Journal articles on the topic 'Cilia and ciliary motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cilia and ciliary motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dong, Xiaoguang, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R. Onck, and Metin Sitti. "Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination." Science Advances 6, no. 45 (November 2020): eabc9323. http://dx.doi.org/10.1126/sciadv.abc9323.
Full textSears, Patrick R., Kristin Thompson, Michael R. Knowles, and C. William Davis. "Human airway ciliary dynamics." American Journal of Physiology-Lung Cellular and Molecular Physiology 304, no. 3 (February 1, 2013): L170—L183. http://dx.doi.org/10.1152/ajplung.00105.2012.
Full textValentine, Megan, and Judith Van Houten. "Using Paramecium as a Model for Ciliopathies." Genes 12, no. 10 (September 24, 2021): 1493. http://dx.doi.org/10.3390/genes12101493.
Full textVanaki, Shayan M., David Holmes, Pahala Gedara Jayathilake, and Richard Brown. "Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases." Applied Sciences 9, no. 19 (September 26, 2019): 4033. http://dx.doi.org/10.3390/app9194033.
Full textSher Akbar, Noreen, and Z. H. Khan. "Heat transfer analysis of bi-viscous ciliary motion fluid." International Journal of Biomathematics 08, no. 02 (February 25, 2015): 1550026. http://dx.doi.org/10.1142/s1793524515500266.
Full textYu, Yanan, Kyosuke Shinohara, Huanming Xu, Zhenfeng Li, Tomoki Nishida, Hiroshi Hamada, Yuanqing Xu, et al. "The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization." Cellular Physiology and Biochemistry 51, no. 6 (2018): 2843–57. http://dx.doi.org/10.1159/000496038.
Full textFlaherty, Justin, Zhe Feng, Zhangli Peng, Y. N. Young, and Andrew Resnick. "Primary cilia have a length-dependent persistence length." Biomechanics and Modeling in Mechanobiology 19, no. 2 (September 9, 2019): 445–60. http://dx.doi.org/10.1007/s10237-019-01220-7.
Full textSareh, Sina, Jonathan Rossiter, Andrew Conn, Knut Drescher, and Raymond E. Goldstein. "Swimming like algae: biomimetic soft artificial cilia." Journal of The Royal Society Interface 10, no. 78 (January 6, 2013): 20120666. http://dx.doi.org/10.1098/rsif.2012.0666.
Full textPeabody, Jacelyn E., Ren-Jay Shei, Brent M. Bermingham, Scott E. Phillips, Brett Turner, Steven M. Rowe, and George M. Solomon. "Seeing cilia: imaging modalities for ciliary motion and clinical connections." American Journal of Physiology-Lung Cellular and Molecular Physiology 314, no. 6 (June 1, 2018): L909—L921. http://dx.doi.org/10.1152/ajplung.00556.2017.
Full textIto, Hiroaki, Toshihiro Omori, and Takuji Ishikawa. "Swimming mediated by ciliary beating: comparison with a squirmer model." Journal of Fluid Mechanics 874 (July 12, 2019): 774–96. http://dx.doi.org/10.1017/jfm.2019.490.
Full textKupferberg, Stephen B., John P. Bent, and Edward S. Porubsky. "The Evaluation of Ciliary Function: Electron versus Light Microscopy." American Journal of Rhinology 12, no. 3 (May 1998): 199–202. http://dx.doi.org/10.2500/105065898781390172.
Full textHoque, Mohammed, Eunice N. Kim, Danny Chen, Feng-Qian Li, and Ken-Ichi Takemaru. "Essential Roles of Efferent Duct Multicilia in Male Fertility." Cells 11, no. 3 (January 20, 2022): 341. http://dx.doi.org/10.3390/cells11030341.
Full textHan, Jihun, and Charles S. Peskin. "Spontaneous oscillation and fluid–structure interaction of cilia." Proceedings of the National Academy of Sciences 115, no. 17 (April 9, 2018): 4417–22. http://dx.doi.org/10.1073/pnas.1712042115.
Full textOhmura, Takuya, Yukinori Nishigami, Atsushi Taniguchi, Shigenori Nonaka, Junichi Manabe, Takuji Ishikawa, and Masatoshi Ichikawa. "Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates." Proceedings of the National Academy of Sciences 115, no. 13 (March 12, 2018): 3231–36. http://dx.doi.org/10.1073/pnas.1718294115.
Full textKhaderi, S. N., J. M. J. den Toonder, and P. R. Onck. "Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis." Journal of Fluid Mechanics 688 (October 20, 2011): 44–65. http://dx.doi.org/10.1017/jfm.2011.355.
Full textShakib Arslan, Muhammad, Zaheer Abbas, and Muhammad Yousuf Rafiq. "Biological flow of thermally intense cilia generated motion of non-Newtonian fluid in a curved channel." Advances in Mechanical Engineering 15, no. 3 (March 2023): 168781322311571. http://dx.doi.org/10.1177/16878132231157179.
