To see the other types of publications on this topic, follow the link: Cinétique de transition de phase.

Journal articles on the topic 'Cinétique de transition de phase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cinétique de transition de phase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Delmastro, A., A. Bachiorrini, and M. Murat. "Desordre a courte distance dans les phases transitoires resultant de l'activation thermique des montmorillonites." Clay Minerals 24, no. 1 (March 1989): 43–52. http://dx.doi.org/10.1180/claymin.1989.024.1.04.

Full text
Abstract:
RésuméDes phases transitoires ont été préparées par activation thermique de deux montmorillonites, l'une calcique et l'autre sodique, dans le domaine de température 650–950°C, puis étudiées par spectroscopie infrarouge. Le coefficient de désordre à courte distance, défini à partir de l'élargissement et l'intensité de certaines bandes caracteristiques, présente ses valeurs maximales avec les phases transitoires obtenues à 800°C et 820–850°C respectivement pour la couche de silice et la couche d'alumine. Ce résultat a pu être corrélé à plusieurs données expérimentales concernant la cinétique de dissolution de ces phases transitoires dans l'acide fluorhydrique dilué ou dans des solutions saturées d'hydroxyde de calcium. En outre, l'accroissement particulièrement marqué du désordre à courte distance mis en évidence au niveau de la transition V→IV de la coordinance de l'aluminium, confirme l'hypothèses émise antérieurement par d'autres auteurs pour expliquer le troisième effet endothermique de faible intensité observé sur les courbes ATD des montmorillonites entre 800° et 900°C.
APA, Harvard, Vancouver, ISO, and other styles
2

Siméone, D., J. L. Béchade, and D. Gosset. "Mise en évidence de la transition de phase de la zircone monoclinique implantée par des ions Bi et O de faible énergie cinétique." Le Journal de Physique IV 11, PR1 (April 2001): Pr1–165—Pr1–174. http://dx.doi.org/10.1051/jp4:2001116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lemaire, J., M. Niclause, and M. Dzierzynski. "Cinétique D'Oxydation Photochimique de L'Heptaldéhyde en Phase Liquide." Bulletin des Sociétés Chimiques Belges 71, no. 11-12 (September 2, 2010): 780. http://dx.doi.org/10.1002/bscb.19620711128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boussofara, M., M. Hamdi, F. Klaai, M. Boussofara, M. Hamdi, F. Klaai, and B. Jeribi. "Cinétique de la procalcitonémie durant la phase aiguë d’un traumatisme grave." Annales Françaises d'Anesthésie et de Réanimation 33 (September 2014): A174. http://dx.doi.org/10.1016/j.annfar.2014.07.292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rakovan, John. "Phase Transition." Rocks & Minerals 81, no. 6 (January 2006): 467–69. http://dx.doi.org/10.3200/rmin.81.6.467-469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rothman, Tony. "Phase Transition." Scientific American 259, no. 3 (September 1988): 30–31. http://dx.doi.org/10.1038/scientificamerican0988-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matte, Denise, Bernard Solastiouk, André Merlin, and Xavier Deglise. "Étude cinétique de la N-chloration de l'acide cyanurique en phase aqueuse." Canadian Journal of Chemistry 68, no. 2 (February 1, 1990): 307–13. http://dx.doi.org/10.1139/v90-043.

Full text
Abstract:
A complete kinetic study of the N-chlorination, in basic aqueous medium, of cyanuric acid by the stopflow spectrophotometric method is presented. Our experimental results can be interpreted by two pairs of kinetically indistinguishable mechanisms.[Formula: see text]or[Formula: see text]and[Formula: see text]or[Formula: see text]The rate constants and their corresponding activation energies were determined in the limiting case where one of the elementary steps in each pair is involved alone in the kinetics of reaction.[Formula: see text]The rate constants for hydrolysis of the monochlorinated cyanuric acid derivatives were derived from our experimental values. Keywords: kinetics, N-chlorination, 1,3,5-triazine-2,4,6-trione, aqueous medium, stopped flow.
APA, Harvard, Vancouver, ISO, and other styles
8

Matte, Denise, Bernard Solastiouk, André Merlin, and Xavier Deglise. "Étude cinétique de la N-chloration de la succinimide en phase aqueuse." Canadian Journal of Chemistry 70, no. 1 (January 1, 1992): 89–99. http://dx.doi.org/10.1139/v92-016.

