Journal articles on the topic 'Chloroplast genome studies'

To see the other types of publications on this topic, follow the link: Chloroplast genome studies.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chloroplast genome studies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ahmad, Niaz, Muhammad Aamer Mehmood, and Sana Malik. "Recombinant Protein Production in Microalgae: Emerging Trends." Protein & Peptide Letters 27, no. 2 (January 6, 2020): 105–10. http://dx.doi.org/10.2174/0929866526666191014124855.

Full text
Abstract:
: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.
APA, Harvard, Vancouver, ISO, and other styles
2

Sato, Naoki. "Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae?" Genes 12, no. 6 (May 27, 2021): 823. http://dx.doi.org/10.3390/genes12060823.

Full text
Abstract:
Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.
APA, Harvard, Vancouver, ISO, and other styles
3

Mishra, Bagdevi, Bartosz Ulaszewski, Sebastian Ploch, Jaroslaw Burczyk, and Marco Thines. "A Circular Chloroplast Genome of Fagus sylvatica Reveals High Conservation between Two Individuals from Germany and One Individual from Poland and an Alternate Direction of the Small Single-Copy Region." Forests 12, no. 2 (February 4, 2021): 180. http://dx.doi.org/10.3390/f12020180.

Full text
Abstract:
Chloroplasts are difficult to assemble because of the presence of large inverted repeats. At the same time, correct assemblies are important, as chloroplast loci are frequently used for biogeography and population genetics studies. In an attempt to elucidate the orientation of the single-copy regions and to find suitable loci for chloroplast single nucleotide polymorphism (SNP)-based studies, circular chloroplast sequences for the ultra-centenary reference individual of European Beech (Fagus sylvatica), Bhaga, and an additional Polish individual (named Jamy) was obtained based on hybrid assemblies. The chloroplast genome of Bhaga was 158,458 bp, and that of Jamy was 158,462 bp long. Using long-read mapping on the configuration inferred in this study and the one suggested in a previous study, we found an inverted orientation of the small single-copy region. The chloroplast genome of Bhaga and of the individual from Poland both have only two mismatches as well as three and two indels as compared to the previously published genome, respectively. The low divergence suggests low seed dispersal but high pollen dispersal. However, once chloroplast genomes become available from Pleistocene refugia, where a high degree of variation has been reported, they might prove useful for tracing the migration history of Fagus sylvatica in the Holocene.
APA, Harvard, Vancouver, ISO, and other styles
4

Temel, Melih, Yasin Kaymaz, Duygu Ateş, Abdullah Kahraman, and Muhammed Bahattin Tanyolaç. "The Complete Chloroplast Genome Sequence of Cicer bijugum, Genome Organization, and Comparison with Related Species." Current Genomics 23, no. 1 (January 2022): 50–65. http://dx.doi.org/10.2174/1389202923666220211113708.

Full text
Abstract:
Background: Chickpea is one of the legumes that is very important for Turkey and is frequently preferred especially in human nourishment thanks to its rich nutritional content. Chloroplasts, which have their own genetic material, are organelles responsible for photosynthesis in plant cells and their genome contains non-trivial information about the molecular features and evolutionary process of plants. Objective: Current study aimed at revealing complete chloroplast genome sequence of one of the wild type Cicer species Cicer bijugum and comparing its genome with cultivated Cicer species Cicer arietinum by using bioinformatics analysis tools. There are no study about revealing chloroplast genome sequence of Cicer species except the cultivated one Cicer arietinum. Therefore, we targeted to reveal the complete chloroplast genome sequence of wild type Cicer species Cicer bijugum and compare the chloroplast genome of Cicer bijugum with the cultivated one Cicer arietinum. Methods: In this study, we sequenced the whole chloroplast genome of Cicer bijugum, one of the wild types of chickpea species, with the help Next Generation Sequencing platform and compared it with the chloroplast genome of the cultivated chickpea species, Cicer arietinum by using online bioinformatics analysis tools. Results: We determined the size of the chloroplast genome of C. bijugum as 124,804 bp and found that C. bijugum did not contain an inverted repeat region in its chloroplast genome. Comparative analysis of the C. bijugum chloroplast genome uncovered thirteen hotspot regions (psbA, matK, rpoB, rpoC1, rpoC2, psbI, psbK, accD, rps19, ycf2, ycf1, rps15 and ndhF) and seven of them (matK, accD, rps19, ycf1, ycf2, rps15 and ndhF) could potentially be used as strong molecular markers for species identification. It has been determined that C. bijugum was phylogenetically closer to cultivated chickpea as compared to the other species. Conclusion: It is aimed that the data obtained from this study, which is the first study in which whole chloroplast genomes of wild chickpea species were sequenced, will guide researchers in future molecular, evolutionary and genetic engineering studies with chickpea species.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Dachuan, Jiahao Wang, Liang Xu, Yanping Xing, Tingting Zhang, Shengnan Li, Yanyun Yang, Guihua Bao, Wuliji Ao, and Tingguo Kang. "Characteristic and Phylogenetic Analysis of the Complete Chloroplast Genomes of Three Medicinal Plants of Schisandraceae." BioMed Research International 2020 (October 16, 2020): 1–12. http://dx.doi.org/10.1155/2020/3536761.

Full text
Abstract:
Schisandra chinensis, which has a high development value, has long been used as medicine. Its mature fruits (called Wuweizi in Chinese) have long been used in the famous traditional Chinese medicine (TCM) recorded in the “Chinese Pharmacopoeia.” Chloroplasts (CP) are the highly conserved primitive organelles in plants, which can serve as the foundation for plant classification and identification. This study introduced the structures of the CP genomes of three Schisandraceae species and analyzed their phylogenetic relationships. Comparative analyses on the three complete chloroplast genomes can provide us with useful knowledge to identify the three plants. In this study, approximately 5 g fresh leaves were harvested for chloroplast DNA isolation according to the improved extraction method. A total of three chloroplast DNAs were extracted. Afterwards, the chloroplast genomes were reconstructed using denovo combined with reference-guided assemblies. General characteristics of the chloroplast genome and genome comparison with three Schisandraceae species was analyzed by corresponding software. The total sizes of complete chloroplast genomes of S. chinensis, S. sphenanthera, and Kadsura coccinea were 146875 bp, 146842 bp, and 145399 bp, respectively. Altogether, 124 genes were annotated, including 82 protein-coding genes, 34 tRNAs, and 8 rRNAs of all 3 species. In SSR analysis, only S. chinensis was annotated to hexanucleotides. Moreover, comparative analysis of chloroplast Schisandraceae genome sequences revealed that the gene order and gene content were slightly different among Schisandraceae species. Finally, phylogenetic trees were reconstructed, based on the genome-wide SNPs of 38 species. The method can be used to identify and differentially analyze Schisandraceae plants and offer useful information for phylogenetics as well as further studies on traditional medicinal plants.
APA, Harvard, Vancouver, ISO, and other styles
6

Ding, Yanqiang, Yang Fang, Ling Guo, Zhidan Li, Kaize He, Yun Zhao, and Hai Zhao. "Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions." PeerJ 5 (December 22, 2017): e4186. http://dx.doi.org/10.7717/peerj.4186.

Full text
Abstract:
Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.
APA, Harvard, Vancouver, ISO, and other styles
7

KIM, Mi-Hee, Suhyeon PARK, Junho LEE, Jinwook BAEK, Jongsun PARK, and Gun Woong LEE. "The complete chloroplast genome of Glycyrrhiza uralensis Fisch. isolated in Korea (Fabaceae)." Korean Journal of Plant Taxonomy 51, no. 4 (December 31, 2021): 353–62. http://dx.doi.org/10.11110/kjpt.2021.51.4.353.