Full textPaff, Tamara, Heymut Omran, Kim G. Nielsen, and Eric G. Haarman. "Current and Future Treatments in Primary Ciliary Dyskinesia." International Journal of Molecular Sciences 22, no. 18 (September 11, 2021): 9834. http://dx.doi.org/10.3390/ijms22189834.
Full textYang, T. Tony, Minh Nguyet Thi Tran, Weng Man Chong, Chia-En Huang, and Jung-Chi Liao. "Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia." Molecular Biology of the Cell 30, no. 7 (March 21, 2019): 828–37. http://dx.doi.org/10.1091/mbc.e18-10-0654.
Full textPatel-King, Ramila S., Miho Sakato-Antoku, Maya Yankova, and Stephen M. King. "WDR92 is required for axonemal dynein heavy chain stability in cytoplasm." Molecular Biology of the Cell 30, no. 15 (July 15, 2019): 1834–45. http://dx.doi.org/10.1091/mbc.e19-03-0139.
Full textGueron, Shay, and Konstantin Levit-Gurevich. "Computation of the Internal Forces in Cilia: Application to Ciliary Motion, the Effects of Viscosity, and Cilia Interactions." Biophysical Journal 74, no. 4 (April 1998): 1658–76. http://dx.doi.org/10.1016/s0006-3495(98)77879-8.
Full textFarooq, A. A., and A. M. Siddiqui. "Mathematical model for the ciliary-induced transport of seminal liquids through the ductuli efferentes." International Journal of Biomathematics 10, no. 03 (February 20, 2017): 1750031. http://dx.doi.org/10.1142/s1793524517500310.
Full textKiyota, Kouki, Hironori Ueno, Keiko Numayama-Tsuruta, Tomofumi Haga, Yohsuke Imai, Takami Yamaguchi, and Takuji Ishikawa. "Fluctuation of cilia-generated flow on the surface of the tracheal lumen." American Journal of Physiology-Lung Cellular and Molecular Physiology 306, no. 2 (January 15, 2014): L144—L151. http://dx.doi.org/10.1152/ajplung.00117.2013.
Full textSalman, Huseyin Enes, Nathalie Jurisch-Yaksi, and Huseyin Cagatay Yalcin. "Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo." Bioengineering 9, no. 9 (August 28, 2022): 421. http://dx.doi.org/10.3390/bioengineering9090421.
Full textAkbar, Noreen Sher, and Adil Wahid Butt. "Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia." International Journal of Biomathematics 07, no. 06 (November 2014): 1450066. http://dx.doi.org/10.1142/s1793524514500661.
Full textSher Akbar, Noreen. "Biomathematical analysis of carbon nanotubes due to ciliary motion." International Journal of Biomathematics 08, no. 02 (February 25, 2015): 1550023. http://dx.doi.org/10.1142/s1793524515500230.
Full textCui, Zhiwei, Ye Wang, and Jaap M. J. den Toonder. "Metachronal Motion of Biological and Artificial Cilia." Biomimetics 9, no. 4 (March 27, 2024): 198. http://dx.doi.org/10.3390/biomimetics9040198.
Full textPang, Chuan, Fengwei An, Shiming Yang, Ning Yu, Daishi Chen, and Lei Chen. "In vivo and in vitro observation of nasal ciliary motion in a guinea pig model." Experimental Biology and Medicine 245, no. 12 (May 20, 2020): 1039–48. http://dx.doi.org/10.1177/1535370220926443.
Full textRamachandran, Saravana, Kuppalapalle Vajravelu, K. V. Prasad, and S. Sreenadh. "Peristaltic-Ciliary Flow of A Casson Fluid through An Inclined Tube." Communication in Biomathematical Sciences 4, no. 1 (May 7, 2021): 23–38. http://dx.doi.org/10.5614/cbms.2021.4.1.3.
Full textMorgan, Darrell D., and Anthony G. Moss. "The Effects of Cigarette Smoke on Porcine Airway Epithelium." Microscopy and Microanalysis 4, S2 (July 1998): 1076–77. http://dx.doi.org/10.1017/s1431927600025502.
Full textWyatt, Todd A., Mary A. Forgèt, Jennifer M. Adams, and Joseph H. Sisson. "Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes." American Journal of Physiology-Lung Cellular and Molecular Physiology 288, no. 3 (March 2005): L546—L551. http://dx.doi.org/10.1152/ajplung.00107.2004.
Full textFerguson, Jonathan L., Thomas V. McCaffrey, Eugene B. Kern, and William J. Martin. "The Effects of Sinus Bacteria on Human Ciliated Nasal Epithelium in Vitro." Otolaryngology–Head and Neck Surgery 98, no. 4 (April 1988): 299–304. http://dx.doi.org/10.1177/019459988809800405.
Full textWU, Junlin, Jiaqi Yin, Zixiang Xu, Yingli Liu, Huanyong Qin, and Xin Sheng. "The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti." Acta Protozoologica 62 (2023): 45–56. http://dx.doi.org/10.4467/16890027ap.23.005.18868.
Full textStokes, M. "Larval locomotion of the lancelet." Journal of Experimental Biology 200, no. 11 (January 1, 1997): 1661–80. http://dx.doi.org/10.1242/jeb.200.11.1661.