Full text
Abstract:
A kinetic study of the N-chlorination, in aqueous medium, of succinimide (SH) at low pH (<5) and at high pH (>9) is presented. We have derived the rate constants and activation energies of the processes involved. A stopped-flow spectrophotometric technique was used to study the kinetics. Without chloride ions, our experimental results can be interpreted by two kinetically indistinguishable mechanisms:[Formula: see text]The limiting values of the rate constants for the case in which only one process is involved in the kinetics of chlorination were evaluated: [Formula: see text]; [Formula: see text].In acid medium, in the presence of chloride ions, we observe a nucleophilic attack of the S− ion on molecular chlorine Cl2. This process is added to the two former processes. Keywords: kinetics, N-chlorination, succinimide, aqueous medium, stopped flow.
APA, Harvard, Vancouver, ISO, and other styles
9

Lepers, Romuald, A. X. Bigard, Christophe Hausswirth, and Charles-Yannick Guézennec. "Modélisation de la transition natation-cyclisme en laboratoire, effet sur la cinétique du lactate." Les Cahiers de l'INSEP 20, no. 1 (1997): 145. http://dx.doi.org/10.3406/insep.1997.1299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vacquier, G., and A. Casalot. "Etude thermodynamique et cinétique du transport en phase vapeur de NbSe2 par l'iode." Journal of Crystal Growth 130, no. 1-2 (May 1993): 259–68. http://dx.doi.org/10.1016/0022-0248(93)90860-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sherrill, Max D., and Walter L. Trikosko. "Josephson phase transition." Physical Review B 32, no. 11 (December 1, 1985): 7590–93. http://dx.doi.org/10.1103/physrevb.32.7590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Norman, G. E. "Plasma Phase Transition." Contributions to Plasma Physics 41, no. 2-3 (March 2001): 127–30. http://dx.doi.org/10.1002/1521-3986(200103)41:2/3<127::aid-ctpp127>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, X. M., G. Zhang, and Z. Song. "Phase transition in phase transition lines of quantum XY model." Journal of Physics: Condensed Matter 31, no. 24 (April 2, 2019): 245401. http://dx.doi.org/10.1088/1361-648x/ab0f04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vogin, Bernard, François Baronnet, and Gérard Scacchi. "Étude chimique et cinétique de l'oxydation homogène en phase gazeuse d'alcanes légers. I. Isobutane." Canadian Journal of Chemistry 67, no. 5 (May 1, 1989): 759–72. http://dx.doi.org/10.1139/v89-115.

Full text
Abstract:
A literature survey on the homogeneous gas-phase oxidation of light alkanes shows that despite a rather high number of papers there are still, even in the case of isobutane, an important number of unresolved questions, which makes the writing of a reaction scheme rather difficult. To obtain more reliable experimental data, we have studied the homogeneous gas-phase oxidation of isobutane in a conventional static system, at 310 and 340 °C and subatmospheric pressure. This investigation is chiefly aimed at identifying and measuring the major primary products of the reaction. A chain radical scheme based on the primary products and on estimation of the rate constants of the elementary steps by the methods of Thermochemical Kinetics is put forward to interpret our experimental results. Two major reaction routes appear, one corresponding to the formation of isobutene and the other to the formation of isobutene oxide. The conclusions of the present investigation and suggestions for further developments are also mentioned. Keywords: oxidation, chemical kinetics, reaction mechanism, isobutane.
APA, Harvard, Vancouver, ISO, and other styles
15