Full text
Abstract:
The chloroplast genome of Glycyrrhiza uralensis Fisch was sequenced to investigate intraspecific variations on the chloroplast genome. Its length is 127,689 bp long (34.3% GC ratio) with atypical structure of chloroplast genome, which is congruent to those of Glycyrrhiza genus. It includes 110 genes (76 protein-coding genes, four rRNAs, and 30 tRNAs). Intronic region of ndhA presented the highest nucleotide diversity based on the six G. uralenesis chloroplast genomes. A total of 150 single nucleotide polymorphisms and 10 insertion and deletion (INDEL) regions were identified from the six G. uralensis chloroplast genomes. Phylogenetic trees show that the six chloroplast genomes of G. uralensis formed the two clades, requiring additional studies to understand it.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Kerui, Ping Mo, Aihua Deng, Peng Xie, and Yun Wang. "Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China." Genes 13, no. 11 (October 27, 2022): 1963. http://dx.doi.org/10.3390/genes13111963.

Full text
Abstract:
Cathaya argyrophylla Chun et Kuang is a severely endangered, tertiary relict plant unique to China whose high physiological sensitivity to the environment, including photosensitivity, is likely closely related to its endangered status; however, the exact mechanism responsible has remained unknown due to the rarity of the plant and the difficulties involved in performing physiological studies on the molecular level. In this study, the chloroplast genomes of six C. argyrophylla populations sampled from different locations in China were characterized and compared. In addition, a gene regulatory network of the polymorphic chloroplast genes responsible for regulating genes found elsewhere in the plant genome was constructed. The result of the genome characterization and comparison showed that the genome characteristics, the gene composition, and the gene sequence of the chloroplast genes varied by location, and the gene regulatory network showed that the differences in growth location may have led to variations in the protein-coding chloroplast gene via various metabolic processes. These findings provide new insights into the relationship between chloroplasts and the sensitive metabolism of C. argyrophylla and provide additional reference materials for the conservation of this endangered plant.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Ying, Jing-Wen Zhang, Yong Yang, and Xin-Nian Li. "Structural and Comparative Analysis of the Complete Chloroplast Genome of a Mangrove Plant: Scyphiphora hydrophyllacea Gaertn. f. and Related Rubiaceae Species." Forests 10, no. 11 (November 8, 2019): 1000. http://dx.doi.org/10.3390/f10111000.

Full text
Abstract:
Scyphiphora hydrophyllacea Gaertn. f. (Rubiaceae) is an endangered mangrove species found in China, and its only known location is in Hainan Island. Previous studies conducted on S. hydrophyllaceae have mainly focused on its location, biological characteristics, and medical effects. However, to date, there has been no published report regarding the genetics or genome of this endangered mangrove species. In this study, we developed valuable chloroplast genome-related molecular resources of S. hydrophyllaceae by comparing with it related Rubiaceae species. The chloroplast genome of S. hydrophyllaceae was found to be a circular molecule with a total size of 155,132 bp, and it is observed to have a quadripartite structure. The whole chloroplast genome contains 132 genes, of which 88 and 36 are protein-coding and transfer RNA genes, respectively; it also contains four ribosomal RNA genes with an overall GC content of 37.60%. A total of 52 microsatellites were detected in the S. hydrophyllacea chloroplast genome, and microsatellite marker detection identified A/T mononucleotides as majority simple sequence repeats in all nine Rubiaceae chloroplast genomes. Comparative analyses of these nine chloroplast genomes revealed variable regions, including matK, rps16, and atpF. All nine species shared 13 RNA-editing sites distributed across eight coding genes. Phylogenetic analyses based on the complete sequences of the chloroplast genomes revealed that the position of S. hydrophyllaceae is closer to the Coffeeae genus than to Cinchoneae, Naucleeae, Morindeae, and Rubieae in the Rubiaceae family. The genome information reported in this study could find further application in the evolution and population genetic studies, and it helps improve our understanding of the endangered mechanism and the development of conservation strategies of this endangered mangrove plant.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhai, Yufei, Xiaqing Yu, Junguo Zhou, Ji Li, Zhen Tian, Panqiao Wang, Ya Meng, et al. "Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis." Genome 64, no. 6 (June 2021): 627–38. http://dx.doi.org/10.1139/gen-2020-0134.

Full text
Abstract:
Allopolyploids undergo “genomic shock” leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Yunyan, Yongjing Tian, David Y. P. Tng, Jingbo Zhou, Yuntian Zhang, Zhengwei Wang, Pengfu Li, and Zhongsheng Wang. "Comparative Chloroplast Genomics of Litsea Lam. (Lauraceae) and Its Phylogenetic Implications." Forests 12, no. 6 (June 4, 2021): 744. http://dx.doi.org/10.3390/f12060744.

Full text
Abstract:
Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Hongshan, Zhihai Su, Shuiqing Yu, Jialin Liu, Xiaojuan Yin, Guowei Zhang, Wei Liu, and Bin Li. "Genome Comparison Reveals Mutation Hotspots in the Chloroplast Genome and Phylogenetic Relationships of Ormosia Species." BioMed Research International 2019 (August 21, 2019): 1–11. http://dx.doi.org/10.1155/2019/7265030.

Full text
Abstract:
The papilionoid legume genus Ormosia comprises approximately 130 species, which are distributed mostly in the Neotropics, with some species in eastern Asia and northeastern Australia. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. Chloroplast genomes can provide important information for phylogenetic and population genetic studies. In this study, we determined the complete chloroplast genome sequences of five Ormosia species by Illumina sequencing. The Ormosia chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted regions separated by a large single-copy region and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined. Comparative analyses highlighted a wide spectrum of variation, with trnK-rbcL, atpE-trnS-rps4, trnC-petN, trnS-psbZ-trnG, trnP-psaJ-rpl33, and clpP intron being the most variable regions. Phylogenetic analysis revealed that Ormosia is in the Papilionoideae clade and is sister to the Lupinus clade. Overall, this study, which provides Ormosia chloroplast genomic resources and a comparative analysis of Ormosia chloroplast genomes, will be beneficial for the evolutionary study and phylogenetic reconstruction of the genus Ormosia and molecular barcoding in population genetics and will provide insight into the chloroplast genome evolution of legumes.
APA, Harvard, Vancouver, ISO, and other styles
13

Rose, RJ, MR Thomas, and JT Fitter. "The Transfer of Cytoplasmic and Nuclear Genomes by Somatic Hybridisation." Functional Plant Biology 17, no. 3 (1990): 303. http://dx.doi.org/10.1071/pp9900303.

Full text
Abstract:
For somatic hybridisation between two species to be successful, specific regenerability, compatibility and selection criteria must be met. The development of new methodologies has reduced the reliance on auxotrophic and albino mutants in selection strategies. Somatic hybridisation allows the transfer of chloroplast, mitochondrial or nuclear genomes in a single-step procedure and can extend the transfer boundaries defined by sexual hybridisation. Cytoplasmic genomes can be transferred over wider genetic distances than nuclear genomes. We consider the transfer of the three genomes but with particular emphasis on chloroplasts. Strategies for chloroplast transfer are reviewed. When no selection strategies for a particular chloroplast are utilised the regenerated plant will have chloroplasts from either one of the parents, but not a mixture of both. The rapid sorting out can be explained by the changes in plastid numbers that occur in the first few divisions. Biased segregation can frequently be related to an unequal input of plastids but, in some cases, plastid-mitochondrial-nuclear incompatibilities are presumably involved and more studies of the callus stage are required to identify these phenomena. Chloroplast DNA recombination is rare, consistent with known inheritance patterns and the relative conservation of the chloroplast genome. Stable heteroplasmy of chloroplasts as a result of somatic hybridisation has not been reported, although chloroplast DNA heteroplasmy occurs naturally in some species. Mitochondria can be transferred in a similar fashion to chloroplasts but, as their numbers are higher, their segregation is less likely to be complete in the regenerated plant. There are many reports of mitochondrial DNA recombination and cloned fragments containing sites of intergenomic recombination have been obtained. It appears that fusion between these organelles is common. Interspecific somatic hybridisation within a genus can produce nuclear hybrid plants that can be part of a breeding program to provide novel sources of germplasm. Aneuploids rather than amphiploids may be produced as a result of chromosome loss during the culture phase. Nuclear hybrids from wider crosses are usually infertile. However asymmetric somatic hybridisation offers the possibility of incorporating nuclear genetic material from more diverse sources. Somatic hybridisation has an important rc le in complementing conventional breeding in providing the gross genetic structure of chloroplast, mitochondrial and nuclear genomes. Specific gene transfer technologies can fine-tune the genomes thus provided.
APA, Harvard, Vancouver, ISO, and other styles
14

Choi, Kyoung Su, Young-Ho Ha, Hee-Young Gil, Kyung Choi, Dong-Kap Kim, and Seung-Hwan Oh. "Two Korean Endemic Clematis Chloroplast Genomes: Inversion, Reposition, Expansion of the Inverted Repeat Region, Phylogenetic Analysis, and Nucleotide Substitution Rates." Plants 10, no. 2 (February 19, 2021): 397. http://dx.doi.org/10.3390/plants10020397.

Full text
Abstract:
Previous studies on the chloroplast genome in Clematis focused on the chloroplast structure within Anemoneae. The chloroplast genomes of Cleamtis were sequenced to provide information for studies on phylogeny and evolution. Two Korean endemic Clematis chloroplast genomes (Clematis brachyura and C. trichotoma) range from 159,170 to 159,532 bp, containing 134 identical genes. Comparing the coding and non-coding regions among 12 Clematis species revealed divergent sites, with carination occurring in the petD-rpoA region. Comparing other Clematis chloroplast genomes suggested that Clematis has two inversions (trnH-rps16 and rps4), reposition (trnL-ndhC), and inverted repeat (IR) region expansion. For phylogenetic analysis, 71 protein-coding genes were aligned from 36 Ranunculaceae chloroplast genomes. Anemoneae (Anemoclema, Pulsatilla, Anemone, and Clematis) clades were monophyletic and well-supported by the bootstrap value (100%). Based on 70 chloroplast protein-coding genes, we compared nonsynonymous (dN) and synonymous (dS) substitution rates among Clematis, Anemoneae (excluding Clematis), and other Ranunculaceae species. The average synonymoussubstitution rates (dS)of large single copy (LSC), small single copy (SSC), and IR genes in Anemoneae and Clematis were significantly higher than those of other Ranunculaceae species, but not the nonsynonymous substitution rates (dN). This study provides fundamental information on plastid genome evolution in the Ranunculaceae.
APA, Harvard, Vancouver, ISO, and other styles
15

Ding, Shixiong, Xiang Dong, Jiaxin Yang, Chunce Guo, Binbin Cao, Yuan Guo, and Guangwan Hu. "Complete Chloroplast Genome of Clethra fargesii Franch., an Original Sympetalous Plant from Central China: Comparative Analysis, Adaptive Evolution, and Phylogenetic Relationships." Forests 12, no. 4 (April 6, 2021): 441. http://dx.doi.org/10.3390/f12040441.

Full text
Abstract:
Clethra fargesii, an essential ecological and endemic woody plant of the genus Clethra in Clethraceae, is widely distributed in Central China. So far, there have been a paucity of studies on its chloroplast genome. In the present study, we sequenced and assembled the complete chloroplast genome of C. fargesii. We also analyzed the chloroplast genome features and compared them to Clethra delavayi and other closely related species in Ericales. The complete chloroplast genome is 157,486 bp in length, including a large single-copy (LSC) region of 87,034 bp and a small single-copy (SSC) region of 18,492 bp, separated by a pair of inverted repeat (IR) regions of 25,980 bp. The GC content of the whole genome is 37.3%, while those in LSC, SSC, and IR regions are 35.4%, 30.7%, and 43.0%, respectively. The chloroplast genome of C. fargesii encodes 132 genes in total, including 87 protein-coding genes (PCGs), 37 tRNA genes, and eight rRNA genes. A total of 26,407 codons and 73 SSRs were identified in C. fargesii chloroplast genome. Additionally, we postulated and demonstrated that the structure of the chloroplast genome in Clethra species may present evolutionary conservation based on the comparative analysis of genome features and genome alignment among eight Ericales species. The low Pi values revealed evolutionary conservation based on the nucleotide diversity analysis of chloroplast genome in two Clethra species. The low selection pressure was shown by a few positively selected genes by adaptive evolution analysis using 80 coding sequences (CDSs) of the chloroplast genomes of two Clethra species. The phylogenetic tree showed that Clethraceae and Ericaceae are sister clades, which reconfirm the previous hypothesis that Clethra is highly conserved in the chloroplast genome using 75 CDSs of chloroplast genome among 40 species. The genome information and analysis results presented in this study are valuable for further study on the intraspecies identification, biogeographic analysis, and phylogenetic relationship in Clethraceae.
APA, Harvard, Vancouver, ISO, and other styles
16

Choi, Kyoung-Su, and Seonjoo Park. "Complete Plastid and Mitochondrial Genomes of Aeginetia indica Reveal Intracellular Gene Transfer (IGT), Horizontal Gene Transfer (HGT), and Cytoplasmic Male Sterility (CMS)." International Journal of Molecular Sciences 22, no. 11 (June 7, 2021): 6143. http://dx.doi.org/10.3390/ijms22116143.

Full text
Abstract:
Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Zhen, Guixi Wang, Qinghua Ma, Wenxu Ma, Lisong Liang, and Tiantian Zhao. "The complete chloroplast genomes of three Betulaceae species: implications for molecular phylogeny and historical biogeography." PeerJ 7 (January 25, 2019): e6320. http://dx.doi.org/10.7717/peerj.6320.

Full text
Abstract:
Background Previous phylogenetic conclusions on the family Betulaceae were based on either morphological characters or traditional single loci, which may indicate some limitations. The chloroplast genome contains rich polymorphism information, which is very suitable for phylogenetic studies. Thus, we sequenced the chloroplast genome sequences of three Betulaceae species and performed multiple analyses to investigate the genome variation, resolve the phylogenetic relationships, and clarify the divergence history. Methods Chloroplast genomes were sequenced using the high-throughput sequencing. A comparative genomic analysis was conducted to examine the global genome variation and screen the hotspots. Three chloroplast partitions were used to reconstruct the phylogenetic relationships using Maximum Likelihood and Bayesian Inference approaches. Then, molecular dating and biogeographic inferences were conducted based on the whole chloroplast genome data. Results Betulaceae chloroplast genomes consisted of a small single-copy region and a large single copy region, and two copies of inverted repeat regions. Nine hotspots can be used as potential DNA barcodes for species delimitation. Phylogenies strongly supported the division of Betulaceae into two subfamilies: Coryloideae and Betuloideae. The phylogenetic position of Ostryopsis davidiana was controversial among different datasets. The divergence time between subfamily Coryloideae and Betuloideae was about 70.49 Mya, and all six extant genera were inferred to have diverged fully by the middle Oligocene. Betulaceae ancestors were probably originated from the ancient Laurasia. Discussions This research elucidates the potential of chloroplast genome sequences in the application of developing molecular markers, studying evolutionary relationships and historical dynamic of Betulaceae.It also reveals the advantages of using chloroplast genome data to illuminate those phylogenies that have not been well solved yet by traditional approaches in other plants.
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Xiaoyang, Tashi Dorjee, Yiru Chen, Fei Gao, and Yijun Zhou. "The complete chloroplast genome sequencing analysis revealed an unusual IRs reduction in three species of subfamily Zygophylloideae." PLOS ONE 17, no. 2 (February 2, 2022): e0263253. http://dx.doi.org/10.1371/journal.pone.0263253.

