Academic literature on the topic 'Ciment bas carbone'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ciment bas carbone.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ciment bas carbone"
Hauet, Jean-Pierre. "Captage, stockage et valorisation du CO 2 : un nouveau départ." Futuribles N° 455, no. 4 (June 16, 2023): 27–31. http://dx.doi.org/10.3917/futur.455.0027.
Full textDissertations / Theses on the topic "Ciment bas carbone"
Elkhaldi, Imane. "Effets de la composition des liants bas carbone sur l'hydratation et la durabilité des bétons : vers un indicateur de performance en lien avec l'empreinte carbone." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0007.
Full textThe use of low-carbon concrete has now become a necessity leading to changes inthe standards governing concrete (EN 206) and cement (EN 197). The use of so-called “lowcarbon” cements is therefore made possible(CEM II/C-M and CEM VI). The work presented focuses on the evolution of the microstructure,mechanical strength and durability of low-carboncement-based concretes, in particular clinkerslag-limestone ternary mixtures (K-S-LL). An indicator is proposed to characterize the carbon footprint of concrete and its durability with respect to corrosion induced by carbonation.The results of this work demonstrate the important role of the reactive additions inreducing the carbon cost of the binders while maintaining good mechanical properties. Amodel allowing the prediction of the service life of the coating as a function of the properties of the cement materials is adapted to our problem.Concretes based on ternary cements have advantageous CO2/ddv ratios associated with a high corrosion propagation time compared with concretes based on portland cement. However,consideration of the carbonation effect on electrical resistivity influences the observed trends
Jourdan, Julia. "Rôle de l’aluminium dans la réactivité pouzzolanique des métakaolins, replacé dans le contexte général de la pouzzolanicité pour des ciments à bas taux de CO2." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS116.pdf.
Full textThe cement industry currently accounts for around 8% of global CO2 emissions, mainly from the Portland cement clinker manufacturing process. One way of effectively reducing the environmental impact of Portland cement is therefore to reduce the clinker content by using potentially hydraulic materials (PHM) (pozzolanic or latent hydraulic materials), which have a lower CO2 content and that can produce binding hydrates, as clinker, in the presence of water and lime. This thesis focuses specifically on kaolins. Through appropriate calcination and subsequent incorporation with calcium carbonate in LC3 cements, the clinker content can be reduced up to 50%. This reduction maintains performance levels comparable to CEM I cement, achieved through the pozzolanic reactivity of metakaolin and its synergistic impact with limestone.The high reactivity of metakaolins (or calcined kaolins) is acquired during calcination between 600 and 800°C, during which kaolin undergoes major structural transformations, moving from a crystallized structure (kaolinite) to a highly disordered, quasi-amorphous, structure (metakaolinite). Numerous studies have highlighted the changes in Al local environment during the calcination of kaolinite, observing Al transitions from octahedral sites in kaolinite to 5- and 4-coordination sites in metakaolinite. This change in Al coordination could be at the origin of the high reactivity of metakaolin compared to kaolin, or to other types of calcined clays (illite, montmorillonite, etc.), in which the presence of [5]Al has not been demonstrated. Thus, better knowledge of the role of aluminum in the structure of metakaolins, which is involved in the formation of binder hydrates (C-A-S-H, carboaluminates) during the hydration of LC3 cements, is essential for understanding their reactivity.The first aim of this thesis is to gain a better understanding of the structure of metakaolins, and the influence of the calcination process on this structure, using a multi-technique approach (XRD, TGA, FT-IR, etc.). Particular attention will be paid to the local environment around Al, using solid-state Al27 MAS-NMR and Al K-edge XANES spectroscopy. And secondly, to understand the structure-reactivity relationships and identify the role of Al in the reactivity of metakaolins, based on R3 reactivity tests by isothermal calorimetry and mechanical strength tests on LC3-type cements. The study is based on a sampling of different kaolins calcined at different temperatures using both a flash and a muffle furnace
Kiiashko, Artur. "Amélioration des propriétés rhéologiques et à jeune âge des laitiers alcali-activés au carbonate de sodium." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN033.
