Academic literature on the topic 'Circadian clock'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Circadian clock.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Circadian clock"
Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni, and Swathi Yadlapalli. "Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms." Proceedings of the National Academy of Sciences 118, no. 28 (July 7, 2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.
Full textCostello, Hannah M., and Michelle L. Gumz. "Circadian Rhythm, Clock Genes, and Hypertension: Recent Advances in Hypertension." Hypertension 78, no. 5 (November 2021): 1185–96. http://dx.doi.org/10.1161/hypertensionaha.121.14519.
Full textMyung, Jihwan, Mei-Yi Wu, Chun-Ya Lee, Amalia Ridla Rahim, Vuong Hung Truong, Dean Wu, Hugh David Piggins, and Mai-Szu Wu. "The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock." International Journal of Molecular Sciences 20, no. 11 (June 5, 2019): 2765. http://dx.doi.org/10.3390/ijms20112765.
Full textClark, Amelia M., and Brian J. Altman. "Circadian control of macrophages in the tumor microenvironment." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 165.06. http://dx.doi.org/10.4049/jimmunol.208.supp.165.06.
Full textShakhmantsir, Iryna, and Amita Sehgal. "Splicing the Clock to Maintain and Entrain Circadian Rhythms." Journal of Biological Rhythms 34, no. 6 (August 7, 2019): 584–95. http://dx.doi.org/10.1177/0748730419868136.
Full textFu, Minnie, and Xiaoyong Yang. "The sweet tooth of the circadian clock." Biochemical Society Transactions 45, no. 4 (July 3, 2017): 871–84. http://dx.doi.org/10.1042/bst20160183.
Full textHelfrich-Förster, Charlotte, Michael N. Nitabach, and Todd C. Holmes. "Insect circadian clock outputs." Essays in Biochemistry 49 (June 30, 2011): 87–101. http://dx.doi.org/10.1042/bse0490087.
Full textWu, Yiyang. "The Evolutionary Pathways of the Circadian Rhythms through Phylogenetical Analysis of Basal Circadian Genes." Highlights in Science, Engineering and Technology 54 (July 4, 2023): 367–76. http://dx.doi.org/10.54097/hset.v54i.9795.
Full textLi, Meina, Lijun Cao, Musoki Mwimba, Yan Zhou, Ling Li, Mian Zhou, Patrick S. Schnable, Jamie A. O’Rourke, Xinnian Dong, and Wei Wang. "Comprehensive mapping of abiotic stress inputs into the soybean circadian clock." Proceedings of the National Academy of Sciences 116, no. 47 (November 1, 2019): 23840–49. http://dx.doi.org/10.1073/pnas.1708508116.
Full textBailey, Shannon M. "Emerging role of circadian clock disruption in alcohol-induced liver disease." American Journal of Physiology-Gastrointestinal and Liver Physiology 315, no. 3 (September 1, 2018): G364—G373. http://dx.doi.org/10.1152/ajpgi.00010.2018.
Full textDissertations / Theses on the topic "Circadian clock"
Brettschneider, Christian. "The cyanobacterial circadian clock." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16385.
Full textBiological activities in cyanobacteria are coordinated by an internal clock. The rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 originates from the kai gene cluster and its corresponding proteins. In a test tube, the proteins KaiA, KaiB and KaiC form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. The characteristic cycle of individual KaiC proteins is determined by phosphorylation of serine 431 and threonine 432. Differently phosphorylated KaiC synchronize due to an interaction with KaiA and KaiB. However, the details of this interaction are unknown. Here, I quantitatively investigate the experimentally observed characteristic phosphorylation cycle of the KaiABC clockwork using mathematical modeling. I thereby predict the binding properties of KaiA to both KaiC and KaiBC complexes by analyzing the two most important experimental constraints for the model. In order to reproduce the KaiB-induced dephosphorylation of KaiC a highly non-linear feedback loop has been identified. This feedback originates from KaiBC complexes, which are exclusively phosphorylated at the serine residue. The observed robustness of the KaiC phosphorylation level to concerted changes of the total protein concentrations demands an inclusion of two KaiC binding sites to KaiA in the mathematical model. Besides the formation of KaiAC complexes enhancing the autophosphorylation activity of KaiC, the model accounts for a KaiC binding site, which constantly sequestrates a large fraction of free KaiA. These theoretical predictions have been confirmed by the novel method of native mass spectrometry, which was applied in collaboration with the Heck laboratory. The mathematical model elucidates the mechanism by which the circadian clock satisfies three defining principles. First, the highly non-linear feedback loop assures a rapid and punctual switch to dephosphorylation which is essential for a precise period of approximately 24 h (free-running rhythm). Second, the dissociation of the protein complexes increases with increasing temperatures. These perturbations induce opposing phase shifts, which exactly compensate during one period (temperature compensation). Third, a shifted external rhythm of low and high temperature affects only a part of the three compensating phase perturbations, which leads to phase shifts (phase entrainment). An in silico evolution analysis shows that the existing second phosphorylatable residue of KaiC is not necessary for the existence of sustained oscillations but provides an evolutionary benefit. The analysis demonstrates that the distribution of four phosphorylated states of KaiC is optimized in order for the organism to uniquely distinguish between dusk and dawn. Consequently, this thesis emphasizes the importance of the four phosphorylated states of KaiC, which assure the outstanding performance of the core oscillator.
Smith, Karen Lynn. "Entrainment of the circadian clock." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624358.
Full textGalvanin, Silvia. "Circadian Clock Study Through Frequency-Encoded Entrainment Stimulations." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422301.
Full textI ritmi circadiani sono meccanismi biologici di organizzazione temporale intrinseci e autosostenuti, che consentono agli organismi di anticipare i cambiamenti ambientali e permettono loro di adattare il loro comportamento e la loro fisiologia nell’arco della giornata. L’orologio circadiano è sincronizzato dai cicli luce/buio e dall’ora dei pasti. La funzione biologica essenziale del ritmo circadiano è mantenere lo stato fisiologico dell’organismo e la sua sincronia comportamentale e metabolica con l’ambiente esterno. Recentemente è stato dimostrato che l’orologio circadiano garantisce il mantenimento dell’omeostasi metabolica, e che una distruzione del ritmo circadiano è causa di numerose malattie. L’approccio sperimentale convenzionale per lo studio dell’orologio circadiano in vitro è basato su una singola stimolazione di un solo metabolita o ormone, mentre in vivo i tessuti sono esposti in continuo a stimoli oscillatori periodici di una grande vastità di metaboliti e ormoni, le cui variazioni sono spesso interconnesse, come nel caso di glucosio e insulina. Inoltre, nell’analisi sperimentale convenzionale, sono studiati solo uno o pochi geni noti per essere implicati nell’orologio circadiano, mentre è noto che un elevato numero di geni sono espressi in modo circadiano. Lo scopo di questo progetto di ricerca è quindi sviluppare tecnologie e metodi di analisi per studiare l’effetto di stimoli metabolici in frequenza sull’orologio circadiano di tessuti periferici. Questi stimoli riproducono infatti in vitro le oscillazioni metaboliche a cui i tessuti sono esposti in vivo. Tecnologie, e più nello specifico, microtecnologie sono state sviluppate per studiare gli effetti di stimoli metabolici oscillatori, ed è stato dimostrato che in fibroblasti murini l’espressione di Per2 (uno dei geni principali del meccanismo molecolare dell’orologio circadiano) è sincronizzata da stimoli metabolici oscillatori. Inoltre, è stato dimostrato che le oscillazioni metaboliche sono di per sé sufficienti per allineare l’orologio circadiano nei tessuti periferici. Per sviluppare un modello che riproducesse in vitro condizioni sia fisiologiche che patologiche, raggiungendo un controllo spazio-temporale preciso del microambiente cellulare, le stimolazioni in frequenza sono state automatizzate in un dispositivo microfluidico progettato in modo dedicato per studi del ritmo circadiano. Infine, per estendere lo studio ai geni espressi con un pattern temporale circadiano, un nuovo metodo di analisi è stato proposto e caratterizzato. Il metodo permette di identificare geni circadiani da dati di trascrittomica, di suddividere i geni basandosi sulla fase della loro espressione, di visualizzare dati di trascrittomica nel loro complesso e di individuare rapidamente e in modo semplice modifiche a livello trascrizionale da una condizione biologica ad un’altra.
Gegnaw, Shumet T. "The connection between circadian clock impairment and retinal disease." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ120.
Full textThis thesis investigated how circadian clock misregulation, which has not been clearly associated with retinal genetic disease so far, could contribute to degeneration and influence development and function in the retina. The rod-specific knockout of Bmal1 clock gene (rod-Bmal1KO) from the mouse line carrying the P23H mutation of rhodopsin exacerbated the retinal degeneration phenotypes, such as reduction in ERG response and rods loss, induced by the P23H mutation alone. These observations were corroborated by RNA-Seq analysis, where we found major changes in expression of genes related to phototransduction and metabolic processes, between the (rod-Bmal1KO/P23H) double mutant and P23H retinas. We showed that during development, Per1 and Per2 clock genes deficiency in mice significantly affects gene expression of phototransduction and cell cycle components. We found that adult mice deficient for Per1 and Per2 genes lack a daily modulation of light sensitivity, under scotopic and mesopic conditions. We also found an impaired daily modulation of light sensitivity in mice deficient for Bmal1 clock gene in rods. Additionally, we investigated how rod degeneration could impact on the global rhythmic capacity of the retina by measuring PER2::LUC bioluminescence rhythms in P23H mice. We showed that the retinal clock in P23H/+ heterozygous mice displays circadian rhythms with significantly increased robustness and amplitude. These effects likely involve activation of glial cells
Gesto, João Silveira Moledo. "Circadian clock genes and seasonal behaviour." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10266.
Full textCurran, Jack. "Ageing and the Drosophila circadian clock." Thesis, University of Bristol, 2019. http://hdl.handle.net/1983/7b02ec7c-f6a2-4640-b50f-ce97a66a5a11.
Full textBeynon, Amy Louise. "Neuroimmune modulation of the circadian clock." Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678517.
Full textJaeger, Cassie Danielle. "Chronic Circadian Misalignment Disrupts the Circadian Clock and Promotes Metabolic Syndrome." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1081.
Full textCotter, Sean. "Characterisation of the circadian clock in barley." Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548780.
Full textReddy, Akhilesh Basi. "Molecular Neurobiology of the mammalian circadian clock." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619684.
Full textBooks on the topic "Circadian clock"
Albrecht, Urs, ed. The Circadian Clock. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1262-6.
Full textEngmann, Olivia, and Marco Brancaccio, eds. Circadian Clock in Brain Health and Disease. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81147-1.
Full textBjörn, Lemmer, and Rensing Ludger, eds. From the biological clock to chronopharmacology. Stuttgart: Medpharm, 1996.
Find full textC, Klein D., Moore Robert Y, and Reppert Steven M, eds. Suprachiasmatic nucleus: The mind's clock. New York: Oxford University Press, 1991.
Find full textCsernus, Valér. The avian pineal gland: A model of the biological clock. Budapest: Akadémiai Kiadó, 2004.
Find full textDerek, Chadwick, Ackrill Kate, and Symposium on Circadian Clocks and Their Adjustment (1993 : Ciba Foundation), eds. Circadian clocks and their adjustment. Chichester: Wiley, 1995.
Find full textHirota, Tsuyoshi, Megumi Hatori, and Satchidananda Panda, eds. Circadian Clocks. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2577-4.
Full textBrown, Steven A., ed. Circadian Clocks. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0381-9.
Full textKramer, Achim, and Martha Merrow, eds. Circadian Clocks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-25950-0.
Full textS, Takahashi Joseph, Turek Fred W, and Moore Robert Y, eds. Circadian clocks. New York: Kluwer Academic/Plenum Publishers, 2001.
Find full textBook chapters on the topic "Circadian clock"
Levesque, Roger J. R. "Circadian Clock." In Encyclopedia of Adolescence, 421. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1695-2_460.
Full textThiriet, Marc. "Circadian Clock." In Control of Cell Fate in the Circulatory and Ventilatory Systems, 329–56. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0329-6_5.
Full textLevesque, Roger J. R. "Circadian Clock." In Encyclopedia of Adolescence, 598–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-33228-4_460.
Full textMichel, Stephan, Gene D. Block, and Johanna H. Meijer. "The Aging Clock." In Circadian Medicine, 321–35. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118467831.ch22.
Full textDaniel Rudic, R. "The Cardiovascular Clock." In Circadian Medicine, 119–33. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118467831.ch8.
Full textHerzog, Erik D., and Paul H. Taghert. "Circadian Neural Networks." In The Circadian Clock, 179–94. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_8.
Full textDaan, Serge. "A History of Chronobiological Concepts." In The Circadian Clock, 1–35. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_1.
Full textFeillet, Céline, and Urs Albrecht. "Clocks, Brain Function, and Dysfunction." In The Circadian Clock, 229–82. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_10.
Full textd’Eysmond, Thomas, and Felix Naef. "Systems Biology and Modeling of Circadian Rhythms." In The Circadian Clock, 283–93. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_11.
Full textRipperger, Jürgen A., and Steven A. Brown. "Transcriptional Regulation of Circadian Clocks." In The Circadian Clock, 37–78. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_2.
Full textConference papers on the topic "Circadian clock"
AXMANN, ILKA M., STEFAN LEGEWIE, and HANSPETER HERZEL. "A MINIMAL CIRCADIAN CLOCK MODEL." In Proceedings of the 7th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2007). IMPERIAL COLLEGE PRESS, 2007. http://dx.doi.org/10.1142/9781860949920_0006.
Full textO’Reilly, Steven. "04.22 Circadian clock and fibrosis." In 37th European Workshop for Rheumatology Research 2–4 March 2017 Athens, Greece. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2016-211051.22.
Full textNaik, A., K. Forrest, S. Gavronski, U. Valekunja, A. Reddy, and S. Sengupta. "Circadian Clock Modulates Lung Repair and Regeneration." In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4525.
Full textLewis, R. D. "A feedback model for an insect circadian clock." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95054.
Full textKurosawa, Gen, Kazuyuki Aihara, and Yoh Iwasa. "Bifurcation analyses in the cyanobacterial circadian clock model." In 2006 IEEE/NLM Life Science Systems and Applications Workshop. IEEE, 2006. http://dx.doi.org/10.1109/lssa.2006.250394.
Full textSorkin, Maria. "A Comprehensive Interactome for the Arabidopsis Circadian Clock." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.989669.
Full textFigueiredo, Erika Ciconelli de, and Maria Augusta Justi Pisani. "Office building typologies and circadian potential." In XVII ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO. ANTAC, 2023. http://dx.doi.org/10.46421/encac.v17i1.3878.
Full textMerlin, Christine. "Circadian clock control of the monarch butterfly seasonal migration." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.92863.
Full textFoo, Mathias, Hee Young Yoo, and Pan-Jun Kim. "System identification of circadian clock in plant Arabidopsis thaliana." In 2013 13th International Conference on Control, Automaton and Systems (ICCAS). IEEE, 2013. http://dx.doi.org/10.1109/iccas.2013.6703901.
Full textNaik, A., Y. Issah, K. Forrest, D. B. Frank, A. Paris, A. Vaughan, and S. Sengupta. "Role of Circadian Clock in Lung Repair and Regeneration." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5651.
Full textReports on the topic "Circadian clock"
Johnson, Carl H. Cell-permeable Circadian Clock Proteins. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada405529.
Full textCzeisler, Charles A., and Laura K. Barger. Clinical Trial of Exercise on Circadian Clock Resetting. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada387100.
Full textVan Cauter, Eve. Phase-Shifting Effects of Light and Activity on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada281204.
Full textVan Cauter, Eve. Phase-Shifting Effect of Light and Exercise on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada253012.
Full textVan Cauter, Eve, Jeppe Sturis, Maria M. Byrne, John D. Blackman, Neal H. Scherberg, Rachel Leproult, Samuel Refetoff, and Olivier Van Reeth. Phase-Shifting Effect of Light and Exercise on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265732.
Full textVan Cauter, Eve. Phase Shifting Effects of Light and Activity on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada337545.
Full textCasey, Therese, Sameer J. Mabjeesh, Avi Shamay, and Karen Plaut. Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland? United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598164.bard.
Full textGauger, Michele A. Determining the Effect of Cryptochrome Loss and Circadian Clock Disruption on Tumorigenesis in Mice. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada435115.
Full textGillette, Martha. AASERT-92 Augmentation of Research Training in Chronobiology: Regulation of the Mammalian Circadian Clock by Neurotransmitters. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada288243.
Full textWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Full text