Dissertations / Theses on the topic 'Chromatin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Chromatin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Jurisic, Anamarija. "Développement d'une approche méthodologique basée sur la biotinylation in vivo de protéines de la chromatine - Application à l’étude des interactions entre des domaines chromosomiques et une protéine de l'enveloppe nucléaire dans des cellules individuelles." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS349.
Full textEvidence is rapidly accumulating that the architecture of interphase chromosomes is important for both gene regulation and genome maintenance. During interphase, chromosomes are nonrandomly positioned with respect to each other and thus they provide nuclear landmarks. Two kinds of interactions are likely to contribute to this nonrandom positioning: (i) subchromosomal domains interact with nuclear structures such as the nuclear envelope (NE) and ii) intrachromosomal interactions take place between linearly distant loci positioned in cis on the same chromosome. As a contribution to this expanding research domain, we have built upon an existing approach previously established in the laboratory to detect protein-protein interactions. The new technique was developed in human cells as part of the present PhD research. It is based on biotin labelling of chromatin components which are in close proximity with the nuclear envelope (NE) in interphase cells. Cells were made to express (i) the biotin ligase BirA fused to the NE protein emerin together with (ii) a fusion between a biotin acceptor peptide and macroH2A, a variant core histone. The biotin label deposited on the macroH2A histone during interphase is then detected by fluorescence microscopy on mitotic cells spread on slides. The biotin-labelled mitotic chromosomes can be further characterized using more classical karyotyping techniques. We refer to this new technique as “Topokaryotyping” since it can provide both topological and karyotypic information. Its step-by-step development has required the establishment of an ad hoc cell line and a fine protocol optimization. This PhD work could pave the way for biological questions explored at a single cell level. As an illustration, a comparative topokaryotyping analysis was performed on cells cultivated in vitro in various experimental stress conditions. It is envisioned that using this technique can provide valuable mechanistic insights relevant to the organization and dynamics of cell nuclei
Gasser, Regula. "Active chromatin /." [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10389.
Full textBelaghzal, Houda. "Chromatin Interaction Dynamics Revealed by Liquid Chromatin Hi-C." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1046.
Full textBesnard, Emilie. "Modifications de l'organisation de la chromatine liées à l’entrée en sénescence et son impact sur la réplication du génome." Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON1T008.
Full textSenescence entry, considered as an irreversible cell cycle arrest, is characterized by modifications of chromatin organization forming specific heterochromatin foci (SAHF) coordinated to modification of gene expression and the progressive loss of capacity to replicate the genome. During my PhD, we investigated whether these changes in genome organization might induce modifications in the distribution and the activity of replication origins during replicative senescence entry and in prematurely induced senescence by inhibition of a chromatin modulator, the Histone AcetylTransferase p300. To study these regulations, we used the replicating DNA combing allowing to follow the progression of replication forks and to evaluate the mean distribution of origins. By using the nascent strand purification assay coupled to deep sequencing, we mapped the position of replication origins in the whole human genome and studied some factors which could be involve d with this determinism. Thanks to this study, we followed finely the modifications of activity of replication origins associated to senescence entry. Moreover, in order to better understand the mechanisms of activation of origins, we studied in collaboration with Dr Fisher's team, the role of Cdk1 and Cdk2, in the activity of replication origins in the Xenopus model
Clynes, David Alexander. "Signalling to chromatin." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496840.
Full textJang, Boyun. "Analysis of chromatin targeting modules in the chromatin remodelling enzyme NURF." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5204/.
Full textMarie, Corentine. "The role of Chd7 & Chd8 chromatin remodelers in oligodendrogenesis and (re)myelination." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066365/document.
Full textOligodendrocytes (OLs) are myelin-forming cells of the central nervous system wrapping axons and allowing the saltatory conduction of action potentials. In Multiple sclerosis (MS), myelin sheath is destroyed and effective remyelination by oligodendrocyte precursor cells (OPCs) diminishes with disease progression. Therefore, a better understanding of the mechanisms controlling OPC generation and differentiation is essential to develop efficient remyelinating therapies. Oligodendrogenesis, involving the steps of OPC generation, OPC differentiation and maturation of OLs, is a process controlled by specific transcription factors including Ascl1, Olig2 and Sox10 but the mechanisms involved are poorly understood. As it is known that chromatin remodelers are regulatory factors necessary in the formation of the promoter-enhancer loop prior to transcription, we focused our study on Chd7 (Chromodomain-Helicase-DNA-Binding 7), a member of the CHD protein family. In a first study, we showed that Chd7 is highly enriched in the oligodendroglial lineage cells with a peak of expression during OL differentiation and that Chd7 OPC-conditional deletion impairs OL differentiation during (re)myelination. In a second study, we used unbiased genome wide technics in purified OPCs to study Chd7 regulation of genes involved in OPC differentiation, proliferation and survival. To this aim, we have generated OPC-specific inducible Chd7 knock-out (Chd7-iKO) and analyse the transcriptome (RNA-seq) of purified OPCs from P7 mouse cortices compared to control littermates. We found that Chd7 promote the expression genes involved in OPC differentiation and myelination and inhibits apoptosis, without affecting OPC proliferation. Furthermore, we investigated Chd8, a paralog of Chd7, showing that it is expressed in the oligodendroglial lineage with a peak of expression in differentiating oligodendrocytes, similar to Chd7. Genome wide binding (ChIP-seq) profiling for Chd7 and Chd8 indicate that these two chromatin remodelers bind to common genes related to OPC differentiation, survival and proliferation. Integrating these datasets with other key transcriptional regulators of oligodendrogenesis (Olig2, Ascl1 & Sox10), we have built a model accounting for the time-controlled regulate expression of genes involved in each step of OL differentiation
Beurton, Flore. "Étude de l’interaction physique et fonctionnelle entre le complexe histone méthyltransférase SET-2/SET1 et le complexe histone déacétylase SIN-3S dans l’embryon de C. elegans." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN017.
Full textThe highly conserved SET1 family complexes are targeted by CFP1/CXXC protein to promoter regions through multivalent interactions to implement methylation of histone H3 Ly4 (H3K4me), a modification that correlates with gene expression depending on the chromatin context. The presence of distinct SET1 complexes in multiple eukaryotic model systems has hampered studies aimed at identifying the complete array of functions of SET1/MLL regulatory networks in a developmental context. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RBBP5, ASH2, WDR5, DPY30 and CFP1. The biochemical composition of the complex however, has not been described. Through the use of co-immunoprecipitation coupled to mass spectrometry-based proteomics, I identified the SET-2/SET1 complex in C. elegans embryos. Most importantly, I showed that the SET-2/SET1 complex also co-immunoprecipitates another conserved chromatin-modifying complex and I highlighted the interactions involved between these two complexes. My genetic analysis revealed that loss of function mutants of the two complex subunits share common phenotypes, consistent with common developmental functions. The laboratory has also undertaken transcriptomic and chromatin immunoprecipitation experiments showing that CFP-1 has a role in the binding of this complex at specific chromatin regions
Nothjunge, Stephan [Verfasser], and Stefan [Akademischer Betreuer] Günther. "Chromatin-Interaktionen in Kardiomyozyten." Freiburg : Universität, 2019. http://d-nb.info/1185390979/34.
Full textLittle, Gillian H. "Stat5 binding to chromatin." Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/12435.
Full textArnold, Christian. "The Eukaryotic Chromatin Computer." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-137584.
Full textEukaryotische Genome sind typischerweise in Form von Chromatin organisiert, dem Komplex aus DNA und Proteinen, aus dem die Chromosomen im Zellkern bestehen. Chromatin hat lebenswichtige Funktionen in einer Vielzahl von Prozessen, von denen die meisten durch ein komplexes System von kovalenten Modifikationen an Histon-Proteinen ablaufen. Muster dieser Modifikationen sind wichtige Informationsträger, deren Weitergabe über die Zellteilung hinaus an beide Tochterzellen besonders wichtig für die Aufrechterhaltung des Zellzustandes im Allgemeinen und des Transkriptionsprogrammes im Speziellen ist. Die Entdeckung von epigenetischen Vererbungsphänomenen - mitotisch und/oder meiotisch vererbbare Veränderungen von Genfunktionen, hervorgerufen durch Veränderungen an Chromosomen, die nicht auf Modifikationen der DNA-Sequenz zurückzuführen sind - war bemerkenswert, weil es die Hypothese widerlegt hat, dass Informationen an Tochterzellen ausschließlich durch DNA übertragen werden. Die Replikation der DNA erzeugt eine dramatische Störung des Chromatinzustandes, welche letztendlich ein partielles Löschen der gespeicherten Informationen zur Folge hat. Um den epigenetischen Zustand zu erhalten, muss die Zelle Teile der parentalen Muster der Histonmodifikationen durch Prozesse rekonstruieren, die noch immer sehr wenig verstanden sind. Eine plausible Hypothese postuliert, dass die verschiedenen Kombinationen der Lese- und Schreibdomänen innerhalb von Histon-modifizierenden Enzymen lokale Umschreibregeln implementieren, die letztendlich das parentale Modifikationsmuster der Histone neu errechnen. Dies geschieht auf Basis der partiellen Informationen, die in der Hälfte der vererbten Histone gespeichert sind. Es wird zunehmend klarer, dass sowohl Informationsverarbeitung als auch computerähnliche Berechnungen omnipräsent und in vielen Bereichen der Naturwissenschaften von fundamentaler Bedeutung sind, insbesondere in der Zelle. Dies wird exemplarisch durch die zunehmend populärer werdenden Forschungsbereiche belegt, die sich auf computerähnliche Berechnungen mithilfe von DNA und Membranen konzentrieren. Jüngste Forschungen suggerieren, dass sich Chromatin während der Evolution in eine mächtige zelluläre Speichereinheit entwickelt hat und in der Lage ist, eine große Menge an Informationen zu speichern und zu prozessieren. Eukaryotisches Chromatin könnte also als ein zellulärer Computer agieren, der in der Lage ist, computerähnliche Berechnungen in einem biologischen Kontext auszuführen. Eine theoretische Studie hat kürzlich demonstriert, dass bereits relativ simple Modelle eines Chromatincomputers berechnungsuniversell und damit mächtiger als reine genregulatorische Netzwerke sind. Im ersten Teil meiner Dissertation stelle ich ein tieferes Verständnis des Leistungsvermögens und der Beschränkungen des Chromatincomputers her, welche bisher größtenteils unerforscht waren. Ich analysiere ausgewählte Grundbestandteile des Chromatincomputers und vergleiche sie mit den Komponenten eines klassischen Computers, mit besonderem Fokus auf Speicher sowie logische und arithmetische Operationen. Ich argumentiere, dass Chromatin eine massiv parallele Architektur, eine Menge von Lese-Schreib-Regeln, die nicht-deterministisch auf Chromatin operieren, die Fähigkeit zur Selbstmodifikation, und allgemeine verblüffende Ähnlichkeiten mit amorphen Berechnungsmodellen besitzt. Ich schlage deswegen eine Zellularautomaten-ähnliche eindimensionale Kette als Berechnungsparadigma vor, auf dem lokale Lese-Schreib-Regeln auf asynchrone Weise mit zeitabhängigen Wahrscheinlichkeiten ausgeführt werden. Seine Wirkungsweise ist demzufolge konzeptionell ähnlich zu den wohlbekannten Theorien von komplexen Systemen. Zudem hat der Chromatincomputer volatilen Speicher mit einem massiven Informationsgehalt, der von der Zelle benutzt werden kann. Ich schätze ab, dass die Speicherkapazität im Bereich von mehreren Hundert Megabytes von schreibbarer Information pro Zelle liegt, was ich zudem mit DNA und cis-regulatorischen Modulen vergleiche. Ich zeige weiterhin, dass ein Chromatincomputer nicht nur Berechnungen in einem biologischen Kontext ausführen kann, sondern auch in einem strikt informatischen Sinn. Zumindest theoretisch kann er deswegen für jede berechenbare Funktion benutzt werden. Chromatin ist demzufolge ein weiteres Beispiel für die steigende Anzahl von unkonventionellen Berechnungsmodellen. Als Beispiel für eine biologische Herausforderung, die vom Chromatincomputer gelöst werden kann, formuliere ich die epigenetische Vererbung als rechnergestütztes Problem. Ich entwickle ein flexibles Simulationssystem zur Untersuchung der epigenetische Vererbung von individuellen Histonmodifikationen, welches auf der Neuberechnung der partiell verlorengegangenen Informationen der Histonmodifikationen beruht. Die Implementierung benutzt Gillespies stochastischen Simulationsalgorithmus, um die chemische Mastergleichung der zugrundeliegenden stochastischen Prozesse über die Zeit auf exakte Art und Weise zu modellieren. Der Algorithmus ist zudem effizient genug, um in einen evolutionären Algorithmus eingebettet zu werden. Diese Kombination erlaubt es ein System von Enzymen zu finden, dass einen bestimmten Chromatinstatus über mehrere Zellteilungen hinweg stabil vererben kann. Dabei habe ich festgestellt, dass es relativ einfach ist, ein solches System von Enzymen zu evolvieren, auch ohne explizite Einbindung von Randelementen zur Separierung differentiell modifizierter Chromatindomänen. Dennoch ängt der Erfolg dieser Aufgabe von mehreren bisher unbeachteten Faktoren ab, wie zum Beispiel der Länge der Domäne, dem bestimmten zu vererbenden Muster, der Zeit zwischen Replikationen sowie verschiedenen chemischen Parametern. Alle diese Faktoren beeinflussen die Anhäufung von Fehlern als Folge von Zellteilungen. Chromatin-regulatorische Prozesse und epigenetische Vererbungsmechanismen stellen ein komplexes und sensitives System dar und jede Fehlregulation kann bedeutend zu verschiedenen Krankheiten, wie zum Beispiel der Alzheimerschen Krankheit, beitragen. In der Ätiologie der Alzheimerschen Krankheit wird die Bedeutung von epigenetischen und Chromatin-basierten Prozessen sowie nicht-kodierenden RNAs zunehmend erkannt. Im zweiten Teil der Dissertation adressiere ich explizit und auf systematische Art und Weise die zwei Hypothesen, dass (i) ein fehlregulierter Chromatincomputer eine wichtige Rolle in der Alzheimerschen Krankheit spielt und (ii) die Alzheimersche Krankheit eine evolutionär junge Krankheit darstellt. Zusammenfassend finde ich Belege für beide Hypothesen, obwohl es für erstere schwierig ist, aufgrund der Komplexität der Krankheit Kausalitäten zu etablieren. Dennoch identifiziere ich zahlreiche differentiell exprimierte, Chromatin-assoziierte Bereiche, wie zum Beispiel Histone, Chromatin-modifizierende Enzyme oder deren integrale Bestandteile, nicht-kodierende RNAs mit Führungsfunktionen für Chromatin-modifizierende Komplexe oder Proteine, die direkt oder indirekt epigenetische Stabilität durch veränderte Zellzyklus-Regulation beeinflussen. Zur Identifikation von differentiell exprimierten Bereichen in der Alzheimerschen Krankheit benutze ich einen maßgeschneiderten Expressions-Microarray, der mit Hilfe einer neuartigen Bioinformatik-Pipeline erstellt wurde. Trotz des Aufkommens von weiter fortgeschrittenen Hochdurchsatzmethoden, wie zum Beispiel RNA-seq, haben Microarrays immer noch einige Vorteile und werden ein nützliches und akkurates Werkzeug für Expressionsstudien und Transkriptom-Profiling bleiben. Es ist jedoch nicht trivial eine geeignete Strategie für das Sondendesign von maßgeschneiderten Expressions-Microarrays zu finden, weil alternatives Spleißen und Transkription von nicht-kodierenden Bereichen viel verbreiteter sind als ursprünglich angenommen. Um ein akkurates und vollständiges Bild der Expression von genomischen Bereichen in der Zeit nach dem ENCODE-Projekt zu bekommen, muss diese zusätzliche transkriptionelle Komplexität schon während des Designs eines Microarrays berücksichtigt werden und erfordert daher wohlüberlegte und oft ignorierte Strategien für das Sondendesign. Dies umfasst zum Beispiel eine adäquate Vorbereitung der Zielsequenzen und eine genaue Abschätzung der Sondenspezifität. Mit Hilfe der Pipeline wurden zwei maßgeschneiderte Expressions-Microarrays produziert, die beide eine umfangreiche Sammlung von nicht-kodierenden RNAs beinhalten. Zusätzlich wurde ein nutzerfreundlicher Webserver programmiert, der die entwickelte Pipeline für jeden öffentlich zur Verfügung stellt
Clement, Camille. "Rôle du chaperon d'histone ASF1 dans le recyclage des histones parentales pendant la réplication de l'ADN." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2018. https://theses.hal.science/tel-02518693.
Full textIn eukaryotes, DNA wraps around proteins called histones to form chromatin. This structure allows, first, the compaction of the genome in the nucleus, but also the regulation of its expression. Indeed, histones can be a source of information referred to as “epigenetic”: they exist under different forms, histone variants, and can have post-translational modifications. The presence of these variants and modifications organizes the genome into domains with different transcriptional status.DNA replication destabilizes chromatin structure and, therefore, represents a challenge for the cell, which must duplicate its genetic material while also transmitting its epigenetic landscape in order to maintain its identity. In this context, recycling parental histones is essential to faithfully transmit histone variants and their modifications.During my PhD, I tried to address the question: how are the histone variants H3.1 and H3.3 recycled during DNA replication? In particular, I investigated the role of the histone chaperone Anti-Silencing Function 1 (ASF1) in this process.My approach was to develop a super-resolution microscopy technique (STORM) to visualize parental histone variants precisely at replication sites. Using this technology, I could study the impact of ASF1 depletion on the recycling of parental histones, and further our understanding of fundamental mechanisms that transmit epigenetic information
Meyer, Sam. "Multiscale modeling of DNA, from double-helix to chromatin." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00756315.
Full textBoskovic, Ana. "Study of histone variants and chromatin dynamics in the preimplantation mouse embryo." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ034/document.
Full textHow the zygote acquires totipotency from two differentiated cells, and how cell fate decisions are made later in development is a pivotal biological question. The studies conducted during the first part of my doctorate contributed to the annotation of embryonic chromatin composition with regards to histone variants and PTMs, and more specifically those correlated with active chromatin regions. The histone variant H2A.Z was shown to be present on embryonic chromatin in a stage-specific manner. Ectopic expression of H2A.Z after fertilization reduced developmental progression, suggesting that absence of H2A.Z at the onset of development might be important for the organization of the newly formed embryonic chromatin. Secondly, I investigated histone dynamics in the developing mouse embryo. Our work represents the first report on histone mobility during early mouse embryogenesis. My thesis contributed to the understanding of the dynamic events affecting embryonic chromatin during epigenetic remodeling after fertilization
Ciabrelli, Filippo. "Stable transgenerational inheritance of alternative chromatin states in Drosophila melanogaster." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT034.
Full textTransgenerational epigenetic inheritance is a hotly debated phenomenon whereby a non-genetically determined phenotype can be transmitted to the next generation. So far, this mode of inheritance has been described in few cases and it was suggested that chromatin components might be involved, including Polycomb group proteins, which act as repressors of key developmental genes and coordinate cell differentiation and proliferation. The molecular mechanisms linking Polycomb-mediated silencing to transgenerational epigenetic inheritance are far from being understood. Therefore, I developed an experimental system in Drosophila melanogaster to induce stable transgenerational epigenetic inheritance, in which alternative gene expression states can be transmitted in the presence of the same DNA sequence. Starting from these highly stable “epilines”, I could dissect some of the genetic properties of the induced epialleles, such as their quantitative inheritance and their ability to trans-communicate. Moreover, the epialleles displayed synergy in their expression and transmission. One of the molecular signatures of the epialleles is the differential presence of the Polycomb repressive complexes and their related epigenetic marks. This different distribution is independent of the transcriptional activity of the downstream genes, at least in an early developmental stage, and could influence the three-dimensional organization of the locus involved. Intriguingly Ago2, an RNAi pathway component, has been found to genetically interact with the epialleles and to be directly bound on their chromatin, indicating a possible role for the ncRNAs in the expression of the epialleles and possibly in their transmission. These results make a case for strong and stable transgenerational epigenetic inheritance in metazoan and provide a model that is amenable for the molecular dissection of this phenomenon
Kirstein, Nina Danielle. "Chromatin-dependent pre-replication complex positioning and activation in mammals." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT005/document.
Full textWith every cell division, the genome needs to be faithfully duplicated. Tens of thousands of DNA replication initiation sites (origins of replication) are involved in replicating the human genome. Origin activation is precisely regulated and extensive genome-wide studies found association of origin activation to several different genomic features. The pre-replication complex (pre RC) is the basis for replication initiation and consists of two major subcomponents: the origin recognition complex (ORC) binds DNA and is required for loading of the second component, Mcm2-7 helicases, which initiate DNA replication. Regulation of pre-RC assembly is well studied, however, chromatin features driving pre RC positioning on the human genome remain largely unknown. Genome-wide pre-RC chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) studies are rare and so far only performed for ORC. As Mcm2-7 can translocate from their initial loading site, information about Mcm2-7 positioning are required for full understanding of DNA replication regulation.This work presents the first genome-wide ChIP-seq analysis of the two major pre-RC subcomponents ORC and Mcm2-7 in the Epstein-Barr virus (EBV) infected Burkitt’s lymphoma cell line Raji. Successful ChIPs were validated on the EBV genome by comparing obtained pre RC positions with already existing pre-RC ChIP-on chip data. On the human genome, pre-RC sequencing results nicely correlated with zones of active replication. Interestingly, zones of replication termination were specifically depleted from pre-RC components, especially from Mcm2 7. Active DNA replication is known to correlate with active transcription. Indeed, strong pre-RC assembly preferentially occurred at sites of active transcriptional regulation, presumably determined by chromatin accessibility. Strong Mcm2-7 binding thereby fluctuated cell cycle-dependently, arguing for Mcm2-7 translocations during G1, possibly depending on the active transcriptional machinery. These results indicate ORC and Mcm2-7 positions being mainly dependent on chromatin accessibility in active chromatin, with Mcm2-7 being the major determinant of replication initiation. In heterochromatin, ORC was enriched at H4K20me3 sites, while Mcm2-7 enrichment was less prominent. Employing a plasmid-based replication system, ORC association to H4K20me3 was proven to promote successful pre-RC assembly and replication initiation, situating direct ORC-chromatin interactions being the major determinant for DNA replication regulation in heterochromatin. Taken together, this study proposes two different modes of pre-RC assembly regulation depending on chromatin environment
Teano, Gianluca. "Functional interplays between linker histone H1 variants and chromatin landscape in Arabidopsis thaliana." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASB003.
Full textBeing capable of rapid phenotypic adaptations in response to environmental cues, plants are characterized by a remarkable developmental plasticity. Specifically, plants have the ability to sense light conditions by multiple photosensory receptors and to use this crucial information to adapt their morphology and physiology to a changing environment. For example, the first perception of light by young plantlets emerging from the soil induces deep changes in gene expression that launch growth and photosynthetic activity. During this transition, genome expression reprogramming is accompanied by massive rearrangements of chromatin sub-nuclear organization. In the Arabidopsis thaliana plant species, a large part of heterochromatin containing silent and condensed repeated elements is scattered within multiple foci in the nucleoplasm of most cotyledon cells when grown in darkness. Upon exposure to light, cotyledon de-etiolation triggers the rapid condensation of heterochromatic domains into 8-to-10 large chromocenters that form around centromeres. This phenomenology has led us to the identification of histone H1 variants as key molecular players in triggering chromocenter dynamics. These inter-nucleosomal linker histones are conserved structural components of eukaryotic chromatin that contribute to both local and higher-order chromatin organization and condensation, notably restricting DNA accessibility to multiple factors such as RNA polymerases. In this thesis cytological and genomic approaches were used to investigate the influence of the three Arabidopsis thaliana H1 variants in the definition of the genome and the 3D chromatin structure in cotyledon cells. The combination of Assay for Transposase-Accessible Chromatin (ATAC) and Chromosome Conformation Capture (Hi-C) allowed dissecting how H1 histones impact genome topology and the adaptation of the chromatin landscape for a new transcriptional program. The analysis of histone marks abundance and their genome-wide profiling using quantitative chromatin immunoprecipitation (ChIP-Rx) further enhances current knowledge. We uncovered the functional impact of histones H1 in defining chromatin repressive landscape on many genes and repeated elements, potentially by restricting access to transcription factors on specific sequence motifs. Collectively, this work has allowed deciphering the specific and redundant functional implications of histone H1 variants as key molecular regulators of the chromatin landscape in plants
Santos, Barriopedro Irene. "Role of SIRT6 in Chromatin." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/292363.
Full textLa compactación de la cromatina es regulada por diferentes factores entre los cuales destacan las modificaciones post-traduccionales de las histonas. Hay diferentes modificaciones de histonas entre ellas las desacetilationes y las metilaciones. Los niveles de acetilación están regulados por las histonas acetiltransferasas (HATs) y las histonas deacetilasas (HDACs), proteínas que añaden o quitan grupos acetil a las lisinas de las histonas, respectivamente. Los miembros de la familia Sir2 o de las sirtuínas constituyen la clase III de las HDACs y participan en respuesta a muchas formas de estrés. Entre ellas, está SirT6 que desacetila H3K9 acetilado para promover silenciamiento. En este proyecto mostramos que la sobreexpresión de SirT6 produce silenciamiento génico tal y como se había descrito previamente. Además, SirT6 interacciona con proteínas involucradas en silenciamiento génico como es el complejo NuRD y EZH2 y la metiltransferases de H3K9, G9a y Suv39h1. Suv39h1 trimetila H3K9 necesario para la estructura de la heterocromatina. Está caracterizada la interacción entre Suv39h1 y SirT1 en el contexto de formación de la formación de heterocromatina. La relación entre Suv39h1 y SirT6 es bastante diferente a la de Suv39h1 y SirT1. SirT6 media una monoubiquitinación no canónica en tres cisteínas conservadas del dominio pre-SET de Suv39h1. Entre las E3 ubiquitina ligasas que interaccionan con Suv39h1 y SirT6 como CHIP y CHFR, encontramos que la responsable de la monoubiquitinación de Suv39h1 es SKP2. Mostramos que los niveles de SKP2 están regulados también por SirT6 la cual desacetila SKP2 e induce su fosforilación evitando así su degradación. La monoubiquitinación de Suv39h1 es inducida con tratamiento de doble bloqueo y timidina, que paran las células en G1/S y mitosis temprana, respectivamente. Además, la activación de la vía de NFkB induce la monoubiquitinación de Suv39h1. La expresión del regulador negativo de la vía de NFkB, IkBa, está regulada por la interacción entre Suv39h1, SirT6 y SKP2 y bajo tratamiento con TNFa. SirT6 induce la monoubiquitinación de Suv39h1 a través de SKP2 y Suv39h1 monoubiquitinizado es desplazado del promotor permitiendo la activación de la transcripción de IkBa por RelA. Este modelo proporciona nuevas perspectivas de la regulación de la vía NFkB.
Maier, Michael 1983. "Origin of chromatin anaphase bridges." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565807.
Full textLa correcta segregació dels cromosomes és esencial per la supervivencia de la cèl·lula i per evitar l’aparició de certes malalties com el càncer. Els ponts anafàsics són un tipus d’error de segregació que pot ser originat per defectes estructurals dels cromosomes. Es coneix molt poc sobre els mecanismes que eviten la formació d’aquests ponts anafàsics. En aquest estudi he fet un análisis global dels diferents gens que normalment eviten la formació d’aquests ponts, per abançar en la comprensió del seu origen. He vist que el ponts anaphasics es formen en mutants que tenen afectat el proces de replicació i que és posible de provocar la formació d’aquests ponts exposant les cèl·lules a estrés replicatiu. Per tant, els problemes en la replicació són una de les causes dels ponts d’anafase. He identificat el rol de “mitotic exit network (MEN)” en la segregació cromosómica. Els mutants per MEN formen ponts anafàsics i mostren evidències que aquests ponts probenen de regions telomèriques i podrien incloure DNA no replicat.
Möbius, Wolfram. "Physical aspects of chromatin constituents." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-119872.
Full textHoffbeck, Anne-Sophie. "Chromatin structure and DNA repair." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ104/document.
Full textVarious DNA damaging agents, that can cause DNA lesions, assault constantly our genome. The most deleterious DNA lesions are the breaks occurring in both strands of DNA (Double stand breaks: DSBs). Inefficient repair of DSBs can lead to aberrations that may induce cancer. To avoid these deleterious effects of DSBs, cells have developed signalling cascades which entail detection of the lesions and spreading of the signal that leads to arrest in cell cycle progression and efficient repair. A major characteristic of DNA damage response (DDR) is the accumulation of a vast amount of proteins around the DSBs that are visible in the cell as DNA damage foci. However, efficient DNA repair is hampered by the fact that genomic DNA is packaged into chromatin. The DNA repair machinery overcomes this condensed structure to access damaged DNA by recruiting many proteins that remodel chromatin to facilitate efficient repair. The aim of my PhD work is to identify novel proteinsinvolved in the DDR and/or the remodelling of chromatin surrounding DSBs. On one hand, we take advantage of the PICh (Proteomics of Isolated Chromatin loci) technique and we aim to identify the entire proteome of DNA repair foci. On the other hand, we study the role of the oncogene SET/TAFIβ, a major hit of a siRNA screen performed to identify novel chromatin related proteins that play role in repair of DSBs
Koutzamani, Elisavet. "Chromatin, histones, and epigenetic tags." Doctoral thesis, Linköping : Linköping University, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/med960s.pdf.
Full textGelius, Birgitta. "Chromatin remodelling and gene regulation /." Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-89428-16-1/.
Full textLo, Wing Ip Anthony. "Human centromeric and neocentromeric chromatin /." Connect to thesis, 2000. http://eprints.unimelb.edu.au/archive/00000771.
Full textDent, Myrna Alexandra Roberta. "Studies of brain chromatin structure." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315053.
Full textHalls, K. S. "Chromatin modifiers and their function." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599879.
Full textDawson, M. A. F. "JAK-STAT signalling at chromatin." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598423.
Full textPusch, Miriam. "Proteomics of newly assembled chromatin." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-180964.
Full textGoldberg, Martin William. "Histone ubiquitination and chromatin structure." Thesis, Liverpool John Moores University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253137.
Full textRossignol, Pascale. "Characterisation of chromatin-associated proteins." Thesis, University of East Anglia, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426574.
Full textLambert, S. F. "Lysine-DNA interactions in chromatin." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332194.
Full textVerreault, Alain. "Transcriptionally competent and repressed chromatin." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318267.
Full textMcArthur, Michael. "Chromatin structure and DNA methylation." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627534.
Full textChandra, Tamir. "Chromatin dynamics in cellular senescence." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610079.
Full textZegerman, Philip Alexander. "Characterization of chromatin modifying factors." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620279.
Full textWolf, Daniel. "Chromatin modifying enzymes and transcription." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619707.
Full textFisher, Alex. "Chromatin remodelling in light signalling." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/29749.
Full textFennessy, Ross. "Chromatin dynamics during DNA replication." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/7898ad5c-ea45-4ce5-a6b7-9b858615368e.
Full textFurlan, Cristina. "Quantitative proteomics of human chromatin." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/17992.
Full textTopal, Salih. "Chromatin Dynamics Regulate Transcriptional Homeostasis." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1062.
Full textVonHandorf, Andrew P. "Cr(VI) Disrupts Chromatin Architecture." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595243461574043.
Full textRiedmann, Caitlyn M. "THE DYNAMIC NATURE OF CHROMATIN." UKnowledge, 2017. http://uknowledge.uky.edu/biochem_etds/31.
Full textRafique, Sehrish. "Chromatin organisation in breast cancer." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/11722.
Full textPrasad, Amalthiya. "Base Excision Repair in Chromatin." ScholarWorks @ UVM, 2008. http://library.uvm.edu/dspace/bitstream/123456789/180/1/amalthiyprasadfinal.pdf.
Full textPatankar, S. M. "Condensed chromatin in higher plants." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1987. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3286.
Full textGalic, Hrvoje. "Heterochromatin dynamics upon release from stationary phase in budding yeast." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT006/document.
Full textThe budding yeast SIR complex (Silent Information Regulator) is the principal actor in heterochromatin formation, which causes epigenetically regulated gene silencing phenotypes. The maternal chromatin bound SIR complex is disassembled during replication and then, if heterochromatin is to be restored on both daughter strands, the SIR complex has to be reformed on both strands to pre-replication levels. The dynamics of SIR complex maintenance and re-formation during the cell-cycle and in different growth conditions are however not clear. Understanding exchange rates of SIR subunits during the cell cycle and their distribution pattern to daughter chromatids after replication has important implications for how heterochromatic states may be inherited and therefore how epigenetic states are maintained from one cellular generation to the next. We therefore used the tag switch RITE system to measure genome wide turnover rates of the SIR subunit Sir3 before and after exit from stationary phase and show that maternal Sir3 subunits are completely replaced with newly synthesized Sir3 at subtelomeric regions during the first cell cycle after release from stationary phase. We propose that the observed “reset” of the heterochromatic complex is an adaptive mechanism that ensures the activation of subtelomeric stress response genes by transiently destabilizing heterochromatin structure
Robinson, Mark. "Exploring the roles of chromatin remodelers in regulating chromatin organisation and transcription in Dictyostelium discoideum." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/99875/.
Full textBENDANDI, ARTEMI. "Modelling Electrostatic Interactions and Solvation in Chromatin: from the single nucleosome towards the chromatin fibre." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1042960.
Full textZayed, Abdallah. "The role of chromatin remodelers in dopaminoceptive neurons." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS437.
Full textGlucocorticoid (GC) hormone release is a key physiological response to stress exposure enabling the organism to cope with environmental challenges. Beneficial when working, a dysfunction of this adaptive response is associated to multiples pathologies including psychiatric disorders. GC act through the binding to their receptor, glucocorticoid receptor (GR). It has been shown that GR gene inactivation in dopaminoceptive neurons (GRD1Cre mice) reduces dopamine neurons activity, decreases responses to cocaine and blocks social aversion induced by repeated social defeat. GR can control genes expression through different mechanisms. Among others, it can interact with SWI/SNF chromatin remodeling complexes either Brahma (Brm) or Brahma-related gene 1 (Brg1) as an ATP catalytic core subunit, which can move the DNA along the nucleosomes thereby opening the chromatin and favoring gene transcription. We found that both Brg1D1Cre and Brm-/- mice showed a complete resilience to repeated social defeat. Moreover, both Brg1D1Cre and Brm-/- mice showed decreased responses to cocaine in behavioral sensitization. Brg1D1Cre mice on the contrary to GRD1Cre showed a normal increase of dopamine neuron firing after social defeat despite their behavioral resilience. We therefore examined cell-signaling and immediate early genes induction in the mutated brain areas of our models and showed that while ERK signaling pathway is normally induced by an acute defeat, the induction of c-Fos and Egr1 genes expression are reduced in the dorsal striatum and the NAc. Altogether, these results lead to further evidences for an involvement of chromatin remodelers in stress-related behaviors
Germier, Thomas. "Dynamique de la chromatine et transcription." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30376.
Full textChromatin dynamics are affected by biological processes. To understand how physical behaviour of chromatin and biology work together, we need tools to analyse chromatin motion in living cells. Several systems exist to fluorescently label DNA loci and to effectively determine their position within the nucleus, but they have drawbacks in mammalian cells when it comes to studying chromatin motion in the context of biological processes. This is especially true when it comes to mechanisms where DNA needs to be processed in the vicinity of the labeling. To study chromatin dynamics in cellulo, the Bystricky group developed the ANCHOR DNA labelling system. ANCHOR relies on the insertion of a short, non-repetitive sequence (ANCH) in the host genome. This sequence contains binding sites for a protein (OR) which once bound, oligomerize and allow visualization of the tagged locus. ANCHOR is derived from the bacterial chromosome partitioning systems. The tool was successfully implemented in budding yeast (Saad et al. 2014) and more recently in Drosophila (H. Chen, Fujioka, and Gregor 2017; Gomez-Lamarca et al. 2018). One of my thesis projects was to apply the ANCHOR system in human cells. The ANCH3 sequence was inserted randomly and in one copy in the genome of breast cancer cell line MCF7 by Hafida Sellou (M2 student) and Fatima Moutahir (technician). To insert the ANCH3 sequence, MCF7 cells were first modified to insert a FRT site in the genome. Then, a plasmid containing ANCH3 coupled to Cyclin D1 transgene and a FRT site was transfected. Recombination between the two FRT site was promoted by Flipase. The fluorescently-tagged OR3 protein was either stably or transiently expressed to allow imaging of the CCND1 gene (see (Germier et al. 2017, 2018) for details). We wanted to establish a proof of principle for the use of ANCHOR in mammalian cells. MCF7 cells containing a CCND1 transgene, called G7-CCND1 (Germier et al. 2017) were stably transfected with OR3-Santaka and the CCND1 locus was followed using fast- time lapse microscopy over 24 h through one cell division in a single cell. We could effectively follow the transgene locus without much photobleaching. The presence of OR3-Santaka protein on the chromatin locus did not disturb replication and two loci were effectively observed in the two daughter cells (Germier et al. 2018). Using the ANCHOR3 system, we hence developed a powerful tool to study both rapid, short events such as transcription and long-term events taking place over days, such as cell division or differentiation