Full textToday, environmental problems are more acute than ever. Urgent measures should be taken in all spheres of human activity including construction and civil engineering. One of the major contributors of negative environmental impacts from this industry is the manufacturing of ordinary Portland cement (OPC) required for concrete and other cementitious materials production. Although its importance to economical development, it has a significant drawback - its production is accompanied by the emission of large quantities of greenhouse gases. They account for 5-8% of total world CO2 emissions. More environmentally friendly cementitious materials are now required.Significant reductions of the environmental impact can be achieved only through the use of new-generation binders whose manufacture does not require a lot of additional processes and treatments. One route is through the use of industrial wastes as binders (different slags, fly ash, biomass bottom ash, etc.). In this way there is not only a reduction in the impact of processes such as mining or calcination, but also the recycling of waste materials (circular economy principle).One possibility is to use ground granulated blast furnace slag (GGBS) as the basis for such a new generation cement. Due to its rather low reactivity with water, additional supplements (also called activators) should be used to promote the hydration process. One of the most promising, and at the same time least studied, activators is sodium carbonate (Na2CO3). Such alkali-activated cements present high mechanical and durability properties, as well as a very low CO2 footprint. Among the main problems hindering its industrial scale adoption are their poor rheology and too slow strength gain within the first days of hardening.The objective of the present thesis is to develop a new binder based on Na2CO3 activated GGBS that would meet all the modern requirements of the construction industry, in particular regarding the rheological properties and early age strength development. In addition this binder should always respond to at least three main criteria: low environmental impact, low health and safety concerns in field applications, and be economically competitive at industrial scale.In the present work, the influence of different parameters like water/binder ratio, Na2CO3 concentration, slag fineness and curing conditions on both early age and long term properties of the mixture were studied. Based on the results of the hydration process analysis, phosphonate based additives that allow for the effective control of the rheology of such binders were successfully tested. They not only allow control over the setting time, but also provide a plasticizing effect.Regarding the improvement of early age strength properties, various methods have been used. The use of heat treatment or an increase of GGBS fineness turned out to be efficient. Exploring the causes of the long induction period has shown that acceleration can also be achieved by the addition of a calcium source with controlled dissolution kinetics. As a result, the binder became more reactive and robust against certain factors (activator concentration, Water/Binder ratio, curing conditions, etc.). To compensate for the additional carbon footprint from the added calcium source, the binder was successfully diluted by limestone without any degradation of the properties below some dilution percentages
Book chapters on the topic "Ciment bas carbone"
Corrêa, Iran Carlos Stalliviere, and Lauro Júlio Calliari. "Depósitos Biogênicos de Composição Carbonática." In Recursos Minerais Marinhos. Sociedade Brasileira de Geofísica - SBGf, 2023. http://dx.doi.org/10.22564/sbgfbook.cad5.2023.cap5.
Full textConference papers on the topic "Ciment bas carbone"
Calado, Carlos Fernando de Araújo, Aires Fernando Fernandes Leite Camões de Azevedo, Fabrízio Elias De Santana Silva, Gabriella Ferreira Dalpane, and Bruna Ferraz Carvalho Dantas. "Estudo de viabilidade técnica para substituição parcial de cimento por lignina no concreto auto-adensável (CAA)." In HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/hac2018.2018.5093.
Full textRibeiro, D. V., S. A. Pinto, and C. M. R. Dias. "Influência do uso de nanomateriais de elevada condutividade na durabilidade do concreto armado." In XVII Congreso Latinoamericano de Patología de la Construcción y XIX Congreso de Control de Calidad en la Construcción. Alconpat Internacional, 2023. http://dx.doi.org/10.21041/conpat2023/v2pc5722.
Full textRibeiro, D. V., S. A. Pinto, and C. M. R. Dias. "Influência do uso de nanomateriais de elevada condutividade na durabilidade do concreto armado." In XVII Congreso Latinoamericano de Patología de la Construcción y XIX Congreso de Control de Calidad en la Construcción. Alconpat Internacional, 2023. http://dx.doi.org/10.21041/conpat2023/pc5722.
Full textReports on the topic "Ciment bas carbone"
FONTECAVE, Marc, Sébastien CANDEL, and Thierry POINSOT. L'hydrogène aujourd'hui et demain. Académie des sciences, April 2024. http://dx.doi.org/10.62686/5.
Full text