Balbi, N., JH Balbi, and B. Khoumeri. "Modélisation non linéaire du comportement cinétique d’une réaction de Diels-Alder en phase liquide." Journal de Chimie Physique 92 (1995): 37–46. http://dx.doi.org/10.1051/jcp/1995920037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Avedillo, Maria J., Jose Maria Quintana, and Juan Nunez. "Phase Transition Device for Phase Storing." IEEE Transactions on Nanotechnology 19 (2020): 107–12. http://dx.doi.org/10.1109/tnano.2020.2965243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kamegashira, N., A. Shimono, H. W. Xu, H. Satoh, K. Hayashi, and T. Kikuchi. "Phase transition of the Ca1.5Nd0.5MnO4 phase." Materials Chemistry and Physics 26, no. 5 (December 1990): 483–92. http://dx.doi.org/10.1016/0254-0584(90)90058-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Aihara, Masaki. "Ultrafast Photoinduced Phase Transition." JPSJ News and Comments 5 (January 12, 2008): 07. http://dx.doi.org/10.7566/jpsjnc.5.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sirma, K. K., J. R. Faith, K. M. Khanna, and L. S. Chelimo. "PHASE TRANSITION IN SUPERCONDUCTORS." International Journal of Advanced Research 4, no. 9 (September 30, 2016): 1952–55. http://dx.doi.org/10.21474/ijar01/1678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Widyan, Hatem. "Phase Transition in Potential." American Journal of Applied Sciences 3, no. 7 (July 1, 2006): 1939–47. http://dx.doi.org/10.3844/ajassp.2006.1939.1947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gadway, Bryce. "A shaking phase transition." Nature Physics 18, no. 3 (March 2022): 231–32. http://dx.doi.org/10.1038/s41567-022-01543-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sirma., K. K., J. R. Faith., and W. K. Cheruiyot. "PHASE TRANSITION IN AND ." International Journal of Advanced Research 5, no. 1 (January 31, 2017): 2636–39. http://dx.doi.org/10.21474/ijar01/3054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Murao, Tsuyoshi. "Phase transition at surface." Bulletin of the Japan Institute of Metals 25, no. 11 (1986): 906–13. http://dx.doi.org/10.2320/materia1962.25.906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Singh, Max Diamond, and Orestis Terzidis. "Introducing Innovation Phase Transition." International Journal of Innovation Science 7, no. 4 (December 2015): 249–62. http://dx.doi.org/10.1260/1757-2223.7.4.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Jian, Alexander Wölfel, Liang Li, and Sander van Smaalen. "Phase transition in FeOCl." Acta Crystallographica Section A Foundations of Crystallography 66, a1 (August 29, 2010): s206. http://dx.doi.org/10.1107/s0108767310095358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Murakami, Akihiro, Takashi Sakuma, Haruyuki Takahashi, and Yoshito Onoda. "Phase Transition ofCuxAg1-xBrTe." Journal of the Physical Society of Japan 67, no. 2 (February 15, 1998): 502–4. http://dx.doi.org/10.1143/jpsj.67.502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Singh, Max Diamond, and Orestis Terzidis. "Introducing Innovation Phase Transition." International Journal of Innovation Science 7, no. 4 (December 1, 2015): 249–62. http://dx.doi.org/10.1108/ijis-07-04-2015-b003.

Full text
Abstract:
Innovation diffusion points toward how innovations spread into the market after launch. This paper investigates diffusion dynamics at market entry time and proposes a new evolution pattern at the intersection between inventions and innovations. With this in mind, we initially prove that patent filings correlate with new product introductions in the U.S. spine market. Then we test our new theory supposing that certain patent filing threshold numbers accelerate strong economic returns in terms of innovations. We find that firms hitting certain patent filing thresholds significantly increase their product launches in the mentioned market. Moreover, the results seem to indicate that economic returns of inventions may be measured substantially. Thus, this paper suggests a new research area by utilizing our proposed concept about an Innovation Outcome Trigger Value (IOTV). Furthermore, the implications may also be interesting for practitioners, since we empirically prove that inventive activities turn out to be worthwhile, indeed.
APA, Harvard, Vancouver, ISO, and other styles
28

GLEISER, MARCELO, and EDWARD W. KOLB. "THE ELECTROWEAK PHASE TRANSITION." International Journal of Modern Physics C 03, no. 05 (October 1992): 773–81. http://dx.doi.org/10.1142/s0129183192000464.

Full text
Abstract:
The phase transition associated with the standard electroweak model is very weakly first order. The weakness of the transition means that around the critical temperature the finite-temperature Higgs mass is much less than the critical temperature. This leads to infrared problems in the calculation of the parameters of the potential. Therefore, theories of electroweak baryogenesis, which depend on the details of the transition, must be calculated with care.
APA, Harvard, Vancouver, ISO, and other styles
29

Wanless, Erica J., Tim W. Davey, and William A. Ducker. "Surface Aggregate Phase Transition." Langmuir 13, no. 16 (August 1997): 4223–28. http://dx.doi.org/10.1021/la970146k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shimizu, Fuminao, Toshihisa Yamaguchi, Tadashi Kurihama, and Masaaki Takashige. "Phase Transition of Cs2FeI4." Ferroelectrics 384, no. 1 (June 25, 2009): 93–97. http://dx.doi.org/10.1080/00150190902892964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dhar, S. K., P. Manfrinetti, M. L. Fornasini, and P. Bonville. "Phase transition in YbAl3C3." European Physical Journal B 63, no. 2 (May 2008): 187–92. http://dx.doi.org/10.1140/epjb/e2008-00241-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

YAO, YAO, YU-ZHONG ZHANG, HUNPYO LEE, HARALD O. JESCHKE, ROSER VALENTÍ, HAI-QING LIN, and CHANG-QIN WU. "ORBITAL SELECTIVE PHASE TRANSITION." Modern Physics Letters B 27, no. 20 (August 2013): 1330015. http://dx.doi.org/10.1142/s0217984913300159.

Full text
Abstract:
In this paper, we review theoretical investigations on the origin of the orbital selective phase where localized and itinerant electrons coexist in the d shell at intermediate strength of the on-site Coulomb interactions between electrons. In particular, the effect of spatial fluctuations on the phase diagram of the two-orbital Hubbard model with unequal bandwidths is discussed. And different band dispersions in different orbitals as well as different magnetically ordered states in different orbitals which are responsible for orbital selective phase transitions are emphasized. This is due to the fact that these two mechanisms are independent of the Hund's rule coupling, and are completely distinct from other well-known mechanisms like orbitals of unequal bandwidths and orbitals with different degeneracies. Moreover, crystal field splitting is not required in these two recently proposed mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
33

Troyanchuk, I. O., D. A. Efimov, N. V. Samsonenko, E. F. Shapovalova, and H. Szymczak. "Phase transition in perovskites." Journal of Physics: Condensed Matter 10, no. 36 (September 14, 1998): 7957–66. http://dx.doi.org/10.1088/0953-8984/10/36/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Agterberg, D. F., and M. B. Walker. "Anomalous phase transition inURu2Si2." Physical Review B 50, no. 1 (July 1, 1994): 563–66. http://dx.doi.org/10.1103/physrevb.50.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Saito, Shozaburo. "Phase Transition and Equilibrium." Journal of Chemical Engineering of Japan 22, no. 3 (1989): 215–28. http://dx.doi.org/10.1252/jcej.22.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dézsi, I., Cs Fetzer, Á. Gombkötő, I. Szűcs, J. Gubicza, and T. Ungár. "Phase transition in nanomagnetite." Journal of Applied Physics 103, no. 10 (May 15, 2008): 104312. http://dx.doi.org/10.1063/1.2937252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Oliveira, M. A. S., R. L. Moreira, and J. Y. Gesland. "Phase transition sequence ofLi3ThF7crystals." Physical Review B 56, no. 13 (October 1, 1997): 7755–58. http://dx.doi.org/10.1103/physrevb.56.7755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kapusta, Joseph I., and Ajit M. Srivastava. "Proximal chiral phase transition." Physical Review D 50, no. 8 (October 15, 1994): 5379–88. http://dx.doi.org/10.1103/physrevd.50.5379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Iwata, Makoto, Tomonari Taguchi, Yoshihiro Ishibashi, Hirohumi Kasatani, and Hikaru Terauchi. "Phase Transition inC3H7NH3H2PO4Single Crystal." Journal of the Physical Society of Japan 65, no. 5 (May 15, 1996): 1459–63. http://dx.doi.org/10.1143/jpsj.65.1459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Matsuo, Yasumitsu, Junko Hatori, Katsumi Irokawa, Masaru Komukae, Toshio Osaka, and Yasuharu Makita. "Ferroelastic Phase Transition inTl2SeO4." Journal of the Physical Society of Japan 65, no. 12 (December 15, 1996): 3931–34. http://dx.doi.org/10.1143/jpsj.65.3931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Samuel, Stuart. "The earliest phase transition?" Nuclear Physics B 585, no. 3 (October 2000): 715–21. http://dx.doi.org/10.1016/s0550-3213(00)00431-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Schäfer, Thomas. "The chiral phase transition." Nuclear Physics A 610 (December 1996): 13–25. http://dx.doi.org/10.1016/s0375-9474(96)00339-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gent, Ian P., and Toby Walsh. "The TSP phase transition." Artificial Intelligence 88, no. 1-2 (December 1996): 349–58. http://dx.doi.org/10.1016/s0004-3702(96)00030-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bourson, P., A. Ndtoungou, J. Bouillot, J. L. Soubeyroux, and D. Durand. "Phase transition of RbCN." Physica B: Condensed Matter 180-181 (June 1992): 351–53. http://dx.doi.org/10.1016/0921-4526(92)90756-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Salker, A. V., H. V. Keer, E. B. Mirza, and V. V. Deshpande. "Phase transition in V5O9." Journal of Solid State Chemistry 60, no. 1 (November 1985): 135–38. http://dx.doi.org/10.1016/0022-4596(85)90175-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Duong-van, Minh. "Phase transition of multifractals." Nuclear Physics B - Proceedings Supplements 2 (November 1987): 521–25. http://dx.doi.org/10.1016/0920-5632(87)90039-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tamaki, Shigeru. "Phase transition in liquids." Phase Transitions 66, no. 1-4 (September 1998): 167–257. http://dx.doi.org/10.1080/01411599808222125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

TRIMPER, STEFFEN. "KINETIC INDUCED PHASE TRANSITION." International Journal of Modern Physics B 13, no. 20 (August 10, 1999): 2637–44. http://dx.doi.org/10.1142/s0217979299002563.

Full text
Abstract:
An Ising model with local Glauber dynamics is studied under the influence of additional kinetic restrictions for the spin-flip rates depending on the orientation of neighboring spins. Even when the static interaction between the spins is completely eliminated and only an external field is taken into account the system offers a phase transition at a finite value of the applied field. The transition is realized due to a competition between the activation processes driven by the field and the dynamical rules for the spin-flips. The result is based on a master equation approach in a quantum formulation.
APA, Harvard, Vancouver, ISO, and other styles
49

Browning, Nigel D. "Phase transition singled out." Nature Chemistry 5, no. 5 (April 23, 2013): 363–64. http://dx.doi.org/10.1038/nchem.1632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Ke, and Wei Li. "The SAT phase transition." Science in China Series E: Technological Sciences 42, no. 5 (October 1999): 494–501. http://dx.doi.org/10.1007/bf02917402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography