes prejuízos econômicos. O cancro cítrico, causado pela bactéria Xanthomonas citri subsp. citri (Xac), é um grave problema para o setor, não havendo ainda um método eficaz para o seu controle. Neste estudo, utilizando RNASeq, foram analisados os perfis transcricionais de Xac inoculada em duas espécies de citros contrastantes à doença: laranja doce 'Pêra Rio' (Citrus sinensis L. Osbeck), menos suscetível e lima ácida 'Galego' (Citrus aurantifolia Swingle), altamente suscetível, às 48 e 72 horas após a infecção (hai), com o objetivo de identificar genes de Xac envolvidos no processo de infecção. Foram identificados 80 genes de Xac diferencialmente expressos (GDEs) no hospedeiro laranja doce 'Pêra Rio', sendo 41 e 39 nos tempos de 48 e 72 hai, respectivamente. Em lima ácida 'Galego' foram identificados 82 GDEs, sendo 40 no tempo de 48 hai e 42 em 72 hai. Alguns destes genes diferencialmente expressos foram avaliados pela técnica de PCR quantitativa em tempo real, sendo estes hpa1, hrpE, hrpW, virK, ahpC, katE, katG, cydA e cydB, os quais estão envolvidos na patogenicidade e virulência, na defesa ao estresse oxidativo e na fosforilação oxidativa. Os genes de patogenicidade e virulência foram induzidos em Xac em ambos os hospedeiros, enquanto que os genes relacionados à cadeia respiratória foram inibidos em ambos os hospedeiros, com maior ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The citrus industry is one of the main activities of Brazilian agribusiness. However, many pests and diseases attack citrus, causing great economic losses. The citrus canker, caused by Xanthomonas citri subsp. citri (Xac), is a major problem for the sector, there is not yet an effective method for its control. In this study, the transcriptional profiles of Xac inoculated in two species of contrasting citrus disease were analyzed using RNA-Seq : sweet orange 'Pêra Rio' (Citrus sinensis L. Osbeck), moderately tolerant and Mexican Lime 'Galego' (Citrus aurantifolia Swingle) highly susceptible at 48 and 72 hours after infection (hai) aiming to identify Xac genes involved in the infection process. We identified 80 Xac differentially expressed genes (DGE) in sweet orange 'Pera Rio', 41 and 39 at 48 and 72 hai, respectively. In Mexican Lime 'Galego' 82 DGE were identified, 40 at 48 and 42 at 72 hai. Some of these differentially expressed genes were evaluated by real time quantitative PCR : hpa1, hrpE, hrpW, Virk, ahpC, KatE, katG, cyda and cydB, which are involved in pathogenicity and virulence, oxidative stress defense and oxidative phosphorylation. The pathogenicity and virulence genes were induced in Xac in both hosts, whereas the respiratory chain-related genes were inhibited in both hosts with greater inhibition in Mexican lime 'Galego'. However, genes related to oxidative stress showed a higher expression profile in Xac interaction with sweet orange 'Pera Rio' than with Mexica... (Complete abstract click electronic access below)
Mestre
Julião, Maria Heloisa Moreno. "Genomic identification of MATE, ABC, and MFS transporters in Citrus sinensis and expression analysis of Citrus species interacting with Xanthomonas citri subsp. citri /." Jaboticabal, 2020. http://hdl.handle.net/11449/192658.
Full textResumo: As plantas como organismos sésseis requerem a síntese e o acúmulo de uma ampla variedade de moléculas envolvidas no crescimento, desenvolvimento e processos relacionados à defesa. Os transportadores Proteínas de Extrusão Multi- Antimicrobianas (MATE), Cassette de Ligação de ATP (ABC) e Superfamília dos Facilitadores Maioritários (MFS) são as principais famílias de transportadores de membrana em plantas, desempenhando um papel central nos processos relacionados à defesa nas interações planta-patógenos. Por exemplo, protegem as células das espécies de Citros sob a infecção de Xanthomonas citri subsp. citri (Xac), o agente etiológico do Cancro Cítrico tipo A, uma das doenças de Citros mais devastadoras envolvidas em sérios impactos econômicos e ambientais. Aqui, identificamos genes e transcritos das famílias MATE, ABC e MFS usando o genoma disponível de Citrus sinensis (v2.0 HZAU) e o Transcriptoma Referência de Citros (CRT) re-anotado da base de dados CitrusKB (http://bioinfo.deinfo.uepg.br). Foram identificados 67 genes MATE, 91 MFS e 143 ABC no genoma de C. sinensis e 82 transcritos MATE, 139 MFS e 226 ABC no CRT. Os transcritos foram mapeados no genoma de C. sinensis, revelando uma alta taxa de genes parálogos e putativos eventos de splicing alternativo (AS), cujos perfis de expressão gênica e potenciais papéis na interação Citros-Xac foram propostos. As cópias de genes em tandem e cópias dispersas juntamente com genes que possivelmente sofreram eventos de AS representam fon... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Plants as sessile organisms require the synthesis and accumulation of a large array of molecules involved in growth, development, and defense-related processes. The Multi-Antimicrobial Extrusion Protein (MATE), ATP-Binding Cassette (ABC) and Major Facilitator Superfamily (MFS) transporters are the largest families of membrane transporters in plants, playing a central role in the defense-related processes in plant- pathogen interactions. For instance, protecting Citrus species cells under the infection of Xanthomonas citri subsp. citri (Xac), the etiologic agent of the Citrus Canker type A, one of the most devastating Citrus diseases involved with serious economic and environmental impacts. Herein, we identified genes and transcripts from MATE, ABC, and MFS families using the available Citrus sinensis genome (v2.0 HZAU) and the re-annotated Citrus Reference Transcriptome (CRT) from CitrusKB Knowledge Base (http://bioinfo.deinfo.uepg.br). We identified 67 MATE, 91 MFS, and 143 ABC genes in the C. sinensis genome and 82 MATE, 139 MFS, and 226 ABC transcripts in the CRT. The transcripts were mapped in the C. sinensis genome revealing a high rate of paralogs genes and probably alternative splicing (AS) events, whose expression profiles and potential roles in the Citrus-Xac interaction were proposed. The tandem and dispersed copies along with genes that underwent AS events represents sources of transporters’ genes diversity and complexity. Moreover, we also highlighted potential bi... (Complete abstract click electronic access below)
Mestre
Books on the topic "Citrus"
Giovanni, Dugo, and Di Giacomo Angelo, eds. Citrus: The genus citrus. London: Taylor & Francis, 2002.
Find full textAlbrigo, L. G., L. L. Stelinski, and L. W. Timmer, eds. Citrus. Wallingford: CABI, 2019. http://dx.doi.org/10.1079/9781845938154.0000.
Full textDavies, Frederick Stanley. Citrus. Wallingford, Oxon, UK: CAB International, 1994.
Find full textWalheim, Lance. Citrus. Tucson, Ariz: Ironwood Press, 1996.
Find full textBrennan, Ethel. Citrus. San Francisco: Chronicle Books, 1996.
Find full textBooks, Sunset, ed. Citrus. Menlo Park, Calif: Sunset Pub. Corp., 1996.
Find full texttranslator, Tamosaitis Amber, and Fay Shannon author, eds. Citrus. [Los Angeles, California]: Seven Seas Entertainment, LLC, 2018.
Find full textSpiegel-Roy, Pinchas. Biology of citrus. Cambridge: Cambridge University Press, 1996.
Find full textGhosh, S. P. Citrus fruits. New Delhi: Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, 2007.
Find full textBerhow, Mark A., Shin Hasegawa, and Gary D. Manners, eds. Citrus Limonoids. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0758.
Full textBook chapters on the topic "Citrus"
Bährle-Rapp, Marina. "citrus." In Springer Lexikon Kosmetik und Körperpflege, 115. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_2154.
Full textOllitrault, Patrick, and Luis Navarro. "Citrus." In Fruit Breeding, 623–62. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-0763-9_16.
Full textRao, Madhugiri Nageswara, Jaya R. Soneji, and Leela Sahijram. "Citrus." In Wild Crop Relatives: Genomic and Breeding Resources, 43–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20447-0_3.
Full textAit-Oubahou, Ahmed, Mohamed Benichou, Maha Sagar, Amar Kaanane, and Elhadi M. Yahia. "Citrus." In Fruit and Vegetable Phytochemicals, 1003–22. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119158042.ch49.
Full textLado, Joanna, Paul JR Cronje, Maria Jesús Rodrigo, and Lorenzo Zacarías. "Citrus." In Postharvest Physiological Disorders in Fruits and Vegetables, 377–98. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2019. http://dx.doi.org/10.1201/b22001-17.
Full textHazarika, T. K. "Citrus." In Fruit and Nut Crops, 1–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1586-6_15-1.
Full textFebres, V., L. Pe�a, S. Y. Folimonova, and G. Moore. "Citrus." In Biotechnology of fruit and nut crops, 621–44. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781780648279.0621.
Full textOrbović, Vladimir, and Jude W. Grosser. "Citrus." In Agrobacterium Protocols Volume 2, 177–89. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59745-131-2:177.
Full textKorsten, Lise, and Peter Taverner. "Citrus." In Crop Post-Harvest: Science and Technology, 43–87. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781444354652.ch4.
Full textNarayana, C. K. "Citrus." In Phytochemicals in Fruits and their Therapeutic Properties, 68–76. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003245292-13.
Full textConference papers on the topic "Citrus"
Grafton-Cardwell, Elizabeth E. "Asian citrus psyllid (Diaphorina citri) and huanglongbing radically alter California citrus IPM." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.110290.
Full textKo, Andrew J., and Brad A. Myers. "Citrus." In the 18th annual ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1095034.1095037.
Full textVan Vliet, Ashley C. "Knowledge of California residents on Asian citrus psyllid (Diaphorina citri) and citrus greening disease." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115500.
Full textBerdis, Elizabeth, John Buckley, and John Kraft. "Citrus Flavor Technologies: Citrus Oils — Processing, Separation, Application." In ASME 2003 Citrus Engineering Conference. American Society of Mechanical Engineers, 2003. http://dx.doi.org/10.1115/cec2003-4906.
Full textDavis, Dennis. "Integrated Citrus Information System." In ASME 1994 Citrus Engineering Conference. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/cec1994-4002.
Full textJohnson, Teiko M. "Citrus Pulp Recovery." In ASME 1987 Citrus Engineering Conference. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/cec1987-3301.
Full textSchuermans, Alex. "Brazil: Citrus Benchmarking." In ASME 2003 Citrus Engineering Conference. American Society of Mechanical Engineers, 2003. http://dx.doi.org/10.1115/cec2003-4901.
Full textArivazhagan, S., R. Newlin Shebiah, S. Selva Nidhyanandhan, and L. Ganesan. "Classification of citrus and non-citrus fruits using texture features." In 2010 International Conference on Computing, Communication and Networking Technologies (ICCCNT'10). IEEE, 2010. http://dx.doi.org/10.1109/icccnt.2010.5591562.
Full textMao, Runqian. "Study on control effectiveness of huanglongbing based on eradication of Asian citrus psyllid,Diaphorina citri, surrounding citrus orchard." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.106668.
Full textREIS, ROBERTA CRISTINA RODRIGUES DOS, Ana Carolina Hermes, and MINEIA WEBER BLATTES. "ATIVIDADE ANTIMICROBIANA DOS CITRUS LIMON E CITRUS SINENSIS: UMA BREVE REVISÃO." In Simpósio de Ensino, Pesquisa e Extensão (SEPE 2022). sepebr, 2022. http://dx.doi.org/10.48195/sepe2022.26253.
Full textReports on the topic "Citrus"
Audsley, Neil, Gonzalo Avila, Claudio Ioratti, Valerie Caron, Chiara Ferracini, Tibor Bukovinszki, Marc Kenis, et al. Asian citrus psyllid, Diaphorina citri (Kuwayama). Euphresco, 2023. http://dx.doi.org/10.1079/20240228459.
Full textBlumwald, Eduardo, and Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7587732.bard.
Full textLee, Richard, Moshe Bar-Joseph, K. S. Derrick, Aliza Vardi, Roland Brlansky, Yuval Eshdat, and Charles Powell. Production of Antibodies to Citrus Tristeza Virus in Transgenic Citrus. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7613018.bard.
Full textBar-Joseph, Moshe, and J. S. Semancik. Characterization of Citrus Viroids as Potential Dwarfing Agents of Citrus. United States Department of Agriculture, December 1992. http://dx.doi.org/10.32747/1992.7600051.bard.
Full textKarel Grohman and Scott Stevenson. Citrus Waste Biomass Program. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/898345.
Full textSadka, Avi, Mikeal L. Roose, and Yair Erner. Molecular Genetic Analysis of Citric Acid Accumulation in Citrus Fruit. United States Department of Agriculture, March 2001. http://dx.doi.org/10.32747/2001.7573071.bard.
Full textBlumwald, Eduardo, and Avi Sadka. Sugar and Acid Homeostasis in Citrus Fruit. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697109.bard.
Full textCastillo Galindo, Nicolle Tatiana. Contexto de cadena cítricos (Citrus spp.). Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2020. http://dx.doi.org/10.21930/agrosavia.fichascontexto.2020.23.
Full textVandenberg, Ted. Inhibition of Mammary Cancer by Citrus Limonoids. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada398201.
Full textTaiz, Lincoln. Regulation of Vacuolar pH in Citrus limon. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841076.
Full text