Full text
Abstract:
Tetraena mongolica, Zygophyllum xanthoxylon, and Z. fabago are three typical dryland plants with important ecological values in subfamily Zygophylloideae of Zygophyllaceae. Studies on the chloroplast genomes of them are favorable for understanding the diversity and phylogeny of Zygophyllaceae. Here, we sequenced and assembled the whole chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and performed comparative genomic and phylogenetic analysis. The total size, structure, gene content and orders of these three chloroplast genomes were similar, and the three chloroplast genomes exhibited a typical quadripartite structure with a large single-copy region (LSC; 79,696–80,291 bp), a small single-copy region (SSC; 16,462–17,162 bp), and two inverted repeats (IRs; 4,288–4,413 bp). A total of 107 unique genes were identified from the three chloroplast genomes, including 70 protein-coding genes, 33 tRNAs, and 4 rRNAs. Compared with other angiosperms, the three chloroplast genomes were significantly reduced in overall length due to an unusual 16–24 kb shrinkage of IR regions and loss of the 11 genes which encoded subunits of NADH dehydrogenase. Genome-wide comparisons revealed similarities and variations between the three species and others. Phylogenetic analysis based on the three chloroplast genomes supported the opinion that Zygophyllaceae belonged to Zygophyllales in Fabids, and Z. xanthoxylon and Z. fabago belonged to Zygophyllum. The genome-wide comparisons revealed the similarity and variations between the chloroplast genomes of the three Zygophylloideae species and other plant species. This study provides a valuable molecular biology evidence for further studies of phylogenetic status of Zygophyllaceae.
APA, Harvard, Vancouver, ISO, and other styles
19

Mason-Gamer, Roberta J., Nancy L. Orme, and Claire M. Anderson. "Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets." Genome 45, no. 6 (December 1, 2002): 991–1002. http://dx.doi.org/10.1139/g02-065.

Full text
Abstract:
Although the monogenomic genera of the Triticeae have been analyzed in numerous biosystematic studies, the allopolyploid genera have not been as extensively studied within a phylogenetic framework. We focus on North American species of Elymus, which, under the current genomic system of classification, are almost all allotetraploid, combining the St genome of Pseudoroegneria with the H genome of Hordeum. We analyze new and previously published chloroplast DNA data from Elymus and from most of the monogenomic genera of the Triticeae in an attempt to identify the maternal genome donor of Elymus. We also present a cpDNA phylogeny for the monogenomic genera that includes more data than, and thus builds on, those previously published. The chloroplast DNA data indicate that Pseudoroegneria is the maternal genome donor to all but one of the Elymus individuals. There is little divergence among the Elymus and Pseudoroegneria chloroplast genomes, and as a group, they show little divergence from the rest of the Triticeae. Within the monogenomic Triticeae, the problematic group Thinopyrum is resolved as monophyletic on the chloroplast DNA tree. At the intergeneric level, the data reveal several deeper-level relationships that were not resolved by previous cpDNA trees.Key words: chloroplast genome, phylogeny, polyploidy, systematics.
APA, Harvard, Vancouver, ISO, and other styles
20

Ziehe, Dominik, Beatrix Dünschede, and Danja Schünemann. "From bacteria to chloroplasts: evolution of the chloroplast SRP system." Biological Chemistry 398, no. 5-6 (May 1, 2017): 653–61. http://dx.doi.org/10.1515/hsz-2016-0292.

Full text
Abstract:
Abstract Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.
APA, Harvard, Vancouver, ISO, and other styles
21

Somaratne, Yamuna, De-Long Guan, Wen-Qiang Wang, Liang Zhao, and Sheng-Quan Xu. "The Complete Chloroplast Genomes of Two Lespedeza Species: Insights into Codon Usage Bias, RNA Editing Sites, and Phylogenetic Relationships in Desmodieae (Fabaceae: Papilionoideae)." Plants 9, no. 1 (December 31, 2019): 51. http://dx.doi.org/10.3390/plants9010051.

Full text
Abstract:
The genus Lespedeza (tribe: Desmodieae) consists of about 40 species that have high medicinal and economic value. However, in this genus, using morphological characters, the species identification is quite complicated, which can be solved by the analysis of the complete chloroplast genomes. As primary organelle genomes, the complete genome sequences of chloroplasts (cp) provide unique molecular information to study the divergence of species, RNA editing, and phylogeny. Therefore, to the best of our knowledge, for the first time, we sequenced the complete cp genomes of two representative Lespedeza species: Lespedeza davurica and Lespedeza cuneata. The cp genomes of both the species were found to be 149,010 bp in length, exhibiting the typical angiosperm chloroplast structure containing four regions. The Lespedeza cp genomes showed similar conserved gene contents, order, and orientations with a total GC content of 35.0%. A total of 128 genes, including 83 protein-coding genes, 37 tRNAs, and eight rRNAs, were identified from each genome. Unique molecular features of the two Lespedeza cp genome sequences were obtained by performing the analysis of repeats, sequence divergence, codon usage, and predicting the RNA editing sites in addition to phylogenetic analysis with other key genera in tribe Desmodieae. Using the two datasets, the phylogenetic relationship of Lespedeza species among Deasmodieae was discovered, suggesting that whole cp genomes provided useful information for phylogenetic studies of these species.
APA, Harvard, Vancouver, ISO, and other styles
22

Guzmán-Díaz, Salvador, Fabián Augusto Aldaba Núñez, Emily Veltjen, Pieter Asselman, Isabel Larridon, and Marie-Stéphanie Samain. "Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion." Plants 11, no. 3 (February 6, 2022): 448. http://dx.doi.org/10.3390/plants11030448.

Full text
Abstract:
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Xiao, Tao Zhou, Jia Yang, Jingjing Sun, Miaomiao Ju, Yuemei Zhao, and Guifang Zhao. "Comparative Analyses of Chloroplast Genomes of Cucurbitaceae Species: Lights into Selective Pressures and Phylogenetic Relationships." Molecules 23, no. 9 (August 28, 2018): 2165. http://dx.doi.org/10.3390/molecules23092165.

Full text
Abstract:
Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.
APA, Harvard, Vancouver, ISO, and other styles
24

Gichira, Andrew W., Zhizhong Li, Josphat K. Saina, Zhicheng Long, Guangwan Hu, Robert W. Gituru, Qingfeng Wang, and Jinming Chen. "The complete chloroplast genome sequence of an endemic monotypic genusHagenia(Rosaceae): structural comparative analysis, gene content and microsatellite detection." PeerJ 5 (January 10, 2017): e2846. http://dx.doi.org/10.7717/peerj.2846.

Full text
Abstract:
Hageniais an endangered monotypic genus endemic to the topical mountains of Africa. The only species,Hagenia abyssinica(Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence ofH. abyssinica.The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696).H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing inH. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placedHageniain Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Xueli, Zhijie Ding, Haoyu Miao, Jinbo Bao, and Xinmin Tian. "Complete chloroplast genome studies of different apple varieties indicated the origin of modern cultivated apples from Malus sieversii and Malus sylvestris." PeerJ 10 (March 18, 2022): e13107. http://dx.doi.org/10.7717/peerj.13107.

Full text
Abstract:
Background Apple is one of the most important temperate deciduous fruit trees worldwide, with a wide range of cultivation. In this study, we assessed the variations and phylogenetic relationships between the complete chloroplast genomes of wild and cultivated apples (Malus spp.). Method We obtained the complete chloroplast genomes of 24 apple varieties using next-generation sequencing technology and compared them with genomes of (downloaded from NCBI) the wild species. Result The chloroplast genome of Malus is highly conserved, with a genome length of 160,067–160,290 bp, and all have a double-stranded circular tetrad structure. The gene content and sequences of genomes of wild species and cultivated apple were almost the same, but several mutation hotspot regions (psbI-atpA, psbM-psbD, and ndhC-atpE) were detected in these genomes. These regions can provide valuable information for solving specific molecular markers in taxonomic research. Phylogenetic analysis revealed that Malus formed a new clade and four cultivated varieties clustered into a branch with M. sylvestris and M. sieversii, which indicated that M. sylvestris and M. sieversii were the ancestor species of the cultivated apple.
APA, Harvard, Vancouver, ISO, and other styles
26

Tan, Mui Keng. "Evolutionary studies of the chloroplast genome in Pteridium." Plant Science 77, no. 1 (January 1991): 81–91. http://dx.doi.org/10.1016/0168-9452(91)90183-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Amar, Mohamed Hamdy, Mahmoud Magdy, Lu Wang, Hui Zhou, Beibei Zheng, Xiaohan Jiang, Aiman H. Atta, and Yuepeng Han. "Peach chloroplast genome variation architecture and phylogenomic signatures of cpDNA introgression in Prunus." Canadian Journal of Plant Science 99, no. 6 (December 1, 2019): 885–96. http://dx.doi.org/10.1139/cjps-2019-0129.

Full text
Abstract:
The complete chloroplast genome of peach provides essential information required for the assessment of phylogenetic relationships among Prunus species. Here, we compared the complete chloroplast DNA (cpDNA) genome between two peach cultivars and a wild relative, Prunus mira. The cpDNA genomes of the three peach specimens ranged from 157 330 to 157 744 bp in length and all contained 133 genes and 128 intergenic spacer (IGS) regions with an average GC content of 36.8%. The cpDNA genome of peach contained approximately 600 simple sequence repeats (SSRs), with hexa-nucleotide repeats being the most frequent microsatellites. Most SSRs have undergone divergence between cultivated and wild peaches. A total of 331 single nucleotide variants were identified in the cpDNA genomes. Fifty-one multiple-base pair indels were detected, which are mainly responsible for the cpDNA genome size variation. The cpDNA genomes contained 45 hypervariable regions, with 78% in the large single copy region (LSC). Phylogenomic analysis revealed that Prunus persica is more closely related to Prunus kansuensis than to other wild relatives, and a frequency of introgression of the chloroplast genome between Prunus species was deduced. Collectively, various genetic variations in the cpDNA genomes can serve as molecular markers for genomic studies of Prunus species, such as DNA barcoding, phylogeny, and systematics.
APA, Harvard, Vancouver, ISO, and other styles
28

Worth, James R. P., Luxian Liu, Fu-Jin Wei, and Nobuhiro Tomaru. "The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana)." PeerJ 7 (June 7, 2019): e7026. http://dx.doi.org/10.7717/peerj.7026.

Full text
Abstract:
This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome has a total of 158,227 bp containing 111 genes, including 76 protein-coding genes, 31 tRNA genes and 4 ribosomal RNA genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed while the proportion of nucleotide sites differing between the two species was equal to 0.0018. The six most variable regions were, in increasing order of variability, psbK-psbI, trnG-psbfM, rpl32, trnV, ndhI-ndh and ndhD-psaC. These highly variable chloroplast regions in addition to 160 chloroplast microsatellites identified (of which 46 were variable between the two species) will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus.
APA, Harvard, Vancouver, ISO, and other styles
29

Luo, Shengji, and Chanhong Kim. "Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases." International Journal of Molecular Sciences 22, no. 22 (November 9, 2021): 12106. http://dx.doi.org/10.3390/ijms222212106.

Full text
Abstract:
Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Dong-Mei, Chao-Yi Zhao, and Xiao-Fei Liu. "Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis." Molecules 24, no. 3 (January 29, 2019): 474. http://dx.doi.org/10.3390/molecules24030474.

Full text
Abstract:
Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.
APA, Harvard, Vancouver, ISO, and other styles
31

Hu, Yuxin, Weiyue Xing, Zhengyu Hu, and Guoxiang Liu. "Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes." Genes 11, no. 1 (January 20, 2020): 115. http://dx.doi.org/10.3390/genes11010115.

Full text
Abstract:
We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. We found phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae. Our results showed that all volvocine species showed significantly higher substitution rates for the mitochondrial genome compared with the chloroplast genome. The nonsynonymous substitution (dN)/synonymous substitution (dS) ratio is similar in the genomes of both organelles in most volvocine species, suggesting that the two counterparts are under a similar selection pressure. We also identified a few chloroplast protein-coding genes that showed high dN/dS ratios in some species, resulting in a significant dN/dS ratio difference between the mitochondrial and chloroplast genomes.
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Sicheng, Weixing Duan, Jihan Zhao, Yanfen Jing, Mengfan Feng, Bowen Kuang, Ni Wei, Baoshan Chen, and Xiping Yang. "Comparative Analysis of Chloroplast Genome in Saccharum spp. and Related Members of ‘Saccharum Complex’." International Journal of Molecular Sciences 23, no. 14 (July 11, 2022): 7661. http://dx.doi.org/10.3390/ijms23147661.

Full text
Abstract:
High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the ‘Saccharum Complex’, and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.
APA, Harvard, Vancouver, ISO, and other styles
33

Cafa, Giovanni, Riccardo Baroncelli, Carol A. Ellison, and Daisuke Kurose. "Impatiens glandulifera (Himalayan balsam) chloroplast genome sequence as a promising target for populations studies." PeerJ 8 (March 24, 2020): e8739. http://dx.doi.org/10.7717/peerj.8739.

Full text
Abstract:
Background Himalayan balsam Impatiens glandulifera Royle (Balsaminaceae) is a highly invasive annual species native of the Himalayas. Biocontrol of the plant using the rust fungus Puccinia komarovii var. glanduliferae is currently being implemented, but issues have arisen with matching UK weed genotypes with compatible strains of the pathogen. To support successful biocontrol, a better understanding of the host weed population, including potential sources of introductions, of Himalayan balsam is required. Methods In this molecular study, two new complete chloroplast (cp) genomes of I. glandulifera were obtained with low coverage whole genome sequencing (genome skimming). A 125-year-old herbarium specimen (HB92) collected from the native range was sequenced and assembled and compared with a 2-year-old specimen from UK field plants (HB10). Results The complete cp genomes were double-stranded molecules of 152,260 bp (HB92) and 152,203 bp (HB10) in length and showed 97 variable sites: 27 intragenic and 70 intergenic. The two genomes were aligned and mapped with two closely related genomes used as references. Genome skimming generates complete organellar genomes with limited technical and financial efforts and produces large datasets compared to multi-locus sequence typing. This study demonstrates the suitability of genome skimming for generating complete cp genomes of historic herbarium material. It also shows that complete cp genomes are solid genetic markers for population studies that could be linked to plant evolution and aid with targeting native range and natural enemy surveys for biocontrol of invasive species.
APA, Harvard, Vancouver, ISO, and other styles
34

Raman, Gurusamy, and SeonJoo Park. "The Complete Chloroplast Genome Sequence of the Speirantha gardenii: Comparative and Adaptive Evolutionary Analysis." Agronomy 10, no. 9 (September 16, 2020): 1405. http://dx.doi.org/10.3390/agronomy10091405.

Full text
Abstract:
The plant “False Lily of the Valley”, Speirantha gardenii is restricted to south-east China and considered as an endemic plant. Due to its limited availability, this plant was less studied. Hence, this study is focused on its molecular studies, where we have sequenced the complete chloroplast genome of S. gardenii and this is the first report on the chloroplast genome sequence of Speirantha. The complete S. gardenii chloroplast genome is of 156,869 bp in length with 37.6% GC, which included a pair of inverted repeats (IRs) each of 26,437 bp that separated a large single-copy (LSC) region of 85,368 bp and a small single-copy (SSC) region of 18,627 bp. The chloroplast genome comprises 81 protein-coding genes, 30 tRNA and four rRNA unique genes. Furthermore, a total of 699 repeats and 805 simple-sequence repeats (SSRs) markers are identified in the genome. Additionally, KA/KS nucleotide substitution analysis showed that seven protein-coding genes have highly diverged and identified nine amino acid sites under potentially positive selection in these genes. Phylogenetic analyses suggest that S. gardenii species has a closer genetic relationship to the Reineckea, Rohdea and Convallaria genera. The present study will provide insights into developing a lineage-specific marker for genetic diversity and gene evolution studies in the Nolinoideae taxa.
APA, Harvard, Vancouver, ISO, and other styles
35

PARK, Jongsun, and Hong XI. "The complete chloroplast genome of Campsis grandiflora (Bignoniaceae)." Korean Journal of Plant Taxonomy 52, no. 3 (September 30, 2022): 156–72. http://dx.doi.org/10.11110/kjpt.2022.52.3.156.

Full text
Abstract:
Campsis grandiflora (Thunb.) K. Schum is an ornamental species with various useful biological effects. The chloroplast genome of C. grandiflora isolated in Korea is 154,293 bp long (GC ratio: 38.1%) and has four subregions: 84,121 bp of large single-copy (36.2%) and 18,521 bp of small single-copy (30.0%) regions are separated by 24,332 bp of inverted repeat (42.9%) regions including 132 genes (87 protein-coding genes, eight rRNAs, and 37 tRNAs). One single-nucleotide polymorphism and five insertion and deletion (INDEL) regions (40-bp in total) were identified, indicating a low level of intraspecific variation in the chloroplast genome. All five INDEL regions were linked to the repetitive sequences. Seventy-two normal simple sequence repeats (SSRs) and 47 extended SSRs were identified to develop molecular markers. The phylogenetic trees of 29 representative Bignoniaceae chloroplast genomes indicate that the tribe-level phylogenic relationship is congruent with the findings of previous studies.
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Kuan, Rong Wang, Xiu-Xiu Guo, Xue-Jie Zhang, Xiao-Jian Qu, and Shou-Jin Fan. "Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Eragrostideae (Chloridoideae, Poaceae)." Plants 10, no. 1 (January 6, 2021): 109. http://dx.doi.org/10.3390/plants10010109.

Full text
Abstract:
Eragrostideae Stapf, the second-largest tribe in Chloridoideae (Poaceae), is a taxonomically complex tribe. In this study, chloroplast genomes of 13 Eragrostideae species were newly sequenced and used to resolve the phylogenetic relationships within Eragrostideae. Including seven reported chloroplast genomes from Eragrostideae, the genome structure, number and type of genes, codon usage, and repeat sequences of 20 Eragrostideae species were analyzed. The length of these chloroplast genomes varied from 130,773 bp to 135,322 bp. These chloroplast genomes showed a typical quadripartite structure, including a large single-copy region (77,993–80,643 bp), a small single-copy region (12,410–12,668 bp), and a pair of inverted repeats region (19,394–21,074 bp). There were, in total, 129–133 genes annotated in the genome, including 83–87 protein-coding genes, eight rRNA genes, and 38 tRNA genes. Forward and palindromic repeats were the most common repeat types. In total, 10 hypervariable regions (rpl22, rpoA, ndhF, matK, trnG–UCC-trnT–GGU, ndhF–rpl32, ycf4–cemA, rpl32–trnL–UAG, trnG–GCC–trnfM–CAU, and ccsA–ndhD) were found, which can be used as candidate molecular markers for Eragrostideae. Phylogenomic studies concluded that Enneapogon diverged first, and Eragrostis including Harpachne is the sister to Uniola. Furthermore, Harpachne harpachnoides is considered as a species of Eragrostis based on morphological and molecular evidence. In addition, the interspecies relationships within Eragrostis are resolved based on complete chloroplast genomes. This study provides useful chloroplast genomic information for further phylogenetic analysis of Eragrostideae.
APA, Harvard, Vancouver, ISO, and other styles
37

Vu, Huyen-Trang, Ngan Tran, Thanh-Diem Nguyen, Quoc-Luan Vu, My-Huyen Bui, Minh-Tri Le, and Ly Le. "Complete Chloroplast Genome of Paphiopedilum delenatii and Phylogenetic Relationships among Orchidaceae." Plants 9, no. 1 (January 2, 2020): 61. http://dx.doi.org/10.3390/plants9010061.

Full text
Abstract:
Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.
APA, Harvard, Vancouver, ISO, and other styles
38

Dyachenko, E. A., T. M. Seredin, and M. A. Filyushin. "Nuclear and chloroplast genome variability in leek (Allium porrum L.)." Vavilov Journal of Genetics and Breeding 23, no. 7 (November 24, 2019): 902–9. http://dx.doi.org/10.18699/vj19.565.

Full text
Abstract:
The genus Allium L. (Amaryllidaceae), the most numerous among monocotyledonous plants, includes such economically important vegetable crops as onion (A. cepa), garlic (A. sativum) and leek (A. porrum). Leek has a high taste and proven valuable dietary properties and is one of the most popular vegetable crops in Western Europe. Despite a high importance of leek as a vegetable, this species is rarely the subject of molecular genetic studies. The genetic diversity of leeks has never been studied before. Therefore, in this work, we studied the nuclear variability (AFLP) and the chloroplast (nucleotide sequence analysis) genomes using a broad sample. For this work, 65 leek accessions were selected from the collection of the Scientific Center of Vegetable Crops, which included varieties of domestic and foreign breeding. As a result of an AFLP analysis and processing of the DNA spectra obtained, 760 fragments were identified, of which 716 were polymorphic for the leek accessions being analyzed. The calculated genetic distances between the leek samples varied from 0.4 to 0.76, which is comparable to the intraspecific polymorphism of related Allium species (onions, garlic). Analysis of the genomic structure with STRUCTURE 2.3.4 divided the leek samples into seven groups, which generally coincides with the clustering of these samples. To assess the variability of the chloroplast genome, nine sites of the chloroplast genome were sequenced in the leek samples, both non-coding (intergenic spacers rpl32-trnL, ndhJ-trnL, and intron rps16 gene), and protein coding genes (psaA, psaB, psbA, psbB, psbE, petB). The analysis of the sites of the leek chloroplast genome revealed an extremely low level of their polymorphism, only six SNPs were detected in the studied sequences with a total length of about 10,500 bp. Thus, as a result of this work, a high level of polymorphism of the leek nuclear genome was revealed, while the polymorphism of the chloroplast genome was extremely low.
APA, Harvard, Vancouver, ISO, and other styles
39

Breidenbach, Natalie, Oliver Gailing, and Konstantin V. Krutovsky. "Development of novel polymorphic nuclear and chloroplast microsatellite markers in coast redwood (Sequoia sempervirens)." Plant Genetic Resources: Characterization and Utilization 17, no. 03 (December 4, 2018): 293–97. http://dx.doi.org/10.1017/s147926211800045x.

Full text
Abstract:
AbstractThe range-wide genetic structure of the highly productive and valuable timber species Sequoia sempervirens (D. Don) Endl. is still insufficiently studied, although published data based on different genetic markers (nuclear and chloroplast microsatellites, AFLP, RFLP and isozymes) demonstrated relatively low population structure. However, more genetic markers are needed to increase the efficiency of population genetic studies in coast redwood. Therefore, we developed seven nuclear and five chloroplast microsatellite or simple sequence repeat (SSR) markers based on expressed sequence tags (ESTs) and the complete chloroplast genome sequence, respectively. All selected markers were tested in a range-wide sample representing trees from 16 locations. They are highly polymorphic microsatellite loci with the number of alleles ranging from 3 to 17, and the number of effective alleles from 1.1 to 2.48. Coast redwood is a hexaploid species, and its chloroplasts are paternally inherited. Therefore, the chloroplast SSR markers are especially useful for this species, because their genotyping is not affected by nuclear genome ploidy. Moreover, they showed high gene diversity for each locus within and across all populations and can be used to study range-wide population genetic structure, pollen-based gene flow and long-distance gene transfer. Coast redwood can propagate clonally, and nuclear polymorphic EST-SSRs can be used for clonal identification. They are linked with expressed genes and their variation can reflect variation in genes under selection, including those that could be potentially important for local adaptation of coast redwood considering the threat of climate change.
APA, Harvard, Vancouver, ISO, and other styles
40

Zarei, Abdolkarim, Aziz Ebrahimi, Samarth Mathur, and Shaneka Lawson. "The First Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Pistachio (Pistacia vera)." Diversity 14, no. 7 (July 18, 2022): 577. http://dx.doi.org/10.3390/d14070577.

Full text
Abstract:
Pistachio is one of the most economically important nut crops worldwide. However, there are no reports describing the chloroplast genome of this important fruit tree. In this investigation, we assembled and characterized the complete pistachio chloroplast sequence. The Pistacia vera chloroplast genome was 160,598 bp in size, similar to other members of Anacardiaceae (149,011–172,199 bp) and exhibited the typical four section structure, including a large single copy region (88,174 bp), a small single copy region (19,330 bp), and a pair of inverted repeats regions (26,547 bp). The genome contains 121 genes comprised of 87 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Thirteen intron-containing genes were identified in the genome wherein two genes had more than two introns. The genomic patterns of GC content resembled those for other Anacardiaceae. P. vera displayed the highest number of simple sequence repeats (SSRs) among the genera studied, which may be useful for molecular marker development and future population studies. Amino acid analysis revealed that Leucine is the most frequent (10.69%) amino acid in the chloroplast genome followed by Isoleucine (8.53%) and Serine (7.77%). Cysteine (1.30%) and Tryptophan (1.74%) were the least frequent amino acids. Phylogenetic analysis revealed P. vera is most like its taxonomically close relative P. weinmaniifolia, followed by Rhus chinensis; all placed taxonomically in the tribe Rhoeae. Members of Anacardiaceae were most closely related to Rhoeae, followed by members of Spondieae. The reports of this chloroplast genome will be useful for future conservation studies, genetic evaluation and breeding of P. vera, and more comprehensive phylogenetic analysis of the Pistacia species and its closely-related genera.
APA, Harvard, Vancouver, ISO, and other styles
41

Huang, Yuying, Zerui Yang, Song Huang, Wenli An, Jing Li, and Xiasheng Zheng. "Comprehensive Analysis of Rhodomyrtus tomentosa Chloroplast Genome." Plants 8, no. 4 (April 4, 2019): 89. http://dx.doi.org/10.3390/plants8040089.

Full text
Abstract:
In the last decade, several studies have relied on a small number of plastid genomes to deduce deep phylogenetic relationships in the species-rich Myrtaceae. Nevertheless, the plastome of Rhodomyrtus tomentosa, an important representative plant of the Rhodomyrtus (DC.) genera, has not yet been reported yet. Here, we sequenced and analyzed the complete chloroplast (CP) genome of R. tomentosa, which is a 156,129-bp-long circular molecule with 37.1% GC content. This CP genome displays a typical quadripartite structure with two inverted repeats (IRa and IRb), of 25,824 bp each, that are separated by a small single copy region (SSC, 18,183 bp) and one large single copy region (LSC, 86,298 bp). The CP genome encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes and three pseudogenes (ycf1, rps19, ndhF). A considerable number of protein-coding genes have a universal ATG start codon, except for psbL and ndhD. Premature termination codons (PTCs) were found in one protein-coding gene, namely atpE, which is rarely reported in the CP genome of plants. Phylogenetic analysis revealed that R. tomentosa has a sister relationship with Eugenia uniflora and Psidium guajava. In conclusion, this study identified unique characteristics of the R. tomentosa CP genome providing valuable information for further investigations on species identification and the phylogenetic evolution between R. tomentosa and related species.
APA, Harvard, Vancouver, ISO, and other styles
42

Díaz, Roberto Contreras, Wilson H. Mamani, Liesbeth Van den Brink, Maria N. Fuentes, and Mariana A. Aburto. "The complete chloroplast genome of the endangered species garra de león [Bomarea ovallei (Phil.) Ravenna] from Chile." Indian Journal of Genetics and Plant Breeding (The) 82, no. 03 (September 30, 2022): 365–68. http://dx.doi.org/10.31742/isgpb.82.3.14.

Full text
Abstract:
Bomarea ovallei (Phil.) Ravenna (2n=2x=18) is an endangered endemic species that inhabits only a small part of the coast of the Atacama region. We describe the structure, gene composition and phylogeny of the complete chloroplast sequence of this elusive species. The chloroplast genome consists of 155,018 bp, with typical quadripartite structures: a large single copy region (LSC) of 84,132 bp, a small single copy region (SSC) of 17,794 bp, and two inverted repeat regions (IRs) contain 26,546 bp. One hundred and thirty-four genes were identified out of which 84 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. B. ovallei chloroplast resembles chloroplasts from seven species of the order Liliales in length and structure and is most similar to Bomarea edulis (BP=100). The average nucleotide variability (Pi) of 0.00254 between these two Bomarea species is moderate. Nine loci with increased variability were identified: rps16-trnQ, atpF, trnL, ndhC-trnV, rbcL, psbJ, rpl32-trnL, ndhD and ycf1. These loci could be used as DNA markers for classification and evaluation studies in Bomarea populations.
APA, Harvard, Vancouver, ISO, and other styles
43

Nawae, Wanapinun, Chutintorn Yundaeng, Chaiwat Naktang, Wasitthee Kongkachana, Thippawan Yoocha, Chutima Sonthirod, Nattapol Narong, et al. "The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast." Plants 9, no. 9 (September 21, 2020): 1247. http://dx.doi.org/10.3390/plants9091247.

Full text
Abstract:
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.
APA, Harvard, Vancouver, ISO, and other styles
44

Lee, Ha-Rim, Kyung-Ah Kim, Bo-Yun Kim, Yoo-Jung Park, Yoo-Bin Lee, and Kyeong-Sik Cheon. "The complete chloroplast genome sequences of eight Orostachys species: Comparative analysis and assessment of phylogenetic relationships." PLOS ONE 17, no. 11 (November 10, 2022): e0277486. http://dx.doi.org/10.1371/journal.pone.0277486.

Full text
Abstract:
We analyzed the complete chloroplast genomes of eight Orostachys species and compared the sequences to those of published chloroplast genomes of the congeneric and closely related genera, Meterostachys and Hylotelephium. The total chloroplast genome length of thirteen species, including the eight species analyzed in this study and the five species analyzed in previous studies, ranged from 149,860 (M. sikokianus) to 151,707 bp (H. verticillatum). The overall GC contents of the genomes were almost identical (37.6 to 37.8%). The thirteen chloroplast genomes each contained 113 unique genes comprising 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Among the annotated genes, sixteen genes contained one or two introns. Although the genome structures of all Orostachys and Hylotelephium species were identical, Meterostachys differed in structure due to a relatively large gene block (trnS-GCU-trnS-GGA) inversion. The nucleotide diversity among the subsect. Orostachys chloroplast genomes was extremely low in all regions, and among the subsect. Appendiculatae, genus Orostachys, and all thirteen chloroplast genomes showed high values of Pi (>0.03) in one, five, or three regions. The phylogenetic analysis showed that Orostachys formed polyphyly, and subsect. Orostachys and Appendiculatae were clustered with Hylotelephium and Meterostachys, respectively, supporting the conclusion that each subsection should be considered as an independent genus. Furthermore, the data supported the taxonomic position of O. margaritifolia and O. iwarenge f. magnus, which were treated as synonyms for O. iwarenge in a previous study, as independent taxa. Our results suggested that O. ramosa and O. japonica f. polycephala were individual variations of O. malacophylla and O. japonica, respectively. The exact taxonomic position of O. latielliptica and the phylogenetic relationship among the three species, O. chongsunensis, O. malacophylla and O. ramosa, should be a topic of future study.
APA, Harvard, Vancouver, ISO, and other styles
45

Yao, Junjun, Fangyu Zhao, Yuanjiang Xu, Kaihui Zhao, Hong Quan, Yanjie Su, Peiyu Hao, et al. "Complete Chloroplast Genome Sequencing and Phylogenetic Analysis of Two Dracocephalum Plants." BioMed Research International 2020 (December 29, 2020): 1–9. http://dx.doi.org/10.1155/2020/4374801.

Full text
Abstract:
Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene’s lengths of 82,221 bp and 81,450 bp, large single-copy region’s (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region’s (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region’s (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.
APA, Harvard, Vancouver, ISO, and other styles
46

Zeb, Umar, Xiukang Wang, Sajid Fiaz, Azizullah Azizullah, Asad Ali Shah, Sajjad Ali, Fazli Rahim, et al. "Novel insights into Pinus species plastids genome through phylogenetic relationships and repeat sequence analysis." PLOS ONE 17, no. 1 (January 19, 2022): e0262040. http://dx.doi.org/10.1371/journal.pone.0262040.

Full text
Abstract:
Pinus is one of the most economical and ecological important conifers, model specie for studying sequence divergence and molecular phylogeney of gymnosperms. The less availability of information for genome resources enable researchers to conduct evolutionary studies of Pinus species. To improve understanding, we firstly reported, previously released chloroplast genome of 72 Pinus species, the sequence variations, phylogenetic relationships and genome divergence among Pinus species. The results displayed 7 divergent hotspot regions (trnD-GUC, trnY-GUA, trnH-GUG, ycf1, trnL-CAA, trnK-UUU and trnV-GAC) in studied Pinus species, which holds potential to utilized as molecular genetic markers for future phylogenetic studies in Pinnus species. In addition, 3 types of repeats (tandem, palindromic and dispersed) were also studied in Pinus species under investigation. The outcome showed P. nelsonii had the highest, 76 numbers of repeats, while P. sabiniana had the lowest, 13 13 numbers of repeats. It was also observed, constructed phylogenetic tree displayed division into two significant diverged clades: single needle (soft pine) and double-needle (hard pine). Theoutcome of present investigation, based on the whole chloroplast genomes provided novel insights into the molecular based phylogeny of the genus Pinus which holds potential for its utilization in future studies focusing genetic diversity in Pinnus species.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, Kaihui, Lianqiang Li, Yazhou Lu, Junbo Yang, Zhirong Zhang, Fangyu Zhao, Hong Quan, Xiaojing Ma, Zhihua Liao, and Xiaozhong Lan. "Characterization and Comparative Analysis of Two Rheum Complete Chloroplast Genomes." BioMed Research International 2020 (June 22, 2020): 1–11. http://dx.doi.org/10.1155/2020/6490164.

Full text
Abstract:
Rheum species present a significant economic value. Traditional Chinese medicine rhubarb is an important medicinal material in China. It has a long history of use, with a record of use as early as two thousand years ago. Here, we determined the complete chloroplast genome sequences of Rheum nobile and Rheum acuminatum and comprehensively compared them to two other available Rheum cp genomes at the genome scale. The results revealed cp genomes ranging in size from 159,051 to 161,707 bp with a similar typical quadripartite and circular structure. The genome organization, gene numbers, gene order, and GC contents of these four Rheum cp genomes were similar to those of many angiosperm cp genomes. Repeats and microsatellites were detected in the R. nobile and R. acuminatum cp genomes. The Mauve alignment revealed that there were no rearrangements in the cp genomes of the four Rheum species. Thirteen mutational hotspots for genome divergence were identified, which could be utilized as potential markers for phylogenetic studies and the identification of Rheum species. The phylogenetic relationships of the four species showed that the members of Rheum cluster into a single clade, indicating their close relationships. Our study provides valuable information for the taxonomic, phylogenetic, and evolutionary analysis of Rheum.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhou, Binao, Wenjing Yao, Chunce Guo, Lili Bian, Yulong Ding, and Shuyan Lin. "Chloroplast Genome Variation and Phylogenetic Analyses of Seven Dwarf Ornamental Bamboo Species." Forests 13, no. 10 (October 12, 2022): 1671. http://dx.doi.org/10.3390/f13101671.

Full text
Abstract:
Dwarf ornamental bamboos are a class of low shrub plants with minor interspecific morphological differences and are difficult to distinguish by traditional classification. In order to identify this type of bamboo species at the molecular level, we sequenced the genomes of the chloroplasts in seven species of dwarf ornamental bamboo: Pleioblastus argenteostriatus (Regel) Nakai, Pleioblastus fortunei (Van Houtte) Nakai, Pleioblastus pygmaeus (Miq.) Nakai, Pleioblastus pygmaeus ‘Disticha’, Sasaella glabra (Nakai) Koidz., Sasaella glabra ‘Albostriata’ and Sasaella kongosanensis ‘Aureostriatus’ using high-throughput sequencing. The quadripartite structure of the chloroplast genomes is typical, with sizes ranging from 139,031 bp (P. argenteostriatus) to 139,759 bp (S. kongosanensis ‘Aureostriatus’). The genomes contain 116 genes, including four rRNA genes, 30 tRNA genes and 82 protein-coding genes. Four hotspots, including ndhI-ndhA, trnC-rpoB, petB and ccsA, and a total of 46 simple sequence repeats (SSRs) were identified as potential variable markers for species delimitation and population structure analysis. The phylogenetic analyses of chloroplast genomes of seven dwarf ornamental bamboos indicates that these bamboo species can be classified into three categories: Sasaella I, Pleioblastus II and Pleioblastus III. Except S. kongosanensis ‘Aureostriatus’, the other six species were distributed into two branches, indicating that both S.glabra and S. glabra ‘Albostriata’ belong to Pleioblastus Nakai genus. There are four mutations on the chloroplast genomes of S. glabra and S. glabra ‘Albostriata’, suggesting that the mutations may contribute to their obvious different leaf morphologies. Our study reveals the chloroplast structural variations and their phylogenetic relationship and mutation dynamics in seven dwarf ornamental bamboos and also facilitates studies on population genetics, taxonomy and interspecific identification in dwarf bamboo plants.
APA, Harvard, Vancouver, ISO, and other styles
49

Hatmaker, E. Anne, Phillip A. Wadl, Timothy A. Rinehart, Jennifer Carroll, Thomas S. Lane, Robert N. Trigiano, Margaret E. Staton, and Edward E. Schilling. "Complete chloroplast genome comparisons for Pityopsis (Asteraceae)." PLOS ONE 15, no. 12 (December 28, 2020): e0241391. http://dx.doi.org/10.1371/journal.pone.0241391.

Full text
Abstract:
Pityopsis includes several regionally and one federally endangered species of herbaceous perennials. Four species are highly localized, including the federally endangered P. ruthii. The genus includes several ploidy levels and interesting ecological traits such as drought tolerance and fire-dependent flowering. Results from previous cladistic analyses of morphology and from initial DNA sequence studies did not agree with one another or with the infrageneric taxonomic classification, with the result that infrageneric relationships remain unresolved. We sequenced, assembled, and compared the chloroplast (cp) genomes of 12 species or varieties of Pityopsis to better understand generic evolution. A reference cp genome 152,569 bp in length was assembled de novo from P. falcata. Reads from other sampled species were then aligned to the P. falcata reference and individual chloroplast genomes were assembled for each, with manual gapfilling and polishing. After removing the duplicated second inverted region, a multiple sequence alignment of the cp genomes was used to construct a maximum likelihood (ML) phylogeny for the twelve cp genomes. Additionally, we constructed a ML phylogeny from the nuclear ribosomal repeat region after mapping reads to the Helianthus annuus region. The chloroplast phylogeny supported two clades. Previously proposed clades and taxonomic sections within the genus were largely unsupported by both nuclear and chloroplast phylogenies. Our results provide tools for exploring hybridity and examining the physiological and genetic basis for drought tolerance and fire-dependent flowering. This study will inform breeding and conservation practices, and general knowledge of evolutionary history, hybridization, and speciation within Pityopsis.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Huan, Dongfa Sun, and Genlou Sun. "Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets." Genome 54, no. 12 (December 2011): 986–92. http://dx.doi.org/10.1139/g11-063.

Full text
Abstract:
The phylogeny of diploid Hordeum species has been studied using both chloroplast and nuclear gene sequences. However, the studies of different nuclear datasets of Hordeum species often arrived at similar conclusions, whereas the studies of different chloroplast DNA data generally resulted in inconsistent conclusions. Although the monophyly of the genus is well supported by both morphological and molecular data, the intrageneric phylogeny is still a matter of controversy. To better understand the evolutionary history of Hordeum species, two chloroplast gene loci (trnD-trnT intergenic spacer and rps16 gene) and one nuclear marker (thioreoxin-like gene (HTL)) were used to explore the phylogeny of Hordeum species. Two obviously different types of trnD-trnT sequences were observed, with an approximately 210 base pair difference between these two types: one for American species, another for Eurasian species. The trnD-trnT data generally separated the diploid Hordeum species into Eurasian and American clades, with the exception of Hordeum marinum subsp. gussoneanum. The rps16 data also grouped most American species together and suggested that Hordeum flexuosum has a different plastid type from the remaining American species. The nuclear gene HTL data clearly divided Hordeum species into two clades: the Xu + H genome clade and the Xa + I genome clade. Within clades, H genome species were well separated from the Xu species, and the I genome species were well separated from the Xa genome species. The incongruence between chloroplast and nuclear datasets was found and discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography