Journal articles on the topic 'Chromatin loop extrusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chromatin loop extrusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Racko, Dusan, Fabrizio Benedetti, Dimos Goundaroulis, and Andrzej Stasiak. "Chromatin Loop Extrusion and Chromatin Unknotting." Polymers 10, no. 10 (October 11, 2018): 1126. http://dx.doi.org/10.3390/polym10101126.
Full textMatityahu, Avi, and Itay Onn. "Hit the brakes – a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes." Journal of Cell Science 134, no. 1 (January 1, 2021): jcs247577. http://dx.doi.org/10.1242/jcs.247577.
Full textNuebler, Johannes, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, and Leonid A. Mirny. "Chromatin organization by an interplay of loop extrusion and compartmental segregation." Proceedings of the National Academy of Sciences 115, no. 29 (July 2, 2018): E6697—E6706. http://dx.doi.org/10.1073/pnas.1717730115.
Full textKabirova, Evelyn, Artem Nurislamov, Artem Shadskiy, Alexander Smirnov, Andrey Popov, Pavel Salnikov, Nariman Battulin, and Veniamin Fishman. "Function and Evolution of the Loop Extrusion Machinery in Animals." International Journal of Molecular Sciences 24, no. 5 (March 6, 2023): 5017. http://dx.doi.org/10.3390/ijms24055017.
Full textMaji, Ajoy, Ranjith Padinhateeri, and Mithun K. Mitra. "Loop Extrusion in Chromatin: A Question of Time!" Biophysical Journal 118, no. 3 (February 2020): 63a. http://dx.doi.org/10.1016/j.bpj.2019.11.522.
Full textBrandão, Hugo B., Payel Paul, Aafke A. van den Berg, David Z. Rudner, Xindan Wang, and Leonid A. Mirny. "RNA polymerases as moving barriers to condensin loop extrusion." Proceedings of the National Academy of Sciences 116, no. 41 (September 23, 2019): 20489–99. http://dx.doi.org/10.1073/pnas.1907009116.
Full textYamamoto, Tetsuya, Takahiro Sakaue, and Helmut Schiessel. "Slow chromatin dynamics enhances promoter accessibility to transcriptional condensates." Nucleic Acids Research 49, no. 9 (April 22, 2021): 5017–27. http://dx.doi.org/10.1093/nar/gkab275.
Full textBonato, A., C. A. Brackley, J. Johnson, D. Michieletto, and D. Marenduzzo. "Chromosome compaction and chromatin stiffness enhance diffusive loop extrusion by slip-link proteins." Soft Matter 16, no. 9 (2020): 2406–14. http://dx.doi.org/10.1039/c9sm01875a.
Full textKolbin, Daniel, Benjamin L. Walker, Caitlin Hult, John Donoghue Stanton, David Adalsteinsson, M. Gregory Forest, and Kerry Bloom. "Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops." Genes 14, no. 12 (December 9, 2023): 2193. http://dx.doi.org/10.3390/genes14122193.
Full textRusková, Renáta, and Dušan Račko. "Entropic Competition between Supercoiled and Torsionally Relaxed Chromatin Fibers Drives Loop Extrusion through Pseudo-Topologically Bound Cohesin." Biology 10, no. 2 (February 7, 2021): 130. http://dx.doi.org/10.3390/biology10020130.
Full textDavidson, Iain F., Benedikt Bauer, Daniela Goetz, Wen Tang, Gordana Wutz, and Jan-Michael Peters. "DNA loop extrusion by human cohesin." Science 366, no. 6471 (November 21, 2019): 1338–45. http://dx.doi.org/10.1126/science.aaz3418.
Full textBrahmachari, Sumitabha, and John F. Marko. "Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures." Proceedings of the National Academy of Sciences 116, no. 50 (November 22, 2019): 24956–65. http://dx.doi.org/10.1073/pnas.1906355116.
Full textYamamoto, Tetsuya, and Helmut Schiessel. "Dilution of contact frequency between superenhancers by loop extrusion at interfaces." Soft Matter 15, no. 38 (2019): 7635–43. http://dx.doi.org/10.1039/c9sm01454c.
Full textZhang, Xuefei, Yu Zhang, Zhaoqing Ba, Nia Kyritsis, Rafael Casellas, and Frederick W. Alt. "Fundamental roles of chromatin loop extrusion in antibody class switching." Nature 575, no. 7782 (October 30, 2019): 385–89. http://dx.doi.org/10.1038/s41586-019-1723-0.
Full textNuebler, Johannes, Geoffrey Fudenberg, Maxim Imakaev, Nezar Abdennur, and Leonid Mirny. "Chromatin Organization by an Interplay of Loop Extrusion and Compartmental Segregation." Biophysical Journal 114, no. 3 (February 2018): 30a. http://dx.doi.org/10.1016/j.bpj.2017.11.211.
Full textMatthews, Nicholas E., and Rob White. "Chromatin Architecture in the Fly: Living without CTCF/Cohesin Loop Extrusion?" BioEssays 41, no. 9 (July 2019): 1900048. http://dx.doi.org/10.1002/bies.201900048.
Full textOchs, Fena, Charlotte Green, Aleksander Tomasz Szczurek, Lior Pytowski, Sofia Kolesnikova, Jill Brown, Daniel Wolfram Gerlich, Veronica Buckle, Lothar Schermelleh, and Kim Ashley Nasmyth. "Sister chromatid cohesion is mediated by individual cohesin complexes." Science 383, no. 6687 (March 8, 2024): 1122–30. http://dx.doi.org/10.1126/science.adl4606.
Full textKoide, Hiroki, Noriyuki Kodera, Shveta Bisht, Shoji Takada, and Tsuyoshi Terakawa. "Modeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy." PLOS Computational Biology 17, no. 7 (July 30, 2021): e1009265. http://dx.doi.org/10.1371/journal.pcbi.1009265.
Full textDekker, Bastiaan, and Job Dekker. "Regulation of the mitotic chromosome folding machines." Biochemical Journal 479, no. 20 (October 21, 2022): 2153–73. http://dx.doi.org/10.1042/bcj20210140.
Full textGhosh, Surya K., and Daniel Jost. "Genome organization via loop extrusion, insights from polymer physics models." Briefings in Functional Genomics 19, no. 2 (November 8, 2019): 119–27. http://dx.doi.org/10.1093/bfgp/elz023.
Full textCutts, Erin E., and Alessandro Vannini. "Condensin complexes: understanding loop extrusion one conformational change at a time." Biochemical Society Transactions 48, no. 5 (October 2, 2020): 2089–100. http://dx.doi.org/10.1042/bst20200241.
Full textPhipps, Jamie, and Karine Dubrana. "DNA Repair in Space and Time: Safeguarding the Genome with the Cohesin Complex." Genes 13, no. 2 (January 22, 2022): 198. http://dx.doi.org/10.3390/genes13020198.
Full textZhang, Yu, Xuefei Zhang, Zhaoqing Ba, Zhuoyi Liang, Edward W. Dring, Hongli Hu, Jiangman Lou, et al. "The fundamental role of chromatin loop extrusion in physiological V(D)J recombination." Nature 573, no. 7775 (September 11, 2019): 600–604. http://dx.doi.org/10.1038/s41586-019-1547-y.
Full textThomas, Naiju, Timothy E. Reznicek, Erez Lieberman Aiden, M. Jordan Rowley, Eric Wagner, and Guy Nir. "Abstract 1699: Defining the impact of aberrant transcription on the chromatin structure." Cancer Research 84, no. 6_Supplement (March 22, 2024): 1699. http://dx.doi.org/10.1158/1538-7445.am2024-1699.
Full textKorsak, Sevastianos, and Dariusz Plewczynski. "LoopSage: An energy-based Monte Carlo approach for the loop extrusion modeling of chromatin." Methods 223 (March 2024): 106–17. http://dx.doi.org/10.1016/j.ymeth.2024.01.015.
Full textZhang, Xuefei, Hye Suk Yoon, Aimee M. Chapdelaine-Williams, Nia Kyritsis, and Frederick W. Alt. "Physiological role of the 3′IgH CBEs super-anchor in antibody class switching." Proceedings of the National Academy of Sciences 118, no. 3 (January 13, 2021): e2024392118. http://dx.doi.org/10.1073/pnas.2024392118.
Full textConte, Mattia, Andrea M. Chiariello, Alex Abraham, Simona Bianco, Andrea Esposito, Mario Nicodemi, Tommaso Matteuzzi, and Francesca Vercellone. "Polymer Models of Chromatin Imaging Data in Single Cells." Algorithms 15, no. 9 (September 16, 2022): 330. http://dx.doi.org/10.3390/a15090330.
Full textBrandão, Hugo B., Johanna Gassler, Maxim Imakaev, Ilya M. Flyamer, Sabrina Ladstätter, Wendy A. Bickmore, Jan-Michael Peters, Kikuë Tachibana-Konwalski, and Leonid A. Mirny. "A Mechanism of Cohesin-Dependent Loop Extrusion Organizes Mammalian Chromatin Structure in the Developing Embryo." Biophysical Journal 114, no. 3 (February 2018): 255a. http://dx.doi.org/10.1016/j.bpj.2017.11.1417.
Full textSanborn, Adrian L., Suhas S. P. Rao, Su-Chen Huang, Neva C. Durand, Miriam H. Huntley, Andrew I. Jewett, Ivan D. Bochkov, et al. "Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes." Proceedings of the National Academy of Sciences 112, no. 47 (October 23, 2015): E6456—E6465. http://dx.doi.org/10.1073/pnas.1518552112.
Full textConte, Mattia, Andrea Esposito, Francesca Vercellone, Alex Abraham, and Simona Bianco. "Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling." International Journal of Molecular Sciences 24, no. 4 (February 11, 2023): 3660. http://dx.doi.org/10.3390/ijms24043660.
Full textZhang, Yu, Xuefei Zhang, Zhuoyi Liang, Zhaoqing Ba, Eddie Dring, Jeffrey Zurita, Aviva Presser Aiden, Erez Lieberman Aiden, and Frederick W. Alt. "Physiological V(D)J Recombination is Mediated by RAG Scanning of Loop-extruded Chromatin." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 123.18. http://dx.doi.org/10.4049/jimmunol.202.supp.123.18.
Full textKhabarova, A. A., A. S. Ryzhkova, and N. R. Battulin. "Reorganisation of chromatin during erythroid differentiation." Vavilov Journal of Genetics and Breeding 23, no. 1 (February 26, 2019): 95–99. http://dx.doi.org/10.18699/vj19.467.
Full textJeong, Mira, Xiangfan Huang, Xiaotian Zhang, Jianzhong Su, Muhammad S. Shamim, Ivan D. Bochkov, Jaime M. Reyes, et al. "Large DNA Methylation Canyons Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity." Blood 132, Supplement 1 (November 29, 2018): 534. http://dx.doi.org/10.1182/blood-2018-99-119485.
Full textRacko, Dusan, Fabrizio Benedetti, Julien Dorier, and Andrzej Stasiak. "Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes." Nucleic Acids Research 46, no. 4 (November 13, 2017): 1648–60. http://dx.doi.org/10.1093/nar/gkx1123.
Full textYin, Zihang, Shuang Cui, Song Xue, Yufan Xie, Yefan Wang, Chengling Zhao, Zhiyu Zhang, et al. "Identification of Two Subsets of Subcompartment A1 Associated with High Transcriptional Activity and Frequent Loop Extrusion." Biology 12, no. 8 (July 27, 2023): 1058. http://dx.doi.org/10.3390/biology12081058.
Full textLuppino, Jennifer M., Andrew Field, Son C. Nguyen, Daniel S. Park, Parisha P. Shah, Richard J. Abdill, Yemin Lan, et al. "Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression." PLOS Genetics 18, no. 11 (November 30, 2022): e1010528. http://dx.doi.org/10.1371/journal.pgen.1010528.
Full textVitriolo, Alessandro, Michele Gabriele, and Giuseppe Testa. "From enhanceropathies to the epigenetic manifold underlying human cognition." Human Molecular Genetics 28, R2 (August 14, 2019): R226—R234. http://dx.doi.org/10.1093/hmg/ddz196.
Full textOrlandini, Enzo, Davide Marenduzzo, and Davide Michieletto. "Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology." Proceedings of the National Academy of Sciences 116, no. 17 (April 8, 2019): 8149–54. http://dx.doi.org/10.1073/pnas.1815394116.
Full textMao, Albert, Carrie Chen, Stephanie Portillo-Ledesma, and Tamar Schlick. "Effect of Single-Residue Mutations on CTCF Binding to DNA: Insights from Molecular Dynamics Simulations." International Journal of Molecular Sciences 24, no. 7 (March 29, 2023): 6395. http://dx.doi.org/10.3390/ijms24076395.
Full textAiden, Erez Lieberman. "Three-D Codes in the Human Genome." Blood 134, Supplement_1 (November 13, 2019): SCI—50—SCI—50. http://dx.doi.org/10.1182/blood-2019-121474.
Full textSubramanian, Vijayalakshmi V. "Preprint Highlight: Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms." Molecular Biology of the Cell 34, no. 5 (May 1, 2023). http://dx.doi.org/10.1091/mbc.p23-03-0010.
Full textBailey, Mary Lou P., Ivan Surovtsev, Jessica F. Williams, Hao Yan, Tianyu Yuan, Kevin Li, Katherine Duseau, Simon G. J. Mochrie, and Megan C. King. "Loops and the activity of loop extrusion factors constrain chromatin dynamics." Molecular Biology of the Cell, April 26, 2023. http://dx.doi.org/10.1091/mbc.e23-04-0119.
Full textYan, Hao, Ivan Surovtsev, Jessica F. Williams, Mary Lou P. Bailey, Megan C. King, and Simon G. J. Mochrie. "Extrusion of chromatin loops by a composite loop extrusion factor." Physical Review E 104, no. 2 (August 23, 2021). http://dx.doi.org/10.1103/physreve.104.024414.
Full textMatityahu, Avi, and Itay Onn. "Hit the brakes – a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes." Journal of Cell Science 134, no. 1 (January 1, 2021). http://dx.doi.org/10.1242/jcs.247577.
Full text"Chromatin Loop Extrusion Regulates Neutrophil Differentiation." Cancer Discovery, 2024. http://dx.doi.org/10.1158/2159-8290.cd-rw2024-032.
Full textBanigan, Edward J., Aafke A. van den Berg, Hugo B. Brandão, John F. Marko, and Leonid A. Mirny. "Chromosome organization by one-sided and two-sided loop extrusion." eLife 9 (April 6, 2020). http://dx.doi.org/10.7554/elife.53558.
Full textGolov, Arkadiy K., Anastasia V. Golova, Alexey A. Gavrilov, and Sergey V. Razin. "Sensitivity of cohesin–chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion." Epigenetics & Chromatin 14, no. 1 (July 28, 2021). http://dx.doi.org/10.1186/s13072-021-00411-w.
Full textGolfier, Stefan, Thomas Quail, Hiroshi Kimura, and Jan Brugués. "Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner." eLife 9 (May 12, 2020). http://dx.doi.org/10.7554/elife.53885.
Full textHigashi, Torahiko L., Georgii Pobegalov, Minzhe Tang, Maxim I. Molodtsov, and Frank Uhlmann. "A Brownian ratchet model for DNA loop extrusion by the cohesin complex." eLife 10 (July 26, 2021). http://dx.doi.org/10.7554/elife.67530.
Full textChan, Brian, and Michael Rubinstein. "Activity-driven chromatin organization during interphase: Compaction, segregation, and entanglement suppression." Proceedings of the National Academy of Sciences 121, no. 21 (May 16, 2024). http://dx.doi.org/10.1073/pnas.2401494121.
Full text