Full textUENO, Hironori, Takuji ISHIKAWA, Khanh Huy BUI, Kohsuke GONDA, Takashi ISHIKAWA, and Takami YAMAGUCHI. "7G13 Analysis of ciliary motion and the axonemal structure in the mouse respiratory cilia." Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2012.24 (2012): _7G13–1_—_7G13–2_. http://dx.doi.org/10.1299/jsmebio.2012.24._7g13-1_.
Full textRoth, K. E., C. L. Rieder, and S. S. Bowser. "Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9+0) cilia in cultured kidney epithelia." Journal of Cell Science 89, no. 4 (April 1, 1988): 457–66. http://dx.doi.org/10.1242/jcs.89.4.457.
Full textSmith, D. J., E. A. Gaffney, and J. R. Blake. "Mathematical modelling of cilia-driven transport of biological fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2108 (June 2, 2009): 2417–39. http://dx.doi.org/10.1098/rspa.2009.0018.
Full textSiddiqui, A. M., A. A. Farooq, and M. A. Rana. "An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube." International Journal of Biomathematics 08, no. 02 (February 25, 2015): 1550016. http://dx.doi.org/10.1142/s1793524515500163.
Full textUmlauf, Benjamin. "DDEL-13. CILIA INHIBITORS SYNERGIZE WITH TEMOZOLOMIDE TO DRAMATICALLY IMPROVE SURVIVAL IN ORTHOTOPIC MURINE MODELS OF GLIOBLASTOMA." Neuro-Oncology 25, Supplement_5 (November 1, 2023): v104. http://dx.doi.org/10.1093/neuonc/noad179.0392.
Full textSatir, P. "Mechanism of Ciliary Movement - What's New?" Physiology 4, no. 4 (August 1, 1989): 153–57. http://dx.doi.org/10.1152/physiologyonline.1989.4.4.153.
Full textBlanchon, Sylvain, Marie Legendre, Mathieu Bottier, Aline Tamalet, Guy Montantin, Nathalie Collot, Catherine Faucon, et al. "Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia." Journal of Medical Genetics 57, no. 4 (November 26, 2019): 237–44. http://dx.doi.org/10.1136/jmedgenet-2019-106424.
Full textSisson, J. H., D. J. Tuma, and S. I. Rennard. "Acetaldehyde-mediated cilia dysfunction in bovine bronchial epithelial cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 260, no. 2 (February 1, 1991): L29—L36. http://dx.doi.org/10.1152/ajplung.1991.260.2.l29.
Full textMasuda, Tsukuru, Aya Mizutani Akimoto, Kenichi Nagase, Teruo Okano, and Ryo Yoshida. "Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion." Science Advances 2, no. 8 (August 2016): e1600902. http://dx.doi.org/10.1126/sciadv.1600902.
Full textRiaz, Arshad, Elena Bobescu, Katta Ramesh, and Rahmat Ellahi. "Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus." Symmetry 13, no. 12 (December 8, 2021): 2358. http://dx.doi.org/10.3390/sym13122358.
Full textKANEKO, Toshiyasu, Kazuki WATANABE, Kenji NAGAOKA, and Kazuya YOSHIDA. "Motion Analysis of Ciliary Micro-Hopping Locomotion for an Asteroid Exploration Robot with Design Parameters of Cilia." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–17a1. http://dx.doi.org/10.1299/jsmermd.2016.2a2-17a1.
Full textHanasoge, Srinivas, Peter J. Hesketh, and Alexander Alexeev. "Metachronal motion of artificial magnetic cilia." Soft Matter 14, no. 19 (2018): 3689–93. http://dx.doi.org/10.1039/c8sm00549d.
Full textIde, Takahiro, Wang Kyaw Twan, Hao Lu, Yayoi Ikawa, Lin-Xenia Lim, Nicole Henninger, Hiromi Nishimura, et al. "CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components." PLOS Genetics 16, no. 12 (December 21, 2020): e1009232. http://dx.doi.org/10.1371/journal.pgen.1009232.
Full textMAXEY, MARTIN R. "Biomimetics and cilia propulsion." Journal of Fluid Mechanics 678 (June 17, 2011): 1–4. http://dx.doi.org/10.1017/jfm.2011.145.
Full textMan, Yi, Feng Ling, and Eva Kanso. "Cilia oscillations." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1792 (December 30, 2019): 20190157. http://dx.doi.org/10.1098/rstb.2019.0157.
Full textHanasoge, Srinivas, Matthew Ballard, Peter J. Hesketh, and Alexander Alexeev. "Asymmetric motion of magnetically actuated artificial cilia." Lab on a Chip 17, no. 18 (2017): 3138–45. http://dx.doi.org/10.1039/c7lc00556c.
Full textNakamura, S., and S. L. Tamm. "Calcium control of ciliary reversal in ionophore-treated and ATP-reactivated comb plates of ctenophores." Journal of Cell Biology 100, no. 5 (May 1, 1985): 1447–54. http://dx.doi.org/10.1083/jcb.100.5.1447.
Full text