Dissertations / Theses on the topic 'Chloride'

To see the other types of publications on this topic, follow the link: Chloride.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Chloride.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Johansson, Emma. "Organic chlorine and chloride in soil /." Linköping : Univ, 2000. http://www.bibl.liu.se/liupubl/disp/disp2000/arts210s.htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moldrzyk, Jan. "Využití vedlejších energetických produktů a dalších druhotných surovin pro výrobu alfa sádry." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226735.

Full text
Abstract:
Thesis focus on the longterm research in an area of alpha gypsum production by non pressure method in chloride salt solutions production, which is researched by Institute od technology of building materials and components, Faculty of civil engineering for many years. The result of given research is non pressure equipment for alpha gypsum production. The scope of this research was to make a production of alpha gypsum more efficient through modification of the facility itself and through an optimalization of dehydration process. The scientific aim of this process was to compare an influence of dehydratation solutions of CaCl2, NaCl and KCl on the final product provided that molarity of solutions was at the same level.
APA, Harvard, Vancouver, ISO, and other styles
3

Obijeski, Todd James. "The effect of silver catalyst on the chloride-chlorate reaction." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/10193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamilton, Hugh Gavin Charles. "Hydrolytic and associated reactions in molten zinc chloride-sodium chloride." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gardner, Thomas J. "Chloride transport through concrete and implications for rapid chloride testing." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/5045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, Jessica Mary. "Chlorine production from anhydrous hydrogen chloride in a molten salt electrolyte membrane cell." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/11246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Watari, Raku. "Electrochemical behavior of a liquid tin electrode in molten ternary salt electrolyte containing sodium chloride, aluminum chloride, and tin chloride." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104316.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 33-34).
One of the key limitations in the wide-scale adoption of mature renewable energy technologies is the lack of grid-level energy storage solutions. One important figure of merit in these battery systems is a high rate capability to match fluctuating demands for electricity. Molten salt batteries are an attractive option for stationary storage due to fast kinetics and good cycling capability, but high temperatures (>300 °C) limit available materials. In this thesis, the molten NaCl-AlCl3-SnCl2 electrolyte and liquid Sn electrode couple at 250 °C is investigated as part of the potential cell Na I NaCl-AlCl 3-SnCl2 I Sn for a lower temperature molten salt battery. An electrochemical study of the kinetics in the molten salt electrolyte and at the liquid Sn electrode-electrolyte interface is conducted using cyclic voltammetry and the galvanostatic pulse method. The liquid metal electrode is found to have suitably fast kinetics with an exchange current density of 92 mA/cm2. Parameters for a new Na+ conducting membrane are proposed, requiring an ionic conductivity of 0.056 S/cm, which would allow for a hypothetical Na I NaCl-AlC 3-SnCl2 I Sn battery to operate with an energy efficiency of 70%.
by Raku Watari.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdurrahim, Ali A. "Corrosion behaviour of welded joints within chloride and chloride/CO[2] environments." Thesis, Sheffield Hallam University, 2004. http://shura.shu.ac.uk/19190/.

Full text
Abstract:
Electrochemical measurements and metallographic studies were performed on welded carbon steel pipeline materials. Corrosion tests were performed within naturally chloride solution with and without CO[2] additions at ambient temperature. The pH within different environments, chloride solution alone and buffered chloride solution with CO[2] additions was measured at 6.3 +/- 0.3 and 6.2 +/-0.1 respectively. The objective of this study was to evaluate the corrosion behaviour (rates) of carbon steel welds using both traditional and novel electrochemical scanning techniques within two different chloride environments. Corrosion tests were conducted using DC steady state and scanning electrochemical techniques. These tests consisted of linear polarisation resistance (LPR), corrosion potential (Ecorr)} zero resistance ammetry (ZRA), cathodic polarisation (CP) and the scanning vibrating electrode technique (SVET), which were used to semi-quantitatively assess the corrosion activity of the different microstructures, i.e., weld metal (WM), heat-affected zone (HAZ) and parent plate (PP) respectively. Samples were freshly ground before exposure to the different aqueous chloride solutions. SVET was used during these investigations to evaluate preferential corrosion susceptibilities of weldments. SVET results were compared with results from (long term-immersion) DC-based electrochemical corrosion tests. SVET was found to be a sensitive technique with good resolution allowing differences in corrosion response to be determined within hours as compared to other corrosion tests that require several hours to days.
APA, Harvard, Vancouver, ISO, and other styles
9

Nyholm, Bethany Paige. "Resonance Raman intensity analysis of chlorine dioxide, nitrosyl chloride, and isopropyl nitrate in solution /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/8496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Low, Wendy. "Chloride channels in epithelia." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68206.

Full text
Abstract:
The outwardly rectifying chloride channel is found in most vertebrate cells however its physiological role is uncertain. Patch clamp, short-circuit current, and electronic cell sizing techniques were used to investigate the role of the outward rectifier in transepithelial chloride secretion and cell volume regulation, the two main functions that have been proposed for this channel in epithelia. Patch clamp studies of the human cell lines PANC-1 and T$ sb{84}$ showed that the chloride channel blockers IAA-94 and NPPB decrease the open probability of the outward rectifier, with half-maximal inhibition at 15 $ mu$M and 23 $ mu$M, respectively. At these concentrations the blockers did not affect cAMP-induced short-circuit current. They did inhibit the regulatory volume decrease (RVD) which occurs after hypotonic cell swelling, but only at much higher concentrations. Moreover, the commonly-used inhibitor DIDS, which blocks the outward rectifier in the 10-20 $ mu$M range, had no effect on the RVD when tested at 100 $ mu$M. The results indicate that the outwardly rectifying Cl channel does not mediate a significant fraction of transepithelial Cl secretion across T$ sb{84}$ cells. Although the data do not exclude a role for the outward rectifier in cell volume regulation, the selectivity and pharmacological properties of the swelling-induced anion conductance in T$ sb{84}$ cells is more similar to the ClC-2 channel than to the outward rectifier.
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Yu. "Mathematical modelling of chloride ingress into concrete and electrochemical chloride removal from concrete." Thesis, Aston University, 2001. http://publications.aston.ac.uk/14161/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Payne, Lynda B. "The Dehydrochlorination Mechanism of the Internal Allylic Chloride Structure in Poly(Vinyl Chloride)." W&M ScholarWorks, 2000. https://scholarworks.wm.edu/etd/1539626253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ebdon, D. N. "A mechanistic study of the solvolyis reactions of selected phosphoryl chlorides and p-anisoyl chloride." Thesis, Swansea University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636761.

Full text
Abstract:
Throughout the 1990's several investigators have used a mechanistic theory based upon third order kinetics to explain the rates of the reactions of several substrates in aqueous mixtures of protic (e.g. methanol) an aprotic (e.g. acetone) solvents. Such substrates investigated have included p-nitrobenzoyl chloride and p-nitrobenzenesulfonyl chloride. Reactions of these substrates in aqueous alcohols yield two products; an acid (RCO2H and RSO3H) and an ester (RCO2R and RSO3R). Measurements of the relative amounts of the products obtained from these reactions has enabled investigators to calculate selectivity values, S (S = [Ester]/[Acid] x [Water]/[Alcohol]). Both the rates and products (selectivities) of these reactions have been successfully explained by this third order theory. This thesis (Chapters 1-5) is primarily concerned with testing the third order theory further by investigating the reactions of selected phosphoryl chlorides (e.g. diphenyl-chlorophosphate, (PhO)2POCl) in aqueous mixtures of protic and aprotic solvents. Some of the results obtained in this thesis strongly support the theory whilst some unexpected results have been explained by initial state solvation effects. Unexpected changes in selectivity in highly aqueous mixtures of methanol and ethanol (e.g. 10-30%) may be caused by complex solvent-solvent interactions in these solvents. Chapter six of this thesis is not concerned with the third order theory investigated in Chapters 1-5. Previous investigations of the solvolyses of p-methoxybenzoyl (anisoyl) chloride in aqueous methanol and ethanol have resulted in an SN1 type mechanism involving solvent separated ion pairs being postulated. Selectivities for these solvolyses are constant over the whole range of methanol-water and ethanol-water mixtures investigated (10-90%, % v/v) with the selectivity in ethanol being less than in methanol. These constant selectivities have provided an opportunity to investigate aqueous mixtures of other alcohols (e.g. propanols and butanols) and to discover whether effects such selective solvation of anisoyl chloride by alcohol occurs. Any changes in the pattern of selectivity might be due to such effects and not a change in mechanism because anisoyl chloride is reluctant to react via associative mechanisms even in solvents of low ionising power (e.g. ethanol).
APA, Harvard, Vancouver, ISO, and other styles
14

Yoshida, Yasuko. "Global sources and distribution of atmospheric methyl chloride." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-06232006-151220/.

Full text
Abstract:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2007.
Robert Dickinson, Committee Member ; Athanasios Nenes, Committee Member ; David Tan, Committee Member ; Armistead Russell, Committee Member ; Yuhang Wang, Committee Chair.
APA, Harvard, Vancouver, ISO, and other styles
15

Angst, Ueli. "Chloride induced reinforcement corrosion in concrete : Concept of critical chloride content – methods and mechanisms." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14245.

Full text
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete structures. Condition assessment and service life prediction is based on comparing the chloride content in the concrete at the steel depth – either measured in the field or computed by means of theoretical modelling – with the chloride content that is believed to be tolerable before corrosion starts. The latter is commonly referred to as critical chloride content or chloride threshold value. Owing to the considerable statistical variation of the parameters involved in service life considerations, probabilistic approaches are preferentially used since these aim at taking into account the uncertainties inherent to all parameters – at least on a theoretical basis. The present thesis approached the issue of chloride induced reinforcement corrosion from various angles. First, a non-destructive chloride measurement technique was studied. Second, the critical chloride content was reviewed with particular focus on how to determine this value experimentally and on common practice of its application. In a third part, the mechanism of chloride induced corrosion was experimentally studied. Regarding the measurement of chlorides, the application of ion selective electrodes (ISEs) as non-destructive chloride sensors in concrete was investigated. It was found that silver / silver chloride electrodes respond to the chloride ion activity in the pore solution as expected from theory and are functional also in highly alkaline environments. However, correct measurement of the sensor potential is the critical step and in this regard, the presence of diffusion potentials was identified as serious error source. These disturbing potentials arise from concentration gradients along the measurement path between reference electrode and ISE, particularly owing to pH gradients and chloride profiles. The error can be minimised by optimal placing of the reference electrode with respect to the ISE. Generally, in uncarbonated, alkaline concrete, the accuracy of this non-destructive chloride measurement method was found to be comparable to the accuracy of common procedures to determine the acid-soluble chloride content in concrete powder. On the other hand, when the pH of the concrete is on a lower level such as owing to the presence of pozzolanas, the adverse effect of diffusion potentials arising from chloride profiles increases and negatively affects the measurement accuracy. A review on the critical chloride content has shown that this parameter scatters significantly in the literature and that the published data does not offer a basis to improve service life predictions. The reported values are not consistent, particularly regarding non-traditional binder types. This was, at least partly, explained by the wide variety of experimental methods and the pronounced effect of certain experimental parameters. It was concluded that there is a strong need for a generally accepted, practice-related test setup for the critical chloride content. Without reliable input data, the common practice of probabilistic service life modelling is highly questionable. Both based on experimental results as well as the literature review, recommendations were made for a realistic test setup; these include the use of ribbed steel in as-received condition, chloride exposure by cyclic wetting and drying as well as leaving the rebar at its free corrosion potential rather than subjecting it to potentiostatic control. While it was from experimental work concluded that even in rather small laboratory specimens, the cathode is sufficiently large to provide realistic conditions for (early) pitting corrosion, probabilistic considerations have illustrated that the specimen size is likely to significantly influence the measured critical chloride content. More specifically, the smaller the specimens, the higher the expected mean critical chloride content and the larger the scatter of measured values. It was further discussed how the size effect influences the concept of critical chloride content and service life modelling in general. It was suggested that the size of specimens on which the critical chloride content is measured has to be taken into account when transferring the values to structures of real-life dimensions in probabilistic service life calculations. A procedure of how this can be done by considering structural behaviour was sketched (characteristic length). Regarding corrosion performance, the steel/concrete interface was found to be the most important influencing factor. Investigations by means of scanning electron microscopy revealed microstructural differences of top and lower sides of rebars that were horizontally orientated during casting, in particular the presence of a bleed-water zone below the reinforcement. It was striking that chloride induced corrosion initiated preferentially on the rebar side with the bleed-water zone regardless of the direction of chloride ingress. Also entrapped air voids were frequently observed at the steel/concrete interface; however, these coincided never with the location of corrosion onset. It was suggested that the internal moisture state is decisive in determining which interfacial defects present a risk of corrosion initiation. Last but not least, it was experimentally observed that steel embedded in concrete might depassivate/repassivate several times until stable pitting corrosion is achieved – at least under unpolarised conditions. After the first signs of corrosion onset, a marked increase in chloride content was often required to prevent repassivation and to enable stable pit growth. The time at which the chloride content is measured and taken as critical chloride content is thus decisive for the outcome of a laboratory test method. It was suggested that in order to obtain practicerelated chloride threshold values, this should be done as soon as stable pit growth is achieved (rather than at the first depassivation event). Finally, measurements after depassivation provided insight into the mechanism of early pitting corrosion and lead to the conclusion that the corrosion kinetics are at this stage dominated by anodic diffusion control.
APA, Harvard, Vancouver, ISO, and other styles
16

Zell, Elizabeth T. "A Novel Synthesis and Characterization of Copper Chloride Nanocrystals in a Sodium Chloride Matrix." Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1387281922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Assoud, Abdeljalil. "Komplexe Chloride mit zweiwertigen Kationen." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962401889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Winstanley, Keith J. "Synthetic Receptors For Chloride Binding." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485148.

Full text
Abstract:
Simple commercially available phenols have been investigated for their abilities to bind and sense anionic guests. Catechol is able to strongly and selectively bind chloride, as the O-H groups are located in positions particulariy appropriate for chelate binding of this anion. The addition of an electron withdrawing group to the catechol motif results in an increased chloride affinity. Catechol also demonstrates large electrochemical responses upon the addition of chloride and optical responses upon the addition of basic anions such as fluoride. A series of novel bis-catechol siderophore analogues has been successfully synthesised and their binding with chloride has been investigated. The affinity of ortho-substituted bis-catechol compounds for chloride was limited by the ability of the O-H groups to form intramolecular hydrogen bonds with the ortho substituent. Ortha-substituted compounds, which were able to form six membered intramolecular rings, were found to have the weakest affinity for chloride. The strongest receptor of this. type, which could bind chloride more th~n twice as strongly than catechol, was only capable of forming a seven membered intramolecular hydrogen-bonded ring. The affinity of meta-substituted bis-catechols for chloride was found to be limited, not by the ability to form intramolecular hydrogen bonds with the meta substituent, but by a lack of rigidity inherent within the structure. Simple meta-substituted catechols demonstrate chloride binding affinities comparable with catechol due to a lack of competitive intramolecular hydrogen bonds. However, the lack of rigidity within meta-substituted bis-catechols meant a well defined binding site could not be presented to the guest chloride. A series of receptors containing a tren-core have been synthesised and their anion and acid binding has been studied. Placing large organic functionality around the tren-core results in preferred binding of the smaller anions due to the formation of an extended binding cavity. Tren-cored receptors are also capable of transporting H+Crthrough a bulk organic phase. The ability to transport was based largely on receptor polarity rather than guest affinity. Finally, a preliminary investigation of transport through phospholipid bilayers was undertaken.
APA, Harvard, Vancouver, ISO, and other styles
19

Forrest, Martin J. "Characterisation of vinyl chloride oligomers." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/27931.

Full text
Abstract:
A low molecular weight fraction was obtained from a mass polymerised PVC resin by using diethyl ether Soxhlet extraction followed by either preparative gel filtration or solvent fractionation. A gas chromatography - mass spectroscopy (GC-MS) analysis of this fraction revealed that, in addition to vinyl chloride (VC) oligomers, it contained a large number of other compounds, in particular a large concentration of phthalates. By using adsorption liquid chromatography it was possible to remove the phthalates, along with other contaminants having a similar or greater polarity, from the low molecular weight PVC fraction.
APA, Harvard, Vancouver, ISO, and other styles
20

Pedersen, Henrik. "Chloride-based Silicon Carbide CVD." Doctoral thesis, Linköpings universitet, Materiefysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15428.

Full text
Abstract:
Silicon carbide (SiC) is a promising material for high power and high frequency devices due to its wide bandgap, high break down field and high thermal conductivity. The most established technique for growth ofepitaxial layers of SiC is chemical vapor deposition (CVD) at around 1550 °C using silane, SiH4, and lighthydrocarbons e g propane, C3H8, or ethylene, C2H4, as precursors heavily diluted in hydrogen. For high-voltagedevices made of SiC thick (> 100 μm), low doped epilayers are needed. Normal growth rate in SiC epitaxy is~ 5 μm/h, rendering long growth times for such SiC device structures. The main problem when trying to achievehigher growth rate by increasing the precursor flows is the formation of aggregates in the gas phase; for SiCCVD these aggregates are mainly silicon droplets and their formation results in saturation of the growth ratesince if the gas flow does not manage to transport these droplets out of the growth zone, they will eventuallycome in contact with the crystal surface and thereby creating very large defects on the epilayer making theepilayer unusable. To overcome this problem, high temperature- as well as low pressure processes have beendeveloped where the droplets are either dissolved by the high temperature or transported out of the susceptor bythe higher gas flow. A different approach is to use chloride-based epitaxy that uses the idea that the silicondroplets can be dissolved by presence of species that bind stronger to silicon than silicon itself. An appropriatecandidate to use is chlorine since it forms strong bonds to silicon and chlorinated compounds of high purity canbe purchased. In this thesis the chloride-based CVD process is studied by using first a single molecule precursor,methyltrichlorosilane (MTS) that contributes with silicon, carbon and chlorine to the process. Growth of SiCepilayers from MTS is explored in Paper 1 where growth rates up to 104 μm/h are reported together withmorphology studies, doping dependence of growth rate and the influence of the C/Si- and Cl/Si-ratios on thegrowth rate and doping. In Paper 2 MTS is used for the growth of 200 μm thick epilayers at a growth rate of 100μm/h, the epilayers are shown to be of very high crystalline quality and the growth process stable. The growthcharacteristics of the chloride-based CVD process, is further studied in Paper 3, where the approach to add HClgas to the standard precursors silane and ethylene is used as well as the MTS approach. A comparison betweenliterature data of growth rates for different approaches is done and it is found that a precursor molecule withdirect Si-Cl bonds should be more efficient for the growth process. Also the process stability and growth ratedependence on C/Si- and Cl/Si are further studied. In Paper 4 the standard growth process for growth on 4° offaxis substrates is improved in order to get better morphology of the epilayers. It is also shown that the optimizedprocess conditions can be transferred to a chloride-based process and a high growth rate of 28 μm/h wasachieved, using the HCl-approach, while keeping the good morphology. In Paper 5 chloride-based CVD growthon on-axis substrates is explored using both the HCl- and MTS-approaches. The incorporation of dopants in SiCepilayers grown by the chloride-based CVD process is studied in Papers 6 and 7 using the HCl-approach. InPaper 6 the incorporation of the donor atoms nitrogen and phosphorus is studied and in Paper 7 theincorporation of the acceptor atoms boron and aluminum. The incorporation of dopants is found to follow thetrends seen in the standard growth process but it is also found that the Cl/Si-ratio can affect the amount ofincorporated dopants.
Kiselkarbid (SiC) är ett fascinerande material som samtidigt är mycket enkelt och mycketkomplicerat. Det är enkelt eftersom det byggs upp av bara två sorters atomer, kisel och kol.Atomerna bygger upp kristallens struktur genom att bilda Si-C bindningar och man kan beskrivakristallstrukturen som uppbyggd av tetraedrar med en kiselatom (eller kolatom) i mitten och enkolatom (eller kiselatom) i varje hörn på tetraedern. Samtidigt är SiC komplicerat eftersomberoende på hur man staplar dessa tetraedrar kan man få olika varianter på kristallstrukturen, såkallade polytyper. Det finns drygt 200 kända polytyper av kiselkarbid, men det är dock bara enhandfull av dessa polytyper som är tekniskt intressanta. Kiselkarbid är intressant eftersom det ärett hårt material som inte heller påverkas nämnvärt av kemiskt aggressiva miljöer ellertemperaturer upp till 2000 °C; dessutom är SiC en halvledare och tack vare dess tålighet är det ettmycket bra material för elektriska komponenter för högspänningselektronik eller för användningi aggressiva miljöer. För att kunna tillverka dessa komponenter måste man kunna odla kristaller av kiselkarbid. Detfinns i princip två typer av kristallodling; i) odling av bulkkristaller, där stora kristaller odlas föratt sedan kan skivas och poleras till kristallskivor (dessa skivor benämns oftast substrat), och ii)odling av epitaxiella skikt, där man odlar ett tunt lager kristall med mycket hög renhet ovanpå ettsubstrat (ordet epitaxi kommer från grekiskans epi = ovanpå och taxis = i ordning, epitaxiellaskikt odlas alltså ovanpå ett substrat och kopierar den kristallina ordningen hos substratet). I detepitaxiella skiktet, eller epilagret som det även kallas, kan man styra den elektriskaledningsförmågan med mycket hög precision genom att blanda in små mängder orenheter iepilagret, man pratar här om att dopa halvledarkristallen. För att odla epilager av SiC använderman CVD, CVD betyder Chemical Vapor Deposition, någon riktigt bra svensk översättningfinns inte men det är en teknik för att framställa ett tunt lager av ett material genom kemiskareaktioner med gaser som startmaterial. I standard CVD-processen för odling av SiC epilager använder man silan (SiH4) som kiselkälla och lätta kolväten som eten (C2H4) eller propan (C3H8) som kolkälla. Dessa gaser späds kraftigtut i vätgas och man odlar epilagret vid ungefär 1500-1600 °C. Med denna process kan man odlaca 5 mikrometer (mikrometer = miljondelsmeter) epilager på en timme. Men för vissakomponenter behöver man ett epilager som är över 100 mikrometer tjockt, vilket görtillverkningen av sådana komponenter både tidsödande och kostsam. Ett problem som manmåste lösa för att få högre tillväxthastighet i processen är att när man ökar mängden silan,kommer kiseldroppar att bildas i gasfasen och om de kommer i kontakt med substratet blirepilagret förstört. I denna avhandling undersöks ett sätt att lösa problemet med kiseldropparnaoch därmed kunna tillåta höga tillväxthastigheter för SiC epilager. Idén är att man kan lösa uppkiseldropparna genom att tillsätta något i gasblandningen som binder starkare till kisel än kisel.En mycket bra atom att använda för detta ändamål är klor eftersom klor binder mycket starkt tillkisel. Man kallar denna process för klorid-baserad CVD. Till att börja med använde vi molekylen metyltriklorsilan (MTS), som innehåller både kol, kiseloch klor, för klorid-baserad tillväxt av SiC epilager. Genom att använda MTS lyckades vi fåtillväxthastigheter mellan 2 och 104 mikrometer i timmen. Vi har även visat att det är möjligtanvända MTS för att odla 200 mikrometer tjocka epilager med en tillväxthastighet på 100mikrometer i timmen utan att den kristallina kvalitén på epilagren försämras. Ett alternativ till attanvända MTS är att addera saltsyra (HCl) i gasform till standard processen. För att förstå denklorid-baserade processen bättre, jämfördes de olika alternativen med litteraturdata från enprocess där man istället för vanlig silan hade använt triklorsilan (TCS) för att få en klorid-baserad process. Det visade sig att MTS- och TCS-processerna krävde mindre kiselhalt i gasfasen för attfå en hög tillväxthastighet, med andra ord var de mer effektiva. Vi förklarade detta med atteftersom dessa startmolekyler har tre kisel-kol bindningar är det enkelt att bilda SiCl2 molekylen,som har visat sig vara ett viktigt mellansteg i den klorid-baserade processen, eftersom man dåbara behöver bryta kemiska bindningar. Om man istället börjar från silan och saltsyra måstekemiska reaktioner ske för att skapa kisel-kol bindningar och därmed SiCl2. När man odlar kristaller underlättar man tillväxten genom att preparera ytan på substratet medatomära steg. Om man tittar på ytan med atomär förstoring kan säga att ytan liknar en trappa,detta är bra eftersom atomerna som bygger upp epilagret gärna fastnar vid atomära steg eftersomde kan binda in till kristallen både neråt och åt sidan. Vi har optimerat standard processen för attfå bättre morfologi, alltså en finare yta, när man odlar på substrat som har mindre andel atomärasteg på ytan och visat att denna optimering går att överföra till en klorid-baserad process medhög tillväxthastighet . Vi har även visat att man kan använda den klorid-baserade processen föratt odla epilager med hög tillväxthastighet på substrat helt utan atomära steg. Slutligen har vi studerat doping av kiselkarbid vid höga tillväxthastigheter med den kloridbaseradeprocessen, både n-typ doping (där man dopar med ämnen som har fler valenselektronerän kol och kisel så att man får ett överskott av elektroner i materialet) med kväve och fosfor, ochp-typ doping (där man dopar med ämnen som har färre valenselektroner än kol och kisel så attman får ett underskott av elektroner i materialet) med bor och aluminium.
APA, Harvard, Vancouver, ISO, and other styles
21

Gudgel, Katherine Ann. "Growth of ammonium chloride dendrites." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/289878.

Full text
Abstract:
The ammonium chloride-water system has been used extensively as a transparent metal analog to model solidification in binary metal alloys. In this work, the growth rate and morphology of NH₄Cl dendrites grown from aqueous solutions were studied. Since an accurate knowledge of the materials parameters is essential to predicting the growth behavior, the equilibrium segregation coefficient was measured and a detailed analysis of the other NH₄Cl-H₂O materials properties cited in the literature was conducted. Isothermal experiments on bulk NH₄Cl-H₂O samples confirmed that the previously reported discontinuity in the growth rate as function of undercooling and associated transition from <100> oriented slowly growing dendrites to rapidly growing <111> dendrites are not artifacts of the sample geometry. Directional solidification experiments conducted to study the dendrite growth morphology revealed oscillations in both the growth rate and orientation. Results from these studies show that both the undercooling at which the <100> to <111> transition occurs and the peak velocity vary with composition. However, the observed shifts toward smaller apparent undercoolings and the narrowing of the oscillations at higher drive velocities result from changes in the local composition caused by the velocity and orientation dependencies of the partition coefficient. The oscillatory behavior of the <111> dendrites can be predicted using the residual <100> compositional field and the applied temperature gradient. By using an anisotropic segregation coefficient, the slow and fast growth rates can be separately modeled as a function of undercooling using the standard dendrite growth equations. While the transition to the <111> morphology can be attributed to the anisotropy in the k-value, several modifications need to be made to the existing dendritic growth models in order to describe the critical transition. Due to the complex relationships between the non-equilibrium segregation coefficient, composition, and growth rate, some of these modeling efforts have been left to future researchers. In addition to the inclusion of the overall anisotropy, our experiments indicate that the long-range compositional and thermal field effects must be incorporated into the dendrite growth models to explain the difference in growth rates of <111> Primary branches when <111> or <100> side-branches are present.
APA, Harvard, Vancouver, ISO, and other styles
22

Yelhekar, Tushar. "Chloride Homeostasis in Central Neurons." Doctoral thesis, Umeå universitet, Institutionen för integrativ medicinsk biologi (IMB), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-127655.

Full text
Abstract:
The overall aim of the present thesis is to clarify the control of intracellular chloride homeostasis in central neurons, because of the critical role of chloride ions (Cl–) for neuronal function. Normal function of the central nervous system (CNS) depends on a delicate balance between neuronal excitation and inhibition. Inhibition is, in the adult brain, most often mediated by the neurotransmitter γ-aminobutyric acid (GABA). GABA may, however, in some cases cause excitation. GABA acts by activating GABA type A receptors (GABAARs), which are ion channels largely permeable to Cl–. The effect of GABAAR-mediated neuronal signaling - inhibitory or excitatory - is therefore mainly determined by the Cl– gradient across the membrane. This gradient varies with neuronal activity and may be altered in pathological conditions. Thus, understanding Cl– regulation is important to comprehend neuronal function. This thesis is an attempt to clarify several unknown aspects of neuronal Cl– regulation. For such clarification, a sufficiently sensitive method for measuring the intracellular Cl– concentration, [Cl–]i, is necessary. In the first study of this thesis, we examined two electrophysiological methods commonly used to estimate [Cl–]i. Both methods, here called the interpolation and the voltage-ramp method, depend on an estimate of the Cl– equilibrium potential from the current-voltage relation of GABA- or glycine-evoked Cl– currents. Both methods also provide an estimate of the membrane Cl– conductance, gCl. With a combination of computational and electrophysiological techniques, we showed that the most common (interpolation) method failed to detect changes in [Cl–]i and gCl during prolonged GABA application, whereas the voltage-ramp method accurately detected such changes. Our analysis also provided an explanation as to why the two methods differ. In a second study, we clarified the role of the extracellular matrix (ECM) for the distribution of Cl– across the cell membrane of neurons from rat brain. It was recently proposed that immobile charges located within the ECM, rather than as previously thought cation-chloride transporter proteins, determine the low [Cl–]i which is critical to GABAAR-mediated inhibition. By using electrophysiological techniques to measure [Cl–]i, we showed that digestion of the ECM decreases the expression and function of the neuron-specific K+ Cl– cotransporter 2 (KCC2), which normally extrudes Cl- from the neuron, thus causing an increase in resting [Cl–]i. As a result of ECM degradation, the action of GABA may be transformed from inhibitory to excitatory. In a third study, we developed a method for quantifying the largely unknown resting Cl– (leak) conductance, gCl, and examined the role of gCl for the neuronal Cl– homeostasis. In isolated preoptic neurons from rat, resting gCl was about 6 % of total resting conductance, to a major part due to spontaneously open GABAARs and played an important role for recovery after a high Cl– load. We also showed that spontaneous, impulse-independent GABA release can significantly enhance recovery when the GABA responses are potentiated by the neurosteroid allopregnanolone. In a final commentary, we formulated the mathematical relation between Cl– conductance, KCC2-mediated Cl– extrusion capacity and steady-state [Cl–]i. In summary, the present thesis (i) clarifies how well common electrophysiological methods describe [Cl–]i and gCl, (ii) provides a novel method for quantifying gCl in cell membranes and (iii) clarifies the roles of the ECM, ion channels and ion transporters in the control of [Cl–]i homeostasis and GABAAR-mediated signaling in central neurons.
APA, Harvard, Vancouver, ISO, and other styles
23

Yamakawa, Masatoshi. "Chloride permeability of distressed concrete." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1455163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Arosio, Daniele. "Imaging Chloride Homeostasis in Neurons." Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/368512.

Full text
Abstract:
Intracellular chloride and pH are fundamental regulators of neuronal excitability and they are often co-modulated during excitation-inhibition activity. The study of their homeostasis requires simultaneous measurements in vivo in multiple neurons. Combining random mutagenesis screening, protein engineering and two-photon-imaging this thesis work led to the discovery of new chloride-sensitive GFP mutants and to the establishment of ratiometric imaging procedures for the quantitative combined imaging of intraneuronal pH and chloride. These achievements have been demonstrated in vivo in the mouse cortex, in real-time monitoring the dynamic changes of ions concentrations during epileptic-like discharges, and in glioblastoma primary cells, measuring osmotic swelling responses to various drugs treatment.
APA, Harvard, Vancouver, ISO, and other styles
25

Arosio, Daniele. "Imaging Chloride Homeostasis in Neurons." Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/1937/2/DECLARATORIA_ENG_signed.pdf.

Full text
Abstract:
Intracellular chloride and pH are fundamental regulators of neuronal excitability and they are often co-modulated during excitation-inhibition activity. The study of their homeostasis requires simultaneous measurements in vivo in multiple neurons. Combining random mutagenesis screening, protein engineering and two-photon-imaging this thesis work led to the discovery of new chloride-sensitive GFP mutants and to the establishment of ratiometric imaging procedures for the quantitative combined imaging of intraneuronal pH and chloride. These achievements have been demonstrated in vivo in the mouse cortex, in real-time monitoring the dynamic changes of ions concentrations during epileptic-like discharges, and in glioblastoma primary cells, measuring osmotic swelling responses to various drugs treatment.
APA, Harvard, Vancouver, ISO, and other styles
26

Oni, Stephen Kayode. "Modeling Chloride Retention in Boreal Forest Soils - synergy of input treatments and microbial biomass." Thesis, Linköping University, Department of Water and Environmental Studies, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9312.

Full text
Abstract:

The hypothetical assumption that chloride is conservative in the soil has been debated for the last decade. The results of the recent years of study in chlorine biogeochemistry show that chloride is non-conservative but rather participates in complex biogeochemical reactions in the soil. These interactions in nature inform the development of simplified hydrochemical model of chloride dynamics in the soil that is driven on soil routine component of HBV hydrological model. This novel attempt affords the opportunity to explore chlorine biogeochemistry further by evaluating the biological processes such as microbial biomass that predominate chlorine cycles in the same order of magnitude as earlier studied abiotic factors. Data from soil lysimeter experiment with different inputs treatments were used in the calibration and validation of both the hydrological and biogeochemical model. The results show that (1) model efficiency reduces with decreasing water residence and with increasing soil organic matter. (2) Longer water residence time (low water input), high chloride and high nitrogen input loads relatively enhance maximum biomass accumulation in a shorter time span. (3) Chloride retention time reduces with increasing chloride loads under short water residence. (4) Microbial biomass growth rate is highest under high chloride input treatments. (5) Biomass death rates shows reducing trend under short water residence (High water input). Further researches are therefore suggested for possible model expansion and to make the results of this model plausible under field conditions.

APA, Harvard, Vancouver, ISO, and other styles
27

Gan, Din-Chung. "Simultaneous Part-Per-Billion Determination of Sodium and Chloride Ions." Thesis, North Texas State University, 1987. https://digital.library.unt.edu/ark:/67531/metadc504110/.

Full text
Abstract:
The method utilizes both cation and anion concentrator columns in parallel as a preconcentration system. The preconcentrator system is loaded using a reagent delivery module operated for a specific time at a preset flow rate. Total injection volumes of 2-5 ml are routinely used. Various chromatograms are discussed along with detailed information concerning detection limits for sodium and chloride, the system operating conditions, and the solutions to other pitfalls which have arisen during the course of this work.
APA, Harvard, Vancouver, ISO, and other styles
28

Lu, Ying. "Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of cheese." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1285.

Full text
Abstract:
The rate and extent of syneresis (whey expulsion) strongly affects cheese composition and quality. During salting, curd syneresis is influenced by the combined effect of both osmotic pressure and protein hydration. Our objective is to examine how cheese composition and whey expulsion are influenced by dry salting curd at various intervals, levels, applications, and potassium chloride (KCl) substitution, or change in calcium or sodium level in test solution (i.e., whey-brine). Four sets of unsalted fresh Cheddar curds were salted with different methods, with at least 3 replicates of each set on separate days. Set A was salted with 30 g/kg NaCl over 3 applications, either 5 or 10 min apart. Set B was salted with 30, 25, and 20 g/kg NaCl over 3 applications 5 min apart. Set C was salted with 20 g/kg NaCl using 1, 2, or 3 applications. Set D received salt consisting of a 2:1 molar ratio of NaCl and KCl over 3 applications 5 min apart. Whey was collected every 5 or 10 min until 30 or 40 min after the start of salting and subsequently pressed for 3 h. Using 10-min intervals delayed whey syneresis but after pressing there was no significant influence on final cheese composition. Decreasing salt levels significantly reduced the amount of whey expelled prior to pressing and resulted in cheeses with higher moisture and slightly lower pH. Adding salt over different applications did not significantly affect cheese composition. Partial substitution with KCl did not affect the amount of whey expelled or cheese moisture composition. Salted milled Cheddar cheese curd was immersed at 22°C for 6 or 18 h in test solution, with the addition of 1, 5, 10, or 20 g/L calcium, and 15 g/L salt. After immersion, curd weight change, moisture, pH, sodium, serum calcium and total calcium levels were measured. When calcium levels in solution increased, curd moisture, pH, and weight gain decreased while serum and total calcium levels increased significantly. Similarly, unsalted milled Cheddar cheese curds were immersed at 22°C for 6 h in test solution with 30, 60, 90, or 120 g/L salt in addition to 6 g/L calcium. The salt level in solution was inversely proportional with weight change, moisture, and salt level of curd.
APA, Harvard, Vancouver, ISO, and other styles
29

Sanin, Leira David. "Photochemistry of sulfuyl chloride for more regioselective chlorination (and chlorosufonation) of carboxylic acids and acid chlorides." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Desai, Unmesh Jeetendra. "Comparative Analytical Methods for the Measurment of Chlorine Dioxide." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34134.

Full text
Abstract:
Four commercially available methods used for the analysis of low-level Chlorine Dioxide (ClO2) concentrations in drinking water were evaluated for accuracy and precision and ranked according to cost, efficiency and ease of the methods under several conditions that might be encountered at water treatment plants. The different analytical methods included: 1.The DPD (N, N-diethyl-p-phenylenediamine) method 2.Lissamine Green B (LGB) wet-chemical method 3.Palintest® kit LGB 4.Amperometric titration All these tests were performed with standard 1.0 mg/L ClO2 either alone or in the presence of different chlorine species, including chlorite ion (ClO2-, 0.5 mg/L), chlorate ion (ClO3-, 0.5 mg/L) and chlorine (Cl2, 1.0 mg/L). The tests were performed with four different matrices, with different concentrations of 0.1 mg/L ClO2, 0.5 mg/L ClO2 and 1.0 mg/L ClO2 at a constant temperature of 20oC and at different temperatures of 0oC, 10oC and 20oC at a fixed ClO2 concentration of 1.0 mg/L. None of the four methods produced the desired level of either accuracy or precision. For all four methods, interference to the measured ClO2 concentration from the addition of ClO2-, ClO3-, and Cl2 was minimal when the methods were performed according to specifications. The Palintest® was the best all-round method because it was easy to perform, performed well at all concentrations tested, and its colored product was stable. The HACH® DPD method was also easy to perform and gave the best results when measuring concentrations of 1.0 mg/L ClO2. The DPD method was less accurate than the Palintest® at lower concentrations. The DPD colored product that formed upon reaction of ClO2 and DPD was unstable, making it necessary to measure the intensity of the colored product at exactly 1 minute. The amperometric titration and lissamine green methods were more cumbersome and time-consuming to perform than either the DPD or Palintest® methods; for this reason they are less desirable for routine use.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
31

Pye, Stephen L. "The electrochemical behavior of iron, copper, and nickel electrodes in sodium chloride buffered, neutral room temperature aluminum chloride : 1-methyl-3-ethylimidazolium chloride molten salt." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/11126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ma, Qianmin. "Chloride transport and chloride induced corrosion of steel reinforcement in sodium silicate solution activated slag concrete." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602593.

Full text
Abstract:
Sodium silicate solution (or water glass, WG) activated slag is one of the potential alternatives to 100% replace PC. WG activated slag concrete has different pore solution composition from that of PC. This could result in different chloride transport and corrosion of embedded steel for such concretes. In this research, chloride transport and resulting corrosion of steel in 12 WG activated slag concretes with Na20% of 4, 6 and 8 and Ms of 0.75, 1.00, 1.50 and 2.00 were investigated. PC concrete with the same binder content of 400kg/m3 was studied as a reference. The results showed that the corrosion rate of the steel in the WG activated slag concretes was comparable or even higher than that of the PC concrete irrespective of the lower chloride diffusivity of the former. The WG activated slag concrete with the combination ofNa20% of 6% and Ms of 1.50 gave the lowest chloride diffusivity and corrosion rate. Chloride migration coefficient, ASTM C 1202 charge passed and bulk electrical resistivity had a poor correlation with non-steady state chloride diffusion coefficient for WG activated slag concretes. The criteria of macro cell corrosion current and half-cell potential developed in PC may be not suitable for quantifying and qualifying corrosion activity of the steel in such concretes. The WG activated slag concretes were identified to be not suitable in chloride exposures XS3 and XD3 by considering workability, compressive strength, pore solution composition and corrosion rate.
APA, Harvard, Vancouver, ISO, and other styles
33

Foster, Paul J. "Continuous Co-Separation by Liquid Absorption in Aqueous Cuprous Chloride (CuCl) and Magnesium Chloride (MgCl2) Solution." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1789.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Elezzabi, Abdulhakem Y. "Studies of a xenon chloride laser." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/27421.

Full text
Abstract:
A compact, transverse discharge XeCl laser has been constructed. The laser employs an LC double inversion circuit, and is operated, at an optimum gas mix containing 1.12% Xe, 0.56% HCl, and 98.32% He, at a maximum filling pressure of 80 Psi. The electrical efficiency of the laser is typically 0.3%, with an output energy of ≈ 95 mj and an output laser pulse FWHM of 13.5 nsec, resulting in an output power of ≈ 7 MW. The discharge current reaches a peak value of 7.75 KA, with a rise time of 24 nsec, whereas the voltage reaches a maximum value of 29.1 KV, with a rise time of 111 nsec. By using a CO₂ Mach-Zehnder interferometer, the electron density was measured for the optimum mix (4.01±x10¹⁵cm⁻³). Several studies at different Xe : HCl ratios showed that the dissociative attachment of HCl molecules is responsible for the electron loss during the discharge. The electron temperature was calculated using the measured values of discharge resistance and the drift velocity. The results show that electrons cool by inelastic collisions with HCl molecules.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
35

Sabanov, Victor. "Chloride Channels and Brown Fat Cells." Doctoral thesis, Stockholm : Department of Physiology, Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

James, M. I. "Emulsion polymerisation of vinylidene chloride copolymers." Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fairbrass, Sheila Ann. "Surface deterioration of poly(vinyl chloride)." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sin, Sai-lung Steven, and 冼世隆. "Chloride channel in glioma cell invasion." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McMurdo, J. "Electrophilic aromatic substitution using methoxyacetyl chloride." Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Archer, J. A. "Dislocation enhanced diffusion in sodium chloride." Thesis, University of Kent, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

McAlroy, Helen L. "Chloride conductances in pancreatic duct cells." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ogilvy, Norman. "Vinyl chloride precipitation polymerisation : charge effects." Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/11229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cosgrove, Stephen D. "The chemistry of sulfate-chloride peryhydrates." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/273065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dorobantu, Ioana-Miruna. "Vinyl chloride polymerization in microdroplet reactor." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0037/document.

Full text
Abstract:
La polymérisation du chlorure de vinyle est une réaction très fréquente dans l’industrie des polymères, conduisant à l’obtention d’un matériau plastique très commun, connu sous le nom de PVC (polychlorure de vinyle). Ses applications concernent principalement l’industrie des constructions néanmoins d’autres domaines sont également touchés. La complexité de ce procédé de polymérisation est due à la nature toxique du monomère, à la maitrise du transfert de chaleur ou au maintien de l’agitation. Le control de ces variables de procédé influence de manière directe les caractéristiques finales du produit. Même si la polymérisation en suspension du chlorure de vinyle a été largement étudiée dans des réacteurs de type batch, il y a un manque de données au niveau de la cinétique et de la physicochimie d’une goutte de monomère pendant la réaction. L’objectif de ces travaux est de proposer un dispositif microstructuré permettant d’obtenir des gouttes monodisperses ayant un diamètre de 200 µm environ, chacune étant considérée comme un réacteur de polymérisation. Une fois identifiés les verrous liés au système eau/chlorure de vinyle en microréacteur, la réaction de polymérisation a été décrite de manière qualitative par visualisation des gouttes/grains de polymère. Des mesures Raman non-invasives en temps réel ont été réalisées sur une goutte immobile de chlorure de vinyle, cela permettant d’accéder aux valeurs des constantes cinétiques. Un modèle théorique en bon accord avec les résultats expérimentaux a été proposé afin de simuler le degré de conversion de la réaction. Les caractéristiques morphologiques des grains de PVC obtenus en microréacteur présentent des particularités intéressantes en termes d’agglomération des particules primaires ou porosité
Vinyl chloride suspension polymerization is a common reaction in polymer industry allowing to obtain one of the world wide most used plastics, known as PVC (polyvinyl chloride). Its applications involve mostly the construction industry but other domains are also concerned. This polymerization process is highly complex due to the toxic nature of the monomer, the good manage of heat transfer and agitation. The control of these process variables directly impacts the characteristics of the final product. Even though the suspension polymerization of vinyl chloride has been extensively studied in batch reactors, there is a lack of data regarding the kinetics or the physicochemistry of a single monomer droplet during the reactions. The aim of this present work is to propose a microstructured device which enables obtaining monodisperse droplets within 200 µm in diameter, each one being considered as a polymerization reactor. After a good acknowledgement of the vinyl chloride/water system in microchannel the polymerization reaction was qualitatively described by means of droplet/polymer grain visualization. Real-time non-invasive Raman measurement has been performed on stationary vinyl chloride monomer droplets and has provided values of kinetic constants. A theoretical model was proposed, simulating the reaction conversion in good agreement with the experimental values. The morphologic characteristics of the PVC grains obtained in microreactor presented interesting features in terms of primary particle agglomeration or porosity
APA, Harvard, Vancouver, ISO, and other styles
45

Sin, Sai-lung Steven. "Chloride channel in glioma cell invasion." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Xudong [Verfasser], and Christian [Akademischer Betreuer] Zörb. "Translocation and storage of chloride in chlorine-stressed maize (Zea mays L.) / Xudong Zhang ; Betreuer: Christian Zörb." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2021. http://d-nb.info/1227990286/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Ta-Kang. "Improvement in polymeric iron chloride (PICI) preparation for coagulation processes." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/32871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pell, Wendy. "Temperature dependent transport properties of aluminum chloride in thionyl chloride solutions: A non-aqueous battery electrolyte study." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7954.

Full text
Abstract:
This thesis is a physical chemical study of the AlCl$\sb3$/SOCl$\sb2$ system. Conductivity, viscosity, and density were determined for AlCl$\sb3$ concentrations ranging from 0 to 35 weight percent in SOCl$\sb2$, and over the temperature range $-$35 to 20$\sp\circ$C. The measured conductivity was in the $\mu$Scm$\sp{-1}$ range, indicating the solution to be a weak electrolyte. Viscosities ranging from 0.7 cP for pure SOCl$\sb2$, to 3.0 cP for 4.0M AlCl$\sb3$ were found, with viscosity increasing with increasing salt concentration. The solution densities for all concentrations considered were approximately 1.7g/ml, and thermal expansivity, $\alpha\sb{\rm TE}$, was approximately 1000$\sp\circ$K$\sp{-1}$, (5 times greater than $\alpha\sb{\rm TE}$ of water). Experimental results indicate that no abrupt change in the distribution of species in solution occurs, either as a function of solute concentration or temperature. The physical properties of these solutions were observed to change gradually and smoothly with both solute concentration and temperature indicating that a mechanistic change in the Li/SOCl$\sb2$ cell operation does not likely occur as a result of changes in bulk electrolyte properties. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
49

Ellenberger, Christine Spada. "Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/30807.

Full text
Abstract:
Chlorine dioxide (ClO₂) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO₂ generation system manufactured by CDG Technology, Inc. was installed at the plant and is the first full-scale use of this technology in the world. The ClO₂ generator produces a feed stream free of chlorine, chlorite ion (ClO₂⁻), and chlorate ion (ClO₃⁻), resulting in lower by-product concentrations in the treatment system The objectives of this project were to study ClO₂ persistence and by-product concentrations throughout the treatment plant and distribