Academic literature on the topic 'Cholerae sialidase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cholerae sialidase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cholerae sialidase"

1

Jung, K., M. Pergande, and S. Klotzek. "Sialidase from different sources compared for electrophoretically separating serum alkaline phosphatase fractions from liver and bone." Clinical Chemistry 35, no. 9 (September 1, 1989): 1955–57. http://dx.doi.org/10.1093/clinchem/35.9.1955.

Full text
Abstract:
Abstract We compared sialidase (neuraminidase; EC 3.2.1.18) from Vibrio cholerae, Clostridium perfringens, and Arthrobacter ureafaciens, seeking to improve the electrophoretic separation of the liver and bone isoenzymes of alkaline phosphatase (EC 3.1.3.1) on cellulose acetate membranes. Resolution is decisively determined by the type and activity of sialidase used in the preincubation of serum sample. Sialidase from Arthrobacter ureafaciens is not suited for this method. For optimal separation of the two isoenzymes we recommend the use of sialidase from Vibrio cholerae, determination of its activity with a standard procedure such as described here (mucin or sialyl lactose as substrates), and a final concentration of sialidase activity of 2.0 or 2.9 U/L (measured with mucin or sialyl lactose) in the incubation mixture.
APA, Harvard, Vancouver, ISO, and other styles
2

Khedri, Zahra, Yanhong Li, Hongzhi Cao, Jingyao Qu, Hai Yu, Musleh M. Muthana, and Xi Chen. "Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2." Organic & Biomolecular Chemistry 10, no. 30 (2012): 6112. http://dx.doi.org/10.1039/c2ob25335f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dhanushkodi, Anandh, and Michael P. McDonald. "Intracranial V. cholerae Sialidase Protects against Excitotoxic Neurodegeneration." PLoS ONE 6, no. 12 (December 15, 2011): e29285. http://dx.doi.org/10.1371/journal.pone.0029285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watson, Jacqueline N., Tara L. Knoll, Johnny H. Chen, Doug T. H. Chou, Thor J. Borgford, and Andrew J. Bennet. "Use of conformationally restricted pyridinium α-D-N-acetylneuraminides to probe specificity in bacterial and viral sialidases." Biochemistry and Cell Biology 83, no. 2 (April 1, 2005): 115–22. http://dx.doi.org/10.1139/o04-126.

Full text
Abstract:
Investigations into subtle changes in the catalytic activity of sialidases have been performed using enzymes from several different origins, and their results have been compared. This work highlights the potential pitfalls encountered when extending conclusions derived from mechanistic studies on a single enzyme even to those with high-sequence homology. Specifically, a panel of 5 pyridinium N-acetylneuraminides were used as substrates in a study that revealed subtle differences in the catalytic mechanisms used by 4 different sialidase enzymes. The lowest reactivity towards the artificial (pyridinium) substrates was displayed by the Newcastle disease virus hemagglutinin-neuraminidase. Moreover, in reactions involving aryl N-acetylneuraminides, the activity of the Newcastle enzyme was competitively inhibited by the 3,4-dihydro-2H-pyrano[3,2-c]pyridinium compound with a Ki = 58 µmol/L. Alternatively, the 3 bacterial enzymes tested, from Salmonella typhimurium, Clostridium perfringens, and Vibrio cholerae, were catalytically active against all members of the panel of substrates. Based on the observed effect of leaving-group ability, it is proposed that the rate-determining step for kcat (and likely for kcat/Km as well) with each bacterial enzyme is as follows: sialylation, which is concerted with conformational change for V. cholerae; and conformational change for S. typhimurium and C. perfringens.Key words: sialidases, neuraminidases, sialic acids, glycosidase, mechanism.
APA, Harvard, Vancouver, ISO, and other styles
5

Chuenkova, M., and M. E. Pereira. "Trypanosoma cruzi trans-sialidase: enhancement of virulence in a murine model of Chagas' disease." Journal of Experimental Medicine 181, no. 5 (May 1, 1995): 1693–703. http://dx.doi.org/10.1084/jem.181.5.1693.

Full text
Abstract:
Trypanosoma cruzi, the etiological agent of Chagas' disease, expresses a trans-sialidase at highest levels in infective trypomastigotes, where it attaches to the plasma membrane by a glycophosphoinositol linkage. Bound enzyme sheds into the extracellular milieu in a soluble form. Experiments performed in vitro suggest that the trans-sialidase participates in several parameters of T. cruzi-host interactions, like cell adhesion and complement resistance. However, the role that membrane-bound and soluble trans-sialidase plays in the infection of mammals is not understood. To begin to study the role the enzyme may play in vivo, T. cruzi trypomastigotes were inoculated subcutaneously into mice that had been sensitized for various times with the purified protein. A single dose of either endogenous or recombinant trans-sialidase injected into the connective tissues of BALB/c mice greatly enhanced parasitemia and mortality. Maximum enhancement was achieved with 1-2-h priming. Injection of the enzyme after the parasites had been established in the inoculation site had little, if any, consequence in modifying virulence. The enhancement did not seem to be through a direct effect of the enzyme on trypomastigote-host cell interactions because it occurred when the sites of trans-sialidase sensitization and parasite inoculation were physically separate. Rather, virulence enhancement seemed to depend on inflammatory cells, since priming with trans-sialidase had no significant effect in severe combined immunodeficiency mice, which lack functional T and B lymphocytes. However, antibody response to T. cruzi in the trans-sialidase-primed BALB/c mice was the same as in the control animals. Virulence enhancement was specific for the trans-sialidase because it did not occur in mice primed with Newcastle virus sialidase, which has the same substrate specificity as the T. cruzi enzyme, or with the sialidase from the bacterium Vibrio cholerae, whose substrate specificity is broader than the trypanosome sialidase. Furthermore, no enhancement of virulence occurred after sensitization with another adhesion protein (penetrin) purified from T. cruzi trypomastigotes and engineered bacteria, nor with bacterial lipopolysaccharide. The virulence-promoting activity of soluble trans-sialidase in the mouse model may be physiologically relevant because it was achieved with tiny doses, approximately 1-2 microgram/kg, raising the possibility that neutralization of the enzyme with specific probes could impair the development of Chagas' disease. In fact, a monoclonal antibody specific for the tandem repeat in the trans-sialidase COOH terminus enhanced infection of BALB/c mice, in agreement with earlier experiments in vitro, whereas antibodies against an amino acid sequence in the Cys region had the opposite effect.
APA, Harvard, Vancouver, ISO, and other styles
6

Slack, Teri J., Wanqing Li, Dashuang Shi, John B. McArthur, Gengxiang Zhao, Yanhong Li, An Xiao, et al. "Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase." Bioorganic & Medicinal Chemistry 26, no. 21 (November 2018): 5751–57. http://dx.doi.org/10.1016/j.bmc.2018.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Powell, L. D., S. W. Whiteheart, and G. W. Hart. "Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction." Journal of Immunology 139, no. 1 (July 1, 1987): 262–70. http://dx.doi.org/10.4049/jimmunol.139.1.262.

Full text
Abstract:
Abstract The Ia+ B cell lymphoma, AKTB-1b, fails to stimulate thymic lymphocytes in a one-way mixed lymphocyte reaction unless pretreated with sialidase or inhibitors of N-linked oligosaccharide processing. A comparison of different sialidases and sialyltransferases suggests that the removal of only a subset of total surface sialic acid, rather than net desialylation of the cell surface, is required. Three sialidases were compared, including Vibrio cholerae (VC) and Clostridium perfringens (CP), which will cleave alpha 2-3, alpha 2-6, and alpha 2-8, sialic acid linkages, and Newcastle Disease virus (NDV), which will remove only alpha 2-3 and alpha 2-8 linked sialic acid. When treated with equivalent units of sialidase, CP-, VC-, and NDV-treated cells were 24-fold, sixfold, and threefold better stimulators than untreated cells. In contrast, VC released 1.3-fold and 2.5-fold more sialic acid per cell than did CP or NDV, respectively. Furthermore, VC was superior in reducing the levels of binding of the sialic acid-specific lectin, Limulus polyphemus agglutinin, in exposing Gal beta 1-3GalNAc and Gal beta 1-4GlcNAc residues, and in desialylating gangliosides. Two-dimensional gel analysis indicated that VC and CP were both equal and superior to NDV in the desialylation of iodinatable cell-surface proteins, including H-2Kk, I-A beta k, and a highly sialylated 65,000 dalton protein of unknown identity. Maximal resialylation of CP-treated cells with exogenously added CMP-NANA and either the alpha 2-3(Gal beta 1-3GalNAc) or alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase did not reduce the stimulatory capacity of these cells. However, resialylation of VC-treated cells with just CMP-NANA alone resulted in 49% reversal of their stimulatory capacity, and no additional reversal could be achieved with either of the sialyltransferases. Although the alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase was capable of adding back approximately 10% of the sialic acid removed, the endogenous activity added back approximately 0.1% of the total sialic acid removed. SDS-PAGE gels of the sialylated cells indicated that the exogenously added sialyltransferase labeled many different proteins, whereas the endogenous activity labeled far fewer proteins, predominantly in 46,000 and 25,000 m.w. range. Both the desialylation and resialylation data suggest that the sialidase-dependent stimulation is due to the desialylation of specific membrane structures. Together with previous studies, these data suggest that the sialic acids involved are probably alpha 2-6 linked to N-linked glycosyl moieties.
APA, Harvard, Vancouver, ISO, and other styles
8

Mann, Maretta C., Robin J. Thomson, Jeffrey C. Dyason, Sarah McAtamney, and Mark von Itzstein. "Modelling, synthesis and biological evaluation of novel glucuronide-based probes of Vibrio cholerae sialidase." Bioorganic & Medicinal Chemistry 14, no. 5 (March 2006): 1518–37. http://dx.doi.org/10.1016/j.bmc.2005.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Jennifer C., Robin J. Thomson, Jeffrey C. Dyason, Pas Florio, Kaylene J. Quelch, Samia Abo, and Mark von Itzstein. "The design, synthesis and biological evaluation of neuraminic acid-based probes of Vibrio cholerae sialidase." Tetrahedron: Asymmetry 11, no. 1 (January 2000): 53–73. http://dx.doi.org/10.1016/s0957-4166(99)00552-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wallimann, Kurt, and Andrea Vasella. "Phosphonic-Acid Analogues of the N-Acetyl-2-deoxyneiiraniinic Acids: Synthesis and Inhibition ofVibrio cholerae Sialidase." Helvetica Chimica Acta 73, no. 5 (August 8, 1990): 1359–72. http://dx.doi.org/10.1002/hlca.19900730523.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cholerae sialidase"

1

Mann, Maretta Clare, and n/a. "Sialylmimetics as Potential Inhibitors fo Vibrio Cholerae Sialidase." Griffith University. Institute for Glycomics, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061006.083947.

Full text
Abstract:
Cholera is an epidemic infectious diarrhoeal disease that for centuries has proven its frightening ability to cause rapid and widespread loss of human life. All symptoms associated with cholera are a result of rapid dehydration due to infection by pathogenic strains of the bacterium Vibrio cholerae. The damaging effects associated with cholera are mainly attributed to the toxin, which is secreted by the bacterium and infects cells lining the gastrointestinal tract. A sialidase, also secreted by the bacterium, is believed to facilitate toxin uptake by the gastrointestinal epithelium. V. cholerae sialidase is therefore a potential target for therapeutic intervention. A survey of the literature reveals that sialidases from different species share common features with respect to their structure, substrate specificity and catalytic mechanism. The unsaturated sialic acid, Neu5Ac2en, inhibits most exosialidases with a dissociation constant of inhibitor of -10-4 to-10-6 M and has frequently been used as a template in the design of more potent sialidase inhibitors. In the case of V. cholerae sialidase, there have been no inhibitors reported to date that are significantly more potent than Neu5Ac2en itself The present research aimed to develop a range of mimics of Neu5Ac2en, which contain various substituents to replace the C-6 glycerol side chain, as potential inhibitors of V cholerae sialidase. The x-ray crystal structure of V cholerae sialidase was used to explore potential interactions between active site residues and C-6 modified Neu5Ac2en mimetics of known inhibitory potency. Opportunities for interactions within the glycerol side chain pocket in the active site of V cholerae sialidase are discussed. A novel synthetic strategy was developed for the synthesis of a series of glucuronidebased Neu5Ac2en mimetics starting from readily available GIcNAc. This approach was employed for the preparation of Neu5Ac2en mimetics that contained an ether or thioether substituent as replacement of the glycerol side chain of Neu5Ac2en. Progress was also made towards the synthesis of a series of C-6 acylamino Neu5Ac2en mimetics. Analysis by 1H NMR spectroscopy showed that the acylamino derivatives adopted a half-chair conformation that was similar to the conformation of Neu5Ac2en but different to the conformation adopted by the ether and thioether derivatives prepared. The inhibitory activity of the C-6 ether and thioether Neu5Ac2en mimetics prepared was evaluated in vitro using an enzyme assay. It was found that most of the derivatives inhibited V. cholerae sialidase with a K1 of approximately 1O-4 M. The derivatives containing a hydrophobic side chain were found to be slightly more potent compared to derivatives with more hydrophilic side chains. A more detailed study of binding interactions between the C-6 thioether Neu5Ac2en mimetics and V cholerae sialdiase was carried out using STD 1H NMR spectroscopy and computational molecular modelling.
APA, Harvard, Vancouver, ISO, and other styles
2

Mann, Maretta Clare. "Sialylmimetics as Potential Inhibitors fo Vibrio Cholerae Sialidase." Thesis, Griffith University, 2004. http://hdl.handle.net/10072/367187.

Full text
Abstract:
Cholera is an epidemic infectious diarrhoeal disease that for centuries has proven its frightening ability to cause rapid and widespread loss of human life. All symptoms associated with cholera are a result of rapid dehydration due to infection by pathogenic strains of the bacterium Vibrio cholerae. The damaging effects associated with cholera are mainly attributed to the toxin, which is secreted by the bacterium and infects cells lining the gastrointestinal tract. A sialidase, also secreted by the bacterium, is believed to facilitate toxin uptake by the gastrointestinal epithelium. V. cholerae sialidase is therefore a potential target for therapeutic intervention. A survey of the literature reveals that sialidases from different species share common features with respect to their structure, substrate specificity and catalytic mechanism. The unsaturated sialic acid, Neu5Ac2en, inhibits most exosialidases with a dissociation constant of inhibitor of -10-4 to-10-6 M and has frequently been used as a template in the design of more potent sialidase inhibitors. In the case of V. cholerae sialidase, there have been no inhibitors reported to date that are significantly more potent than Neu5Ac2en itself The present research aimed to develop a range of mimics of Neu5Ac2en, which contain various substituents to replace the C-6 glycerol side chain, as potential inhibitors of V cholerae sialidase. The x-ray crystal structure of V cholerae sialidase was used to explore potential interactions between active site residues and C-6 modified Neu5Ac2en mimetics of known inhibitory potency. Opportunities for interactions within the glycerol side chain pocket in the active site of V cholerae sialidase are discussed. A novel synthetic strategy was developed for the synthesis of a series of glucuronidebased Neu5Ac2en mimetics starting from readily available GIcNAc. This approach was employed for the preparation of Neu5Ac2en mimetics that contained an ether or thioether substituent as replacement of the glycerol side chain of Neu5Ac2en. Progress was also made towards the synthesis of a series of C-6 acylamino Neu5Ac2en mimetics. Analysis by 1H NMR spectroscopy showed that the acylamino derivatives adopted a half-chair conformation that was similar to the conformation of Neu5Ac2en but different to the conformation adopted by the ether and thioether derivatives prepared. The inhibitory activity of the C-6 ether and thioether Neu5Ac2en mimetics prepared was evaluated in vitro using an enzyme assay. It was found that most of the derivatives inhibited V. cholerae sialidase with a K1 of approximately 1O-4 M. The derivatives containing a hydrophobic side chain were found to be slightly more potent compared to derivatives with more hydrophilic side chains. A more detailed study of binding interactions between the C-6 thioether Neu5Ac2en mimetics and V cholerae sialdiase was carried out using STD 1H NMR spectroscopy and computational molecular modelling.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Full Text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cholerae sialidase"

1

Haselhorst, Thomas, Carolyn Trower, Jennifer Wilson, Ross Coppel, and Mark von Itzstein. "EPITOPE MAPPING BY SATURATION TRANSFER DIFFERENCE NMR OF SIALIC ACID MIMETICS WITH VIBRIO CHOLERAE SIALIDASE." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography