Academic literature on the topic 'Chua circuit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chua circuit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chua circuit"
Chua, Leon. "Chua circuit." Scholarpedia 2, no. 10 (2007): 1488. http://dx.doi.org/10.4249/scholarpedia.1488.
Full textZhang, Xiufang, Chunni Wang, Jun Ma, and Guodong Ren. "Control and synchronization in nonlinear circuits by using a thermistor." Modern Physics Letters B 34, no. 25 (June 3, 2020): 2050267. http://dx.doi.org/10.1142/s021798492050267x.
Full textBROWN, RAY. "FROM THE CHUA CIRCUIT TO THE GENERALIZED CHUA MAP." Journal of Circuits, Systems and Computers 03, no. 01 (March 1993): 11–32. http://dx.doi.org/10.1142/s0218126693000034.
Full textWang, Chunni, Zhao Yao, Wenkang Xu, and Guodong Ren. "Phase synchronization between nonlinear circuits by capturing electromagnetic field energy." Modern Physics Letters B 34, no. 29 (July 14, 2020): 2050323. http://dx.doi.org/10.1142/s0217984920503236.
Full textBILOTTA, ELEONORA, PIETRO PANTANO, and FAUSTO STRANGES. "A GALLERY OF CHUA ATTRACTORS: PART II." International Journal of Bifurcation and Chaos 17, no. 02 (February 2007): 293–380. http://dx.doi.org/10.1142/s0218127407017343.
Full textAhamed, A. Ishaq, and M. Lakshmanan. "Sliding Bifurcations in the Memristive Murali–Lakshmanan–Chua Circuit and the Memristive Driven Chua Oscillator." International Journal of Bifurcation and Chaos 30, no. 14 (November 2020): 2050214. http://dx.doi.org/10.1142/s0218127420502144.
Full textBORRESEN, J., and S. LYNCH. "FURTHER INVESTIGATION OF HYSTERESIS IN CHUA'S CIRCUIT." International Journal of Bifurcation and Chaos 12, no. 01 (January 2002): 129–34. http://dx.doi.org/10.1142/s021812740200422x.
Full textKILIÇ, RECAI. "EXPERIMENTAL MODIFICATIONS OF VOA-BASED AUTONOMOUS AND NONAUTONOMOUS CHUA'S CIRCUITS FOR HIGHER DIMENSIONAL OPERATION." International Journal of Bifurcation and Chaos 16, no. 09 (September 2006): 2649–58. http://dx.doi.org/10.1142/s0218127406016318.
Full textYU, SIMIN, WALLACE K. S. TANG, and G. CHEN. "GENERATION OF n × m-SCROLL ATTRACTORS UNDER A CHUA-CIRCUIT FRAMEWORK." International Journal of Bifurcation and Chaos 17, no. 11 (November 2007): 3951–64. http://dx.doi.org/10.1142/s0218127407019809.
Full textBROWN, RAY. "GENERALIZATIONS OF THE CHUA EQUATIONS." International Journal of Bifurcation and Chaos 02, no. 04 (December 1992): 889–909. http://dx.doi.org/10.1142/s0218127492000513.
Full textDissertations / Theses on the topic "Chua circuit"
Maranhão, Dariel Mazzoni. "Estudo topológico de órbitas periódicas no circuito experimental de Chua." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24032007-174511/.
Full textWe have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
HAMRI, NASR-EDDINE. "Continuite de la demi application de poincare dans les equations du circuit de chua." Nice, 1994. http://www.theses.fr/1994NICE4798.
Full textRujzl, Miroslav. "Analýza a obvodové realizace speciálních chaotických systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442418.
Full textBonet, Dalmau Jordi. "Análisis del régimen permanente y la estabilidad de circuitos no lineales con parámetros distribuidos mediante técnicas de tiempo discreto." Doctoral thesis, Universitat Politècnica de Catalunya, 1999. http://hdl.handle.net/10803/6889.
Full textUna vez determinadas las soluciones en régimen permanente, el siguiente problema a abordar es el estudio de la estabilidad de estas soluciones, utilizándose los resultados de este estudio para detectar bifurcaciones de Hopf, de desdoblamiento de órbitas y puntos límite. En esta tesis se describe una técnica que permite seguir a) la rama que continua tras la aparición de un punto límite y b) la rama de periodo doble existente en una bifurcación de desdoblamiento de órbitas, como se comprueba sobre el circuito de Chua retardado (TDCC),
Otra aportación de esta tesis, desarrollada íntegramente en el plano teórico, ha consistido en estrechar los lazos existentes entre el estudio de la estabilidad en el dominio temporal y el dominio frecuencial. El punto de partida se encuentra en la obtención de una transformación que permite trasladar cualquier formulación de análisis del dominio frecuencial al temporal y viceversa. La extensión de estos vínculos al estudio de la estabilidad deriva en la obtención de importantes resultados. Destaca, entre éstos, la obtención de la formulación de estabilidad utilizada por el método de balance armónico (HB), partiendo de un estudio de la estabilidad realizado en el dominio temporal. Estos resultados se complementan con los obtenidos por otros autores que, partiendo de una formulación en el dominio temporal con variables de estado, obtienen una formulación en el dominio frecuencial.
Con la finalidad de no avanzar en el vacío, las ideas que aparecen en esta tesis han sido siempre contrastadas, en algunos casos por más de una vía. Así, el circuito de Van der Pol se analiza con el método de HB y con el método propuesto utilizando tres formulaciones distintas. El estudio de la estabilidad de los puntos de equilibrio del TDCC se contrasta con resultados analíticos. La determinación de las regiones de funcionamiento del circuito de Van der Pol excitado y la construcción de su curva solución se comparan con los resultados obtenidos usando HB. Los resultados de análisis del TDCC con línea RLCG son contrastados con los resultados obtenidos utilizando métodos de integración. Finalmente, se realiza una validación experimental del oscilador con línea de transmisión, sobre el cual se resuelve un problema de análisis y otro de optimización.
This thesis has tackled the problem of the direct determination of the steady state analysis of autonomous circuits with transmission lines and generic nonlinear elements. With the equilibrium equations obtained in the Laplace transformed domain, it is possible to directly write the discretized system of equations in the temporal domain where the unknowns to determine are the samples of the control variables, directly in the steady state, along with the oscillation period. Thus, every generic variable V(s) is converted into a vector of equally spaced samples of v(t) and each one of the operators, derivative and delay, into a circulant matrix. The formulation obtained is such that makes it possible the subsequent analytic development of the sensibility of the system of equations discretized with respect to the oscillation period and the samples of the control variables, allowing to solve the system of equations effectively using globally convergent techniques based on modifications of the Newton method. Moreover, with the analysis method suggested here, it is possible to turn a problem of optimization into a problem of analysis and, subsequently, of a lesser complexity. Besides, the use of the multipoint Padé approximants, to approximate an RLCG transmission line with lumped elements and an ideal transmission line, makes it possible to extend the suggested method to the circuits that include RLCG transmission lines.
Once the steady state solutions have been determined, the next problem to deal with is the study of the stability of these solutions. The results of this study are used to detect Hopf bifurcations, period-doubling bifurcations and limit points. In this thesis a technique is described which allows us to follow a) the branch that follows after the appearance of a limit point and b) the branch of double period that exists in a period-doubling bifurcation point, as it can be proved in the time delayed Chua's circuit (TDCC).
Another contribution of this thesis, totally developed at a theoretical level, has consisted in strengthening the existing bonds between the study of the stability both in the temporal and in the frequency domain. The starting point is a transformation that makes it possible to transfer any analysis formulation from the frequency domain to the temporal one and vice versa. The extension of these links to the study of the stability leads to important results. It stands out, among them, the obtained formulation of stability used by the harmonic balance (HB) method, starting from a stability study made in the temporal domain. These results complement each other with those obtained by other authors who, starting from a formulation in the temporal domain with state variables, obtain a formulation in the frequency domain.
With the purpose of validating the ideas that appear in this thesis, these have always been contrasted, in some cases in more than one way. Thus, the Van der Pol oscillator is analyzed with the HB method and with the method suggested here using three different formulations. The study of the stability of the equilibrium points of the TDCC is contrasted with analytic results. The determination of the working regions of the excited Van der Pol oscillator and the construction of its solution curve is compared with the results obtained using HB. The results of the analysis of the TDCC with RLCG line are contrasted with those obtained using integration techniques. Finally, an experimental validation of an oscillator with transmission line is made, in which a problem of analysis and another one of optimization are solved.
Baptista, Murilo da Silva. "Perturbando Sistemas Não-Lineares, uma Abordagem do Controle de Caos." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/43/43131/tde-13122007-093342/.
Full textInitially, we consider the Logistic map with its many non-linear phenomena. Then, we use this knowledge to discern new phenomena that shall appear when the map is perturbed, that is the Logistic map perturbed by a periodic and constant term. The Matsumoto\'s circuit is presented and, after we set this circuit to behave chaotically, we perturb it with a sinoidal wave, characterized by its frequency and amplitude. This perturbation is responsible for the appearence of a quasi-periodic and periodic oscillations, or the maintenance of chaos. We presented and applied many methods for controlling chaotic oscillations in three systems (the Logistic and Henon maps, and the Matsumoto\'s circuit), showing many ways for stabilizing a periodic orbit, using the methods of Ott-Grebogi-York (OGY), Romeiras, Singer, Sinhas and Huebbler. For targeting the trajectory to a equilibrium point, the Sinha\'s method was used. To transfer the system trajectory from one to another of the coexisting attractors presented in the Matsumoto\'s circuit, we use the Jackson-Huebbler (OPCL) method. Using a set of constant perturbations, in a previously chosen parameter, we showed how we can rapidly direct a trajectory of any of the considered three systems to a aimed target. Besides, it is shown how this method can be experimentally applied.
SOUSA, Francisco Felipe Gomes de. "Análise dos espaços de parâmetros do circuito de Chua experimental." reponame:Repositório Institucional da UNIFEI, 2016. http://repositorio.unifei.edu.br:8080/xmlui/handle/123456789/514.
Full textMade available in DSpace on 2016-08-19T17:24:12Z (GMT). No. of bitstreams: 1 tese_sousa_2016.pdf: 20752901 bytes, checksum: 4305fdcdf0c84f9406060cbec4a42198 (MD5) Previous issue date: 2016-05
Neste trabalho, foram obtidos experimentalmente os espaços de parâmetros bidimensionais da periodicidade e do maior expoente de Lyapunov para o circuito de Chua, usando as medidas de séries temporais para diferentes valores das resistências rL em série com o indutor e R ligada aos dois capacitores. Este circuito apresenta o comportamento de um material semicondutor com condutividade diferencial negativa que lembra a forma da letra N (NNDC) acoplado a um circuito tanque. Quatro potenciômetros digitais com 1024 passos de 0,100 Ω, 0, 200 Ω e 1,000 Ω foram construídos para modificar os valores destes parâmetros. A aquisição de dados e controle dos potenciômetros digitais foram feitas através de um programa desenvolvido em Labview® e a análise de dados e apresentação dos resultados com scripts em PYTHON. Os resultados obtidos foram comparados com simulações feitas em FORTRAN que confirmaram a presença de cascatas de adição de período, janelas periódicas, rotas de adição de períodos impares, coexistência de atratores e um hub de periodicidade. Confirmando a eficácia dos usos dos potenciômetros digitais como alternativa para variar os parâmetros resistivos de sistemas dinâmicos elétricos.
Prebianca, Flavio. "Estudo de um circuito de Chua com realimentação tipo seno." Universidade do Estado de Santa Catarina, 2014. http://tede.udesc.br/handle/handle/1987.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The Chua s circuit is an electronic oscillator that has a non-linearity coupled to an LC oscillator, enabling the study of experimental chaos. Using the method of feedback with sine function of the voltage from C1 capacitor, indirectly alters the nonlinear curve of the circuit, with new operation points allowing the emergence of four scroll attractors. A consequence of this feedback is the emergence of a new chaotic region in the parameter space. We present here a qualitative numerical study simulated via MULTISIM/SPICE. It also presents the study by fourth order Runge-Kutta numerical integration for the construction of the parameter space of the largest Lyapunov exponent and bifurcation diagram. It explores the crisis region in the numerical study and show the experimental attractors in this phenomenon. We seek to compare the crisis phenomenon relating the number of visits that system is in the regions +V1 and −V1.
O circuito de Chua é um oscilador eletrônico que possui uma não-linearidade acoplada a um oscilador LC, viabilizando o estudo de caos experimental. Utilizando o método de realimentação por função senoidal da tensão do capacitor C1, altera-se indiretamente a curva não linear do circuito, com novos pontos de operação do oscilador, possibilitando o surgimento de atratores de quatro rolos. Uma consequência desta realimentação ´e o surgimento de uma nova região de caos no espaço de parâmetros. Apresenta-se neste trabalho, o estudo numérico qualitativo simulado via MULTISIM/SPICE. Também apresenta o estudo por integração numérica pelo método Runge-Kutta de quarta ordem, para a construção do espaço de parâmetros do maior expoente de Lyapunov e diagrama de bifurcação. Explora-se a região de crise no estudo numérico e mostra-se atratores experimentais em tal fenômeno. Buscamos comparar o fenômeno de crise relacionando o numero de visitas que o atrator faz nas regiões +V1 e −V1.
SOUZA, João Paulo Araújo. "Espaço de parâmetros de dois circuitos de Chua sincronizados." reponame:Repositório Institucional da UNIFEI, 2018. http://repositorio.unifei.edu.br/xmlui/handle/123456789/1085.
Full textMade available in DSpace on 2018-02-17T00:20:14Z (GMT). No. of bitstreams: 1 dissertacao_souza_2018.pdf: 2015217 bytes, checksum: 2653a273f75d5692f38d64f4ca6c0dd6 (MD5) Previous issue date: 2018-01
Nesta dissertação são apresentados os resultados do estudo do espaço de parâmetros da periodicidade experimental, expoente de Lyapunov simulado e experimental e faixa de resistência no qual dois circuitos de Chua se sincronizam. A simulação foi realizada através do software Fortran, no qual contribui para as análises dos resultados experimentais. Com o desenvolvimento do programa no software Labview® foram obtidas séries temporais que descrevem o sistema experimental. Para montagem experimental foram construídos dois circuitos de Chua e cinco potenciômetros. Os potenciômetros são os parâmetros de controle do nosso sistema definido como R e rl, no qual R tem variação de sua resistência no passo de 1Ω e rl no passo de 0,1Ω. Para análise dos resultados experimentais, foram desenvolvidos programas em Labview® e scripts em Python que fizeram análise das series temporais no qual foram obtidos resultados como periodicidade, maior expoente de Lyapunov e como simulação obtivemos, dimensão de Kaplan-Yorke e entropia de Kolmogorov-Sinai. Os resultados das analises foram representados na forma de espaço de parâmetros. Medições de sincronismo para dois circuitos de Chua acoplados foram realizadas para identificar a intensidade do acoplamento em função da resistência de acoplamento. Simulações do espaço de parâmetros, numa condição de acoplamento com travamento de fase foram utilizadas permitindo identificar as mesmas estruturas observadas para circuitos desacoplados.
Santos, Elinei Pinto dos. "Bifurcações, controle e sincronização do caos nos circuitos de Matsumoto-Chua." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04122013-105609/.
Full textIn this work we use control and synchronization of chaos techniques aiming their implementation in communicating with chaos. These techniques are applied into the electric circuit of Matsumoto-Chua. Initialty, we show the sensibility of the attractors under parameter variations. We determine the attractor basin of attractions. Through the bi-spectral analysis, we verify that the quadratic coupling is high for the Rössler-type attractor, and almost null for the Double-Scroll attractor. For the global charactcrization of this system, we show parameter diagrams of the Lyapunov exponents or auto-correlation. We also study this circuit under a sinusoidal perturbation. In this configuration, we identify new scenario for the transition to chaos through quasi-periodicity. Two of these transitions are identified by us for the first time in this perturbed circuit. We apply five control of chaos techniques: chaos suppression by frequency synchronization, control of unstable periodic orbits by the OGY and feed-back methods, stabilization of the equilibrium points (Hwang method), migration and entrainment (OPCL method). Finally, we consider two acoupled Matsumoto-Chua\'s circuits and determine their synchronization basins. We show that the synchronization in these coupled circuits may not depend on the initial conditions (continuous synchronization basin boundary) or may depend extremely on the initial conditions (riddled or intermingled synchronization basin boundaries).
Zhu, Ning. "Advances in Non-Foster Circuit Augmented, Broad Bandwidth, Metamaterial-Inspired, Electrically Small Antennas." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581683.
Full textThere are always some intrinsic tradeoffs among the performance characteristics: radiation efficiency, directivity, and bandwidth, of electrically small antennas (ESAs). A non-Foster enhanced, broad bandwidth, metamaterial-inspired, electrically small, Egyptian axe dipole (EAD) antenna has been successfully designed and measured to overcome two of these restrictions. By incorporating a non-Foster circuit internally in the near-field resonant parasitic (NFRP) element, the bandwidth of the resulting electrically small antenna was enhanced significantly. The measured results show that the 10 dB bandwidth (BW10dB) of the non-Foster circuit-augmented EAD antenna is more than 6 times the original BW10dB value of the corresponding passive EAD antenna.
Books on the topic "Chua circuit"
Chuan gan qi ying yong ji dian lu she ji. Beijing Shi: Hua xue gong ye chu ban she, 2008.
Find full textChuan gan qi ying yong ji dian lu she ji. Beijing Shi: Hua xue gong ye chu ban she, 2008.
Find full textZhang Zhongmou de ce lüe chuan qi. Taibei Shi: Tian xia za zhi, 1998.
Find full textSirakoulis, Georgios Ch, and Ioannis Vourkas. Memristor-Based Nanoelectronic Computing Circuits and Architectures: Foreword by Leon Chua. Springer, 2015.
Find full textChen, G., Andrew Adamatzky, and Leon O. Chua. Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua. World Scientific Publishing Co Pte Ltd, 2013.
Find full textBook chapters on the topic "Chua circuit"
Leonov, Gennady A., and Nikolay V. Kuznetsov. "Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits." In Computational Methods in Applied Sciences, 41–64. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5288-7_3.
Full text"THE PHYSICAL CIRCUIT." In A Gallery of Chua Attractors, 61–148. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790637_0002.
Full textBROWN, RAY. "FROM THE CHUA CIRCUIT TO THE GENERALIZED CHUA MAP." In Chua's Circuit: A Paradigm for Chaos, 629–50. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812798855_0034.
Full textMISIUREWICZ, MICHAŁ. "UNIMODAL INTERVAL MAPS OBTAINED FROM THE MODIFIED CHUA EQUATIONS." In Chua's Circuit: A Paradigm for Chaos, 651–68. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812798855_0035.
Full textDana, Syamal Kumar, and Satyabrata Chakraborty. "Experimental Evidences of Shil'nikov Chaos and Mixed-mode Oscillation in Chua Circuit." In Chaos Synchronization and Cryptography for Secure Communications, 91–104. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61520-737-4.ch005.
Full textBoutat-Baddas, L., J. Barbot, and R. Tauleigne. "Implementation of the Chua‚Äôs Circuit and its Application in the Data Transmission." In Chaos in Automatic Control, 503–25. CRC Press, 2005. http://dx.doi.org/10.1201/9781420027853.ch14.
Full textKeats, Jonathon. "Memristor." In Virtual Words. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195398540.003.0014.
Full textSeely, Warren, Jakub Kucera, Urs Lott, Anthony Pavio, Charles Nelson, Mark Bloom, Alfy Riddle, Robert Newgard, Richard Snyder, and Robert Trew. "Circuits." In Electrical Engineering Handbook. CRC Press, 2000. http://dx.doi.org/10.1201/9781420036763.ch5a.
Full textAlain, Kammogne Soup Soup Tewa, and Fotsin Hilaire Bertrand. "Robust Control Methods for Finite Time Synchronization of Uncertain Nonlinear Systems." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 364–98. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5788-4.ch015.
Full textConference papers on the topic "Chua circuit"
Voliansky, Roman, Aleksander Sadovoi, and Yurii Shramko. "Chua Circuit with Several Voltage Sources." In 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). IEEE, 2018. http://dx.doi.org/10.1109/infocommst.2018.8632158.
Full textJahed-Motlagh, Mohammad Reza, and Behnam Kia. "Chua Circuit Based Reconfigurable Computing System." In APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/apccas.2006.342193.
Full textDongping Wang, Hui Zhao, and Juebang Yu. "Chaos in memristor based Murali-Lakshmanan-Chua circuit." In 2009 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2009. http://dx.doi.org/10.1109/icccas.2009.5250352.
Full textLi, Ke, and Shu-Lin Wu. "A new synchronization controller of Chua chaotic circuit." In 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6818219.
Full textHaura Junior, Remei, Mauricio A. Ribeiro, Wagner Barth Lenz, José Manoel Balthazar, and Angelo Marcelo Tusset. "REVISTING THE BEHAVIOR OF BI-DIRECTIONAL COUPLED CHUA CIRCUIT." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-0364.
Full textGalias, Zbigniew. "Study of dynamical phenomena in the Muthuswamy-Chua circuit." In 2014 International Conference on Signals and Electronic Systems (ICSES). IEEE, 2014. http://dx.doi.org/10.1109/icses.2014.6948720.
Full textVilasis-Cardona, Xavier, and Mireia Vinyoles-Serra. "Comparison between chua-yang and hyperbolic CNNs." In 2009 European Conference on Circuit Theory and Design (ECCTD 2009). IEEE, 2009. http://dx.doi.org/10.1109/ecctd.2009.5275040.
Full textFeki, Moez, and Ichraf Gammoudi. "Chaos in Chua circuit with fractional order low pass filter." In 2011 8th International Multi-Conference on Systems, Signals and Devices (SSD 2011). IEEE, 2011. http://dx.doi.org/10.1109/ssd.2011.5986785.
Full textInnocenti, Giacomo, Mauro Di Marco, Mauro Forti, and Alberto Tesi. "A controlled Murali-Lakshmanan-Chua memristor circuit to mimic neuron dynamics." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029330.
Full textYuhuan Zhang, Zhenyou Zhang, and Yilong Lei. "Research on chaotic cryptosystem based on time delay feedback Chua circuit." In 2010 International Conference On Computer and Communication Technologies in Agriculture Engineering (CCTAE). IEEE, 2010. http://dx.doi.org/10.1109/cctae.2010.5544222.
Full text