Academic literature on the topic 'Chromium Environmental aspects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chromium Environmental aspects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chromium Environmental aspects"
Puccini, Monica, and Domenico Castiello. "Use of Glucose to Improve the Environmental Aspects of Chrome Tanning Process." Advanced Materials Research 933 (May 2014): 144–50. http://dx.doi.org/10.4028/www.scientific.net/amr.933.144.
Full textGochfeld, M., and C. Witmer. "A research agenda for environmental health aspects of chromium." Environmental Health Perspectives 92 (May 1991): 141–44. http://dx.doi.org/10.1289/ehp.9192141.
Full textLindström, David, Yolanda Hedberg, and Inger Odnevall Wallinder. "Chromium(III) and Chromium(VI) Surface Treated Galvanized Steel for Outdoor Constructions: Environmental Aspects." Environmental Science & Technology 44, no. 11 (June 2010): 4322–27. http://dx.doi.org/10.1021/es1003022.
Full textFranchini, I., and A. Mutti. "Selected toxicological aspects of chromium(VI) compounds." Science of The Total Environment 71, no. 3 (June 1988): 379–87. http://dx.doi.org/10.1016/0048-9697(88)90210-0.
Full textMORIKAWA, Tsutomu, and Takuo NAKADE. "Environmental Aspects and Controlling Cr6+ Emissions of Chromium Electroplating." Journal of the Surface Finishing Society of Japan 68, no. 1 (2017): 14–20. http://dx.doi.org/10.4139/sfj.68.14.
Full textBiswal, Sudhansu Sekhar, Chittaranjan Panda, Priyanka Dash, Trilochan Jena, Smruti Ranjan Parida, and Duryodhan Sahu. "Feasibility and Environmental Compatibility of Concrete using Chromium Bearing Wastewater." Asian Journal of Chemistry 34, no. 6 (2022): 1483–87. http://dx.doi.org/10.14233/ajchem.2022.23695.
Full textKress, Nurit. "Chemical Aspects of Coal Fly Ash Disposal at Sea: Predicting and Monitoring Environmental Impact." Water Science and Technology 27, no. 7-8 (April 1, 1993): 449–55. http://dx.doi.org/10.2166/wst.1993.0581.
Full textFarooqi, Zahoor H., Muhammad Waseem Akram, Robina Begum, Weitai Wu, and Ahmad Irfan. "Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects." Journal of Hazardous Materials 402 (January 2021): 123535. http://dx.doi.org/10.1016/j.jhazmat.2020.123535.
Full textMalovanyy, Myroslav, Oleg Blazhko, Halyna Sakalova, and Tamara Vasylinych. "Ecological Aspects of Clay Sorption Materials Usage in Leather and Fur Production Technologies." Materials Science Forum 1038 (July 13, 2021): 276–81. http://dx.doi.org/10.4028/www.scientific.net/msf.1038.276.
Full textMytych, Piotr, Andrzej Karocki, and Zofia Stasicka. "Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects." Journal of Photochemistry and Photobiology A: Chemistry 160, no. 3 (August 2003): 163–70. http://dx.doi.org/10.1016/s1010-6030(03)00235-1.
Full textDissertations / Theses on the topic "Chromium Environmental aspects"
Abdol, Rahim Kartini. "Chromium dynamics in soil." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37605/.
Full textAnestis, Ioannis D. "Preference avoidance reactions of rainbow trout (Salmo gairdneri) following long term sublethal exposure to chromium and copper." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75767.
Full textPre-exposed fish exhibited decreasing avoidance reactions compared to non-exposed populations. Increased tolerance to the toxicant, was suggested by the increase in avoidance threshold values with pre-exposure levels. Fish exposed to test concentrations matching their pre-exposure levels, clearly preferred this same concentration over the adjacent lower or higher test concentration.
A two mechanism avoidance model was proposed independent of toxicant used or level of pre-exposure. The toxicant concentration where the second mechanism begins to dominate was referred to as avoidance breakpoint, and was correlated to a MATC level for the toxicant in question. Olfactory responses were proposed to be associated with fish avoidance responses below the avoidance breakpoint, while hypoxic stress along with osmo- and iono regulatory stress appeared to be responsible for driving fish avoidance reactions beyond the avoidance breakpoint.
A clearance period of 7 days was sufficient to allow fish to recover normal avoidance behaviour following pre-exposure to Cr(VI) below the avoidance breakpoint.
Kamaludeen, Sara Parwin Banu. "Biotic-abiotic transformations of chromium in long-term tannery waste contaminated soils : implications to remediation." Title page, table of contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phk15.pdf.
Full textCheung, Ka-hong, and 張嘉康. "Chromate toxicity assessment and detoxification by bacteria from the marine environment." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45015351.
Full textGendusa, Tony C. "Toxicity of Chromium and Fluoranthene From Aqueous and Sediment Sources to Selected Freshwater Fish." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc330672/.
Full textMeza, Maria I. "The use of PRBs (permeable reactive barriers) for attenuation of cadmium and hexavalent chromium from industrial contaminated soil." Muncie, Ind. : Ball State University, 2009. http://cardinalscholar.bsu.edu/432.
Full textSedumedi, Hilda N. "Chromium contamination in the vicinity of [the] Xstrata Wonderkop plant." Thesis, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000304.
Full textThe aim of this study was to develop and evaluate an analytical method for the determination of Cr(VI) in ferrochrome dusts and to apply the method in the analysis of environmental samples (grass, soil and tree bark) for Cr(VI) content (that might be caused by dust emissions originating from the smelter). Both the public and Xstrata Wonderkop ferrochrome plant will benefit from data of Cr(VI) determination generated from the study. The information can potentially be incorporated into health risk assessments of the affected geographical areas. The results of the investigation showed that ferrochrome smelter dust emissions were the source of contamination of the environment with Cr(VI). With time, Cr(VI) could accumulate in soil to unacceptable levels, thereby endangering both plants and animals.
Subramanian, Avudainayagam. "Long-term tannery waste contamination: effect on chromium chemistry / by Avudainayagam Subramanian." 2002. http://hdl.handle.net/2440/21824.
Full textIncludes bibliographical references (leaves 205-232)
xii, 232, [27] leaves : ill., plates ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Soil and Water, 2002
Kamaludeen, Sara Parwin Banu. "Biotic-abiotic transformations of chromium in long-term tannery waste contaminated soils : implications to remediation / by Sara Parwin Banu Kamaludeen." Thesis, 2002. http://hdl.handle.net/2440/21767.
Full text180, [4] leaves : ill. (chiefly col.) ; 30 cm.
Determines the effect of chromium on the soil microbial community and its activity, the biotic-abiotic mechanisms involved in chromium oxidation, and phytostabilization of chromium using plants and organic amendment in tannery-waste contaminated soil.
Thesis (Ph.D.)--University of Adelaide, Dept. of Soil and Water, 2002
Like, David E. "Management of chromium wastes in industry." Thesis, 1991. http://hdl.handle.net/1957/37990.
Full textGraduation date: 1991
Books on the topic "Chromium Environmental aspects"
Jaworski, J. F. Chromium update: Environmental and nutritional effects of chromium. Ottawa: National Research Council of Canada, NRCC Associate Committee on Scientific Criteria for Environmental Quality, 1985.
Find full textMedvedev, A. N. Vozdeĭstvie na okruzhai͡u︡shchui͡u︡ sredu predprii͡a︡tii͡a︡ po dobyche khromovykh rud. Ekaterinburg: Rossiĭskai͡a︡ akademii͡a︡ nauk, Uralʹskoe otd-nie, In-t promyshlennoĭ ėkologii, 1996.
Find full textKatz, Sidney A. The biological and environmental chemistry of chromium. New York: VCH, 1994.
Find full textO, Nriagu Jerome, and Nieboer Evert, eds. Chromium in the natural and human environments. New York: Wiley, 1988.
Find full textBrandhuber, Philip. Low-level hexavalent chromium treatment options: Bench-scale evaluation. Denver, CO: AWWA Research Founcation, 2004.
Find full textThiravetyan, Philip. Treatment of chromium contamination in the environment. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textHering, Janet G. Geochemical controls on chromium occurrence, speciation, and treatability. Denver, CO: Awwa Research Foundation, 2004.
Find full textThiravetyan, Philip. Treatment of chromium contamination in the environment. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textCalifornia. Legislature. Senate. Committee on Health and Human Services. Joint informational hearing of the Senate Committee on Health and Human Services and Senate Committee on Natural Resources and Wildlife and the Assembly Committee on Environmental Safety and Toxic Materials: Health effects of chromium VI contamination of drinking water. Sacramento, CA: Senate Publications, 2000.
Find full textMurria, María José Balart. Management of hazardous residues containing Cr(VI). Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Chromium Environmental aspects"
Hoet, Perinne. "Speciation of Chromium in Occupational Exposure and Clinical Aspects." In Handbook of Elemental Speciation II - Species in the Environment, Food, Medicine and Occupational Health, 136–57. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470856009.ch2f(ii).
Full textAgrawal, Bipin Jagdishprasad. "Prospective Sustainability of Utilization of Effective Techniques for Remediation of Heavy Metals From Textile Effluents." In Research Anthology on Emerging Techniques in Environmental Remediation, 517–42. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3714-8.ch028.
Full textAgrawal, Bipin Jagdishprasad. "Prospective Sustainability of Utilization of Effective Techniques for Remediation of Heavy Metals From Textile Effluents." In Biostimulation Remediation Technologies for Groundwater Contaminants, 19–49. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4162-2.ch002.
Full textConference papers on the topic "Chromium Environmental aspects"
Foss, Dyan L., and Briant L. Charboneau. "Groundwater Remediation of Hexavalent Chromium Along the Columbia River at the Hanford Site in Washington State, USA." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59030.
Full textKirsten, A., M. Oechsle, and R. F. Moll. "Carbide Containing Materials for Hard Chromium Replacement by HVOF-Spraying." In ITSC2005, edited by E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0957.
Full textStalder, Jean-Pierre, and Peter A. Huber. "Use of Chromium Containing Fuel Additive to Reduce High Temperature Corrosion of Hot Section Parts." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0138.
Full textPelz, A. "Analysis of Fe-base Materials and Evaluation of their Suitability for Wear Protection Coatings." In ITSC2010, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0751.
Full textKloss-Grote, Benjamin, Michael Wechsung, Rainer Quinkertz, and Henning Almstedt. "Advanced Steam Turbine Technology for Unique Double Reheat Steam Power Plant Layout." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90934.
Full textPolishetty, Ashwin, Mohanad Fakhri Abdulqader Alabdullah, Nihal Pillay, and Guy Littlefair. "A Preliminary Study on Machinability of Super Austenitic Stainless Steel." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50224.
Full textLervik, Jens Kristian, Harald Kulbotten, Gunnar Klevjer, and Øyvind Iversen. "Hydrate and Wax Prevention in Flowlines by Electrical Heating." In 2000 3rd International Pipeline Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/ipc2000-229.
Full text