Academic literature on the topic 'Circular dichroism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circular dichroism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Circular dichroism"

1

Furusawa, Gaku, and Tetsuo Kan. "Au Nanospirals Transferred onto PDMS Film Exhibiting Circular Dichroism at Visible Wavelengths." Micromachines 11, no. 7 (June 29, 2020): 641. http://dx.doi.org/10.3390/mi11070641.

Full text
Abstract:
We propose a thin, single-layered circular dichroic filter with Au nanospiral structures on a polydimethylsiloxane (PDMS) thin film that has strong circular dichroism at visible wavelengths. Au nanospiral structures with a diameter of 70 nm were fabricated by cryogenic glancing angle deposition on a substrate with a nanodot array template patterned with the block copolymer PS-PDMS. The Au nanospiral structures were transferred onto a transparent and flexible PDMS thin film to fabricate a thin, single-layered circular dichroic filter. The filter had a very large circular dichroism peak of −830 mdeg at 630 nm. The results show that the Au nanospiral structures transferred onto PDMS thin film exhibit large circular dichroism at visible wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
2

Rogalev, Andrei, Alexei Bosak, Fabrice Wilhelm, and Jose Goulon. "X-ray Natural Circular Dichroism." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1518. http://dx.doi.org/10.1107/s2053273314084812.

Full text
Abstract:
Natural Circular Dichroism was only recently discovered in the x-ray range[1]. This effect stems from the interference terms which mix multipole transition moments of opposite parity: the Electric Dipole-Electric Quadrupole (E1.E2) and the Electric Dipole-Magnetic Dipole (E1.M1) exist only in structures with broken space inversion symmetry. The scalar E1.M1 term known to be responsible for Circular Dichroism at optical wavelengths is usually considered to be vanishingly small for core level spectroscopies. The E1.E2 interference term, on the contrary, can be large in the X-ray region, but it is a parity odd second rank tensor and therefore observable only in 13 non-centrosymmetric crystal classes. X-ray Natural Circular Dichroism has now been detected in the XANES region for several uniaxial and biaxial crystals. It can give access to the absolute configuration of chiral absorbing centers. On the other hand, Chiral-EXAFS, i.e. the analog of Magnetic-EXAFS for Natural Circular Dichroism has also been measured recently using a uniaxial optically active crystal of paratellurite (TeO2). Chiral-EXAFS originates from symmetry allowed multiple scattering paths. In this presentation, we wish to report on recent advances in X-ray natural circular dichroism and its applications. Determination of absolute configuration is illustrated with measurements of both E1.E2 and E1.M1 terms in chiral alpha-Ni(H2O)6·SO4 single crystals. Manifestation of X-ray optical acitivity in magnetoelectric crystals will be illustrated with various dichroisms measured at the Fe K-edge in multiferroic GaFeO3 crystal. Finally, we will review briefly the perspectives open by our experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

Kuball, Hans-Georg. "Circular Dichroism and Linear Dichroism." Zeitschrift für Physikalische Chemie 212, Part_1 (January 1999): 118–19. http://dx.doi.org/10.1524/zpch.1999.212.part_1.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ishijima, Shizuo, Miwako Higashi, and Hiroyuki Yamaguchi. "Magnetic Circular Dichroism and Circular Dichroism Spectra of Xanthones." Journal of Physical Chemistry 98, no. 41 (October 1994): 10432–35. http://dx.doi.org/10.1021/j100092a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

K, Manish. "Pharmaceutical Applications of Circular Dichroism for Nanomaterial’s." Advances in Clinical Toxicology 4, no. 4 (2019): 1–5. http://dx.doi.org/10.23880/act-16000173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stephens, P. J., and M. A. Lowe. "Vibrational Circular Dichroism." Annual Review of Physical Chemistry 36, no. 1 (October 1985): 213–41. http://dx.doi.org/10.1146/annurev.pc.36.100185.001241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Waldron, Daniel E., Rachel Marrington, Marcus C. Grant, Matthew R. Hicks, and Alison Rodger. "Capillary circular dichroism." Chirality 22, no. 1E (2010): E136—E141. http://dx.doi.org/10.1002/chir.20878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Magyarfalvi, Gábor, György Tarczay, and Elemér Vass. "Vibrational circular dichroism." Wiley Interdisciplinary Reviews: Computational Molecular Science 1, no. 3 (April 11, 2011): 403–25. http://dx.doi.org/10.1002/wcms.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Warnke, Ingolf, and Filipp Furche. "Circular dichroism: electronic." WIREs Computational Molecular Science 2, no. 1 (July 5, 2011): 150–66. http://dx.doi.org/10.1002/wcms.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shindo, Yohji, and Masayuki Nakagawa. "Circular dichroism measurements. I. Calibration of a circular dichroism spectrometer." Review of Scientific Instruments 56, no. 1 (January 1985): 32–39. http://dx.doi.org/10.1063/1.1138467.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Circular dichroism"

1

Schmid, Marco. "Conformational dynamics of G-quadruplex DNA probed by time-resolved circular dichroism." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX107/document.

Full text
Abstract:
Les quadruplexes de guanines (G4) sont des structures d’ADN non-canoniques qui résultent de l’empilement hydrophobe de tétrades de guanines, stabilisé par des cations métalliques (tels que Na+ et K+). Il existe aujourd’hui un nombre croissant de preuves expérimentales qui attestent de l’implication des G4 dans d’importantes fonctions cellulaires corrélées à leur mécanisme de repliement/dépliement. Toutefois, très peu d’études ont abordé les aspects dynamiques de leur formation. Aussi, nous avons entrepris l’étude de plusieurs G4 mono-moléculaires à l’aide d’une nouvelle extension d’expériences de saut de température, capable de mesurer la dynamique de dénaturation thermique et de renaturation consécutive de l’ADN, sur une fenêtre temporelle allant de quelques millisecondes aux secondes. Les changements conformationnels ont été sondés par dichroïsme circulaire (CD) résolu en temps, connu pour être très sensible à l’arrangement des guanines dans les G4. Au préalable des études résolues en temps, en collaboration avec DISCO/SOLEIL, nous avons mesuré les spectres CD statiques de différentes séquences G4 présentant des topologies distinctes, comme celles des télomères humains, de l’aptamère de la thrombine ou des promoteurs de c-MYC. Nous avons observé des cinétiques de dénaturation et renaturation biphasiques avec des constantes de temps de quelques centaines de millisecondes et quelques secondes. Ces cinétiques dépendent fortement de l’amplitude du saut de température et de la concentration de cations métalliques. L’ensemble de ces observations suggère l’existence de plusieurs voies de repliement/dépliement des G4 sur des surfaces de potentiel très rugueuses
Guanine-quadruplexes (G4) are non-canonical DNA structures that result from the hydrophobic stacking of guanine quartets stabilized by metal cations (typically Na+ and K+). There is now an increasing body of experimental evidence of their occurrence in important cell functions correlated to their folding/unfolding mechanisms. However, only few studies have addressed the dynamical aspect of their formation. In this context, we have undertaken the study of several intramolecular G4 with a novel extension of temperature-jump experiments capable to measure the thermal denaturation and the consecutive renaturation of DNA over a time window spanning a few ten milliseconds to seconds. Conformational changes have been monitored by time-resolved circular dichroism (CD), which is known to be sensitive to the chiral arrangement of guanines in the G4 scaffolds.Prior to time-resolved measurements, within the frame of a collaboration with DISCO/SOLEIL, we have performed static synchrotron radiation CD measurements on several short G4-forming sequences, such as human telomere, thrombin-binding aptamer and c-MYC promoter sequences, displaying distinct topologies. Denaturation and renaturation kinetics are found to exhibit biphasic decays with time constants of a few hundred milliseconds and a few seconds, respectively. Those kinetics depend strongly on the amplitude of the temperature jump and the concentration of cations. Taken together these observations suggest the existence of multiple folding pathways on extremely rugged landscapes
APA, Harvard, Vancouver, ISO, and other styles
2

Bulheller, Benjamin M. "Circular and linear dichroism spectroscopy of proteins." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10866/.

Full text
Abstract:
Circular dichroism (CD) is an important technique in the structural characterization of proteins, and especially for secondary structure determination. The CD of proteins can be calculated from first principles using the matrix method, with an accuracy that is almost quantitative for helical proteins. Thus, for proteins of unknown structure, CD calculations and experimental data can be used in conjunction to aid structure analysis. The vacuum-UV region (below 190 nm), where charge-transfer transitions have an influence on the CD spectra, can be accessed using synchrotron radiation circular dichroism (SRCD) spectroscopy. Calculations of the vacuum-UV CD spectra have been performed for 71 proteins, for which experimental SRCD spectra and X-ray crystal structures are available. The theoretical spectra are calculated considering charge-transfer and side chain transitions, which significantly improves the agreement with experiment, raising the Spearman correlation coefficient between the calculated and experimental intensity at 175 nm from 0.12 to 0.79. The influence of the different conformations used for the calculation of charge-transfer transitions is discussed in detail, focussing on the effect in the vacuum-UV. Linear dichroism (LD) provides information on the orientation of molecules but is more challenging to analyze than CD. To aid the interpretation of LD spectra, the calculation of protein LD using the matrix method is established and the results compared to experimental data. The orientations of five prototypical proteins are correctly reproduced by the calculations. Using a simplified approach, matrix method parameter sets for the nucleic bases and naphthalenediimide (NDI) have been created and are used to determine DNA/RNA conformations and to study NDI nanotubes. Finally, to make CD and LD calculations available for the scientific community in an easy-to-use fashion, the web interface DichroCalc is introduced.
APA, Harvard, Vancouver, ISO, and other styles
3

Lees, Jonathan Gill. "Circular dichroism spectroscopy : informatics and new methodologies." Thesis, Birkbeck (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miles, Andrew John. "Synchrotron radiation circular dichroism : standardisation and new methods." Thesis, Birkbeck (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

George, S. J. "Magnetic circular dichroism studies of iron-sulphur proteins." Thesis, University of East Anglia, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Harding, Christopher John. "Photoelectron circular dichroism in gas phase chiral molecules." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCann, Jennifer L. "A vibrational circular dichroism study of optically active polymers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34685.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orry, Andrew John Wooldridge. "Molecular modelling and circular dichroism studies of membrane proteins." Thesis, Birkbeck (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248128.

Full text
Abstract:
On the basis of preliminary infonnation from genome projects it has been estimated that approximately 10000 different membrane proteins could exist in the human being. A membrane protein of some description is involved in nearly every biochemical pathway, therefore knowledge of their structure is essential for detennination of function and for rational drug design. Membrane proteins are extremely hard to crystallize due to their amphipathic nature and therefore we explore other structural detennination methods in order to gain infonnation about membrane proteins. These methods are, membrane protein sequence analysis, molecular modeling, conventional circular dichroism (CD) and synchrotron radiation circular dichroism spectroscopy (SRCD) which enable a detennination of structure, function and can be used as a basis for rational drug design. Sequence analysis studies were undertaken on the defective gene product of CLN2 which is involved in the neurodegenerative disease late infantile neuronal ceroid lipofuscinoses (LINCL). A one transmembrane helix structure is proposed for this membrane protein. A model is proposed for its structure in membranes, and how it may function as a proteinase to aid in the maturation of subunit c of the mitochondrial A TP complex. Its role is contrasted with that of the CLN3 protein, which is involved in the juvenile form of the disease. Molecular modeling studies were undertaken on the endothelin G-protein coupled receptor. The endothelins are important regulators of the vascular system and endothelin-l is the most potent vasoconstrictor yet characterized. Computational docking studies have been undertaken in order to detennine whether endothelins that have been isolated bind to the modeled receptor. The model of the receptor/ligand complexes produced forms a basis for rational drug design of agonists and antagonists for this G-protein coupled receptor. Conventional circular dichroism spectroscopy has been used to analyze the effects of organic solvents on the membrane protein bacteriorhodopsin. Circular dichroism analysis was also undertaken on membrane proteins whose crystal 2 structures have already been detennined. These studies involved using SRCD which enables low wavelength data to be obtained. Inclusion of data in this wavelength region in reference databases used for calculations of secondary structures could provide for much better accuracy in determination of the content of sheet, tum, polyproline II and aperiodic types of secondary structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Dang, Zhijing. "Theoretical studies of protein folding and circular dichroism spectroscopy." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saha, Supriya. "Circular dichroism and exotic pairing in heavy fermion superconductors." Thesis, University of Bristol, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358031.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Circular dichroism"

1

Rodger, Alison. Circular dichroism and linear dichroism. Oxford: Oxford University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Atsuya, Muranaka, Mack John, and Royal Society of Chemistry (Great Britain), eds. Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. Cambridge: RSC Pub., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nina, Berova, Nakanishi Kōji 1925-, and Woody Robert, eds. Circular dichroism: Principles and applications. 2nd ed. New York: Wiley-VCH, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1925-, Nakanishi Kōji, Berova Nina, and Woody Robert, eds. Circular dichroism: Principles and applications. New York, N.Y: VCH, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Inc, ebrary, ed. Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. Amsterdam: IOS Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

D, Fasman Gerald, ed. Circular dichroism and the conformational analysis of biomolecules. New York: Plenum Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodgers, David S. Circular dichroism: Theory and spectroscopy. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sato, Hisako, Jun Yoshida, and Akihiko Yamagishi. Multi-dimensional Vibrational Circular Dichroism. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0391-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nordén, Bengt. Linear dichroism and circular dichroism: A textbook on polarized-light spectroscopy. Cambridge: Royal Society of Chemistry, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Conference on Circular Dichroism (1985 Sofia, Bulgaria). F.E.C.S. international conference on circular dichroism: Proceedings of the F.E.C.S. International conference on circular dichroism, September 16-21, 1985, Sofia, Bulgaria. Weinheim: VCH, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Circular dichroism"

1

Cleaves, Henderson James. "Circular Dichroism." In Encyclopedia of Astrobiology, 466–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cleaves, Henderson James. "Circular Dichroism." In Encyclopedia of Astrobiology, 314. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parson, William W. "Circular Dichroism." In Modern Optical Spectroscopy, 383–416. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46777-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooch, Jan W. "Circular Dichroism." In Encyclopedic Dictionary of Polymers, 882. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cleaves, Henderson James. "Circular Dichroism." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_296-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parson, William W., and Clemens Burda. "Circular Dichroism." In Modern Optical Spectroscopy, 445–81. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17222-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cleaves, Henderson James. "Circular Dichroism." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_296-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cleaves, Henderson James. "Circular Dichroism." In Encyclopedia of Astrobiology, 580–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, John R., Wayne A. Hendrickson, Shigemasa Osaki, and Gordon T. James. "Circular Dichroism (CD) and Magnetic Circular Dichroism (MCD)." In Physical Methods for Inorganic Biochemistry, 311–28. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-4997-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Urbanová, Marie, and Petr Maloň. "Circular Dichroism Spectroscopy." In Analytical Methods in Supramolecular Chemistry, 337–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527644131.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Circular dichroism"

1

Briat, B., C. Laulan, J. C. Launay, and J. Badoz. "Magnetic Circular Dichroism and Circular Dichroism of Doped Bi12GeO20 Crystals." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/pmed.1990.bp2.

Full text
Abstract:
Crystals with the sellenite structure are used widely in various technical devices because they exhibit photochromie, piezoelectric, electrooptic or else magnetooptic effects. They are also photoconductive and eventually photo- or thermoluminescent.
APA, Harvard, Vancouver, ISO, and other styles
2

Snyder, Patricia Ann. "High Resolution Circular Dichroism Spectroscopy in the Vacuum Ultraviolet." In Free-Electron Laser Applications in the Ultraviolet. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/fel.1988.fa2.

Full text
Abstract:
Molecules which absorb different amounts of left and right circularly polarized light can be studied by a type of absorption spectroscopy called circular dichroism. Circular dichroism is the difference in absorption for left and right circularly polarized light expressed as absorbance (AL-AR) or molar extinction coefficient (εL-εR), as a function of wavelength.
APA, Harvard, Vancouver, ISO, and other styles
3

Kliger, D. S., J. W. Lewis, and R. A. Goldbeck. "Time-Resolved Circular Dichroism Spectroscopy." In OE/LASE '89, edited by Robert R. Birge and Henry H. Mantsch. SPIE, 1989. http://dx.doi.org/10.1117/12.951644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pancoska, Petr, Sritana C. Yasui, and Timothy A. Keiderling. "Vibrational Circular Dichroism Of Proteins." In Intl Conf on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron. SPIE, 1989. http://dx.doi.org/10.1117/12.969402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koshelev, Kirill, Yutao Tang, Zixian Hu, Ivan Kravchenko, Guixin Li, and Yuri Kivshar. "Nonlinear Circular Dichroism with Resonant Metasurfaces." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fw1c.5.

Full text
Abstract:
We predict and demonstrate experimentally large third-harmonic circular dichroism in transmission for chiral dielectric metasurfaces with broken in-plane symmetry. We explain the observed large nonlinear circular dichroism by excitation of resonant multipolar Mie modes.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Ruichen, Ryota Nagasaki, Takashi Kato, Haochen Tian, Akifumi Asahara, and Kaoru Minoshima. "Advanced Circular Dichroism Measurement Method with Circular Polarization Switching Dual-comb Spectroscopy." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sf3f.3.

Full text
Abstract:
This study demonstrated well-controlled circular polarization switching dual-comb spectroscopy using coherent controllability of combs. Applicability of circular dichroism spectroscopy has been verified using circular polarizers. The developed method realizes high-sensitivity, high-speed, and broadband circular-dichroism characterizations.
APA, Harvard, Vancouver, ISO, and other styles
7

Kan, Tetsuo, Akihiro Isozaki, Natsuki Kanda, Natsuki Nemoto, Kuniaki Konishi, Makoto Kuwata-Gonokami, Kiyoshi Matsumoto, and Isao Shimoyama. "Spiral metamaterial for tunable circular dichroism." In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mao, Libang, and Tun Cao. "Circular dichroism in planar achiral metamaterial." In 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2015. http://dx.doi.org/10.1109/imws-amp.2015.7324932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahurin, S. M. "Nonlinear circular dichroism in chiral molecules." In RESONANCE IONIZATION SPECTROSCOPY 2000: Laser Ionization and Applications Incorporating RIS; 10th International Symposium. AIP, 2001. http://dx.doi.org/10.1063/1.1405600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tamaševičius, Remigijus, Irena Šimkienė, Alfonsas Rėza, Irvis Blažys, and G. Jurgis Babonas. "Magnetic circular dichroism of iron porphyrin." In SPIE Proceedings, edited by Steponas Ašmontas and Jonas Gradauskas. SPIE, 2006. http://dx.doi.org/10.1117/12.726514.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Circular dichroism"

1

Plaxco, Kevin W., and S. J. Allen. Biological Sensing with Terahertz Circular Dichroism Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada440274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woolley, G. A., and B. A. Wallace. Circular Dichroism Studies of Tryptophan Residues in Gramicidin. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/adp008376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jankowski, A. F., J. G. Tobin, and G. D. Waddill. Magnetic x-ray circular dichroism in nickel-gold multilayers. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/81068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lang, Jonathan. Circular magnetic x-ray dichroism in rare earth compounds. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/140445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nunes, J. A., W. G. Tong, D. W. Chandler, and L. A. Rahn. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/481612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Denecke, R., J. Morais, R. X. Ynzunza, J. G. Menchero, J. Liesegang, M. Rice, J. Kortright, Z. Hussain, and C. S. Fadley. Angle and temperature dependence of magnetic circular dichroism in core-level photoemission from Gd(0001). Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daimon, H., R. X. Ynzunza, F. J. Palomares, E. D. Tober, Z. Wang, J. Morais, R. Denecke, et al. Circular dichroism in core photoelectron emission from (1x1) oxygen on W(110): Experiment and theory. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brewer, M. A., H. L. Ju, and K. M. Krishnan. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/604279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Savikhin, Sergei. Revealing excitonic structure and charge transfer in photosynthetic proteins by time-resolved circular dichroism spectroscopy. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1509889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohta, Taisuke, Taisuke Ohta, Robert Copeland, and Robert Copeland. Testing the possibility of magnetic domain imaging based on circular & linear dichroism using photoemission electron microscopy. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1760415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography