Academic literature on the topic 'CIRCADIAN CLOCK PROTEIN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CIRCADIAN CLOCK PROTEIN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CIRCADIAN CLOCK PROTEIN"
Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni, and Swathi Yadlapalli. "Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms." Proceedings of the National Academy of Sciences 118, no. 28 (July 7, 2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.
Full textLu, Renbin, Yufan Dong, and Jia-Da Li. "Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery." Nucleic Acids Research 48, no. 14 (July 15, 2020): 7944–57. http://dx.doi.org/10.1093/nar/gkaa601.
Full textFu, Minnie, and Xiaoyong Yang. "The sweet tooth of the circadian clock." Biochemical Society Transactions 45, no. 4 (July 3, 2017): 871–84. http://dx.doi.org/10.1042/bst20160183.
Full textMosier, Alexander E., and Jennifer M. Hurley. "Circadian Interactomics: How Research Into Protein-Protein Interactions Beyond the Core Clock Has Influenced the Model of Circadian Timekeeping." Journal of Biological Rhythms 36, no. 4 (May 31, 2021): 315–28. http://dx.doi.org/10.1177/07487304211014622.
Full textFuchikawa, T., K. Beer, C. Linke-Winnebeck, R. Ben-David, A. Kotowoy, V. W. K. Tsang, G. R. Warman, E. C. Winnebeck, C. Helfrich-Förster, and G. Bloch. "Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses." Open Biology 7, no. 6 (June 2017): 170047. http://dx.doi.org/10.1098/rsob.170047.
Full textZhang, Yang, Chunyan Duan, Jing Yang, Suping Chen, Qing Liu, Liang Zhou, Zhengyun Huang, Ying Xu, and Guoqiang Xu. "Deubiquitinating enzyme USP9X regulates cellular clock function by modulating the ubiquitination and degradation of a core circadian protein BMAL1." Biochemical Journal 475, no. 8 (April 30, 2018): 1507–22. http://dx.doi.org/10.1042/bcj20180005.
Full textDurgan, David J., Margaret A. Hotze, Tara M. Tomlin, Oluwaseun Egbejimi, Christophe Graveleau, E. Dale Abel, Chad A. Shaw, Molly S. Bray, Paul E. Hardin, and Martin E. Young. "The intrinsic circadian clock within the cardiomyocyte." American Journal of Physiology-Heart and Circulatory Physiology 289, no. 4 (October 2005): H1530—H1541. http://dx.doi.org/10.1152/ajpheart.00406.2005.
Full textGraf, Alexander, Diana Coman, R. Glen Uhrig, Sean Walsh, Anna Flis, Mark Stitt, and Wilhelm Gruissem. "Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation." Open Biology 7, no. 3 (March 2017): 160333. http://dx.doi.org/10.1098/rsob.160333.
Full textClark, Amelia M., and Brian J. Altman. "Circadian control of macrophages in the tumor microenvironment." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 165.06. http://dx.doi.org/10.4049/jimmunol.208.supp.165.06.
Full textNarumi, Ryohei, Yoshihiro Shimizu, Maki Ukai-Tadenuma, Koji L. Ode, Genki N. Kanda, Yuta Shinohara, Aya Sato, Katsuhiko Matsumoto, and Hiroki R. Ueda. "Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins." Proceedings of the National Academy of Sciences 113, no. 24 (May 31, 2016): E3461—E3467. http://dx.doi.org/10.1073/pnas.1603799113.
Full textDissertations / Theses on the topic "CIRCADIAN CLOCK PROTEIN"
Chen, Weiwei. "Characterization of the movement of a circadian protein in the temperature-dependent root synchronization of Arabidopsis thaliana." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670449.
Full textEl reloj circadiano está sincronizado por señales medioambientales externas, principalmente la luz y la temperatura. Entender cómo responde el reloj circadiano de la planta a las oscilaciones de temperatura es crucial para comprender la capacidad de respuesta de la planta al medio ambiente. En esta Tesis Doctoral, encontramos una función prevalente dependiente de la temperatura del componente del reloj de Arabidopsis EARLY FLOWERING 4 (ELF4) en el reloj circadiano de la raíz. En plantas en las que el ápice aéreo se ha eliminado, el reloj puede funcionar correctamente en las raíces, aunque exhibe un período más corto y una fase avanzada en comparación con las raíces de plantas completas. Los ensayos de microinjerto muestran que ELF4 se mueve desde el ápice aéreo para regular los ritmos en las raíces. El movimiento de la proteína ELF4 no transmite información fotoperiódica, sino que es esencial para controlar el período del reloj circadiano en la raíz de una manera dependiente de la temperatura. Las bajas temperaturas favorecen la movilidad de ELF4, lo que resulta en un reloj de de ritmo lento, mientras que las altas temperaturas disminuyen el movimiento, lo que lleva a un reloj más rápido. Por lo tanto, el movimiento de la proteína ELF4 móvil proporciona información sobre la temperatura y ayuda a establecer un diálogo entre el ápice aéreo y la raíz de la planta para controlar el ritmo circadiano en la raíz.
The circadian clock is synchronized by external environment cues, mostly through light and temperature. Explaining how the plant circadian clock responds to temperature oscillations is crucial to understanding plant responsiveness to the environment. In this thesis, we found a prevalent temperature-dependent function of the Arabidopsis clock component EARLY FLOWERING 4 (ELF4) in the root clock. The clocks in roots are able to run properly in the absence of shoots although shoot excision leads to a shorter period and advanced phase in excised roots compared to entire roots. Micrografting assays show that ELF4 moves from shoots to regulate rhythms in roots. ELF4 movement does not convey photoperiodic information, but trafficking is essential for controlling the period of the root clock in a temperature-dependent manner. Low temperatures favour ELF4 mobility, resulting in a slow paced root clock, whereas high temperatures decrease movement, leading to a faster clock. Hence, the mobile ELF4 delivers temperature information and establishes a shoot-to-root dialogue that sets the pace of the clock in roots.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Wallach, Thomas. "A dynamic circadian protein-protein interaction network." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16604.
Full textEssentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24 hrs) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes PPI dynamics on this timescale are largely unknown. To elucidate so far unknown regulatory mechanisms within the circadian clockwork, I have systematically mapped PPIs among 46 circadian components using high-throughput yeast-two-hybrid (Y2H) interaction experiments. I have identified 109 so far uncharacterized interactions and successfully validated a sub-fraction via co-immunoprecipitation experiments in human cells. Among the novel PPIs, I have identified modulators of CLOCK/BMAL1 function and further characterized the role of protein phosphatase 1 (PP1) in the dynamic regulation of BMAL1 abundance. Furthermore, to generate a more comprehensive circadian PPI network, the experimental network was enriched and extended with additional interactions and interaction partners from literature, some of which turned out to be essential for normal circadian dynamics. The integration of circadian mRNA expression profiles allowed us to determine the interaction dynamics within our network. Systematic genetic perturbation studies (RNAi and overexpression in oscillating human cells) revealed a crucial role of dynamic regulation (via rhythmic PPIs) for the molecular clockwork. Furthermore, dynamic modular organization as a pervasive circadian network feature likely contributes to time-of-day dependent control of many cellular processes. Global analysis of the proteome regarding circadian regulation of biological processes via rhythmic PPIs revealed time-of-day dependent organization of the human interactome. Circadian PPIs dynamically connect many important cellular processes like signal transduction and cell cycle, which contribute to temporal organization of cellular physiology.
Han, Linqu. "Molecular and genetic analysis of a novel F-box protein, ZEITLUPE, in the Arabidopsis circadian clock." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155569207.
Full textGeng, Ruishuang. "Characterization and functional analysis of ZEITLUPE protein in the regulation of the circadian clock and plant development." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149013919.
Full textKunisue, Sumihiro. "Roles of the Orphan Receptor Gpr176-mediated G-protein Signaling in the Central Circadian Clock." Kyoto University, 2019. http://hdl.handle.net/2433/242672.
Full textKim, Kevin Dae Keon. "The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2)." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/76848.
Full textMaster of Science
Han, Linqu. "Molecular and genetic analysis of a novel f-box protein, seitlupe, in the arabidopsis circadian clock." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1155569207.
Full textButcher, Gregory Quinn. "The mitogen-activated protein kinase (MAPK) pathway a signaling conduit for photic entrainment of the central mammalian circadian clock /." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1147206998.
Full textKalive, Madhavi. "An investigation of complex formation by the Drosophila circadian clock protein double-time and the effects of the double-time[superscript s] mutation on complex formation." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=886.
Full textTitle from document title page. Document formatted into pages; contains v, 65 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. [36]-45).
Vakonakis, Ioannis. "Structure and function of circadian clock proteins and deuterium isotope effects in nucleic acid hydrogen bonds." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2195.
Full textBooks on the topic "CIRCADIAN CLOCK PROTEIN"
Low, Cher Heang (Shawn). Temperature compensation in the three-protein cyanobacterial circadian clock. 2010.
Find full textWinter, Sherry Lynn. Genetic and functional characterization of the interaction of BRCA1 with the serine/threonine phosphatase, PP1, and the circadian clock proteins, Per1 and Per2. 2006.
Find full textBook chapters on the topic "CIRCADIAN CLOCK PROTEIN"
Ito-Miwa, Kumiko, Kazuki Terauchi, and Takao Kondo. "Mechanism of the Cyanobacterial Circadian Clock Protein KaiC to Measure 24 Hours." In Circadian Rhythms in Bacteria and Microbiomes, 79–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72158-9_5.
Full textSchweiger, H. G., R. Hartwig, G. Neuhaus, G. Neuhaus-Url, M. Li-Weber, and M. Schweiger. "High Molecular Weight Protein is Presumably Essential for the Circadian Clock." In Temporal Order, 203–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70332-4_29.
Full textSorkin, Maria L., and Dmitri A. Nusinow. "Using Tandem Affinity Purification to Identify Circadian Clock Protein Complexes from Arabidopsis." In Methods in Molecular Biology, 189–203. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1912-4_15.
Full textKojima, Daisuke, and Yoshitaka Fukada. "Spectroscopic Analysis of Wavelength Sensitivities of Opsin-Type Photoreceptor Proteins." In Circadian Clocks, 169–85. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2577-4_8.
Full textHogenesch, John B., and Steve A. Kay. "PAS Proteins in the Mammalian Circadian Clock." In PAS Proteins: Regulators and Sensors of Development and Physiology, 231–52. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0515-0_10.
Full textAdams, Sally, and Isabelle A. Carré. "Chromatin Immunoprecipitation Protocol for Circadian Clock Proteins." In Methods in Molecular Biology, 135–50. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1912-4_12.
Full textYoshitane, Hikari, and Yoshitaka Fukada. "Protein Modifications Pace the Circadian Oscillation of Biological Clocks." In Protein Modifications in Pathogenic Dysregulation of Signaling, 251–68. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55561-2_16.
Full textGul, Seref, and Ibrahim Halil Kavakli. "The Structure-Based Molecular-Docking Screen Against Core Clock Proteins to Identify Small Molecules to Modulate the Circadian Clock." In Methods in Molecular Biology, 15–34. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2249-0_2.
Full textFoster, Russell G., and Leon Kreitzman. "5. The tick-tock of the molecular clock." In Circadian Rhythms: A Very Short Introduction, 62–80. Oxford University Press, 2017. http://dx.doi.org/10.1093/actrade/9780198717683.003.0005.
Full textLi, Yating, Haisen Zhang, Yiqun Wang, Dan Li, and Huatao Chen. "Advances in circadian clock regulation of reproduction." In Advances in Protein Chemistry and Structural Biology. Elsevier, 2023. http://dx.doi.org/10.1016/bs.apcsb.2023.02.008.
Full textConference papers on the topic "CIRCADIAN CLOCK PROTEIN"
Cunningham, PS, HJ Durrington, RV Venkateswaran, M. Cypel, S. Keshavjee, JE Gibbs, AS Loudon, CW Chow, DW Ray, and JF Blaikley. "S16 Circadian control of primary lung allograft dysfunction, mediated by the clock protein, reverbα." In British Thoracic Society Winter Meeting 2017, QEII Centre Broad Sanctuary Westminster London SW1P 3EE, 6 to 8 December 2017, Programme and Abstracts. BMJ Publishing Group Ltd and British Thoracic Society, 2017. http://dx.doi.org/10.1136/thoraxjnl-2017-210983.22.
Full textFiser, Jaromir, Pavel Zitek, and Jan Cerveny. "Relay Feedback Oscillator Design for Modeling Circadian Rhythms in Cyanobacteria." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64996.
Full textKushibiki, Toshihiro, and Kunio Awazu. "A blue-violet laser irradiation stimulates bone nodule formation of mesenchymal stromal cells by the control of the circadian clock protein." In Biomedical Optics (BiOS) 2007, edited by Steven L. Jacques and William P. Roach. SPIE, 2007. http://dx.doi.org/10.1117/12.699286.
Full textAdıgüzel, Dileyra. "Expression of circadian clock proteins during peri-implantation period in mice." In 15th International Congress of Histochemistry and Cytochemistry. Istanbul: LookUs Scientific, 2017. http://dx.doi.org/10.5505/2017ichc.pp-184.
Full textReports on the topic "CIRCADIAN CLOCK PROTEIN"
Casey, Therese, Sameer J. Mabjeesh, Avi Shamay, and Karen Plaut. Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland? United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598164.bard.
Full textWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Full textJohnson, Carl H. Cell-permeable Circadian Clock Proteins. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada405529.
Full textSamach, Alon, Douglas Cook, and Jaime Kigel. Molecular mechanisms of plant reproductive adaptation to aridity gradients. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7696513.bard.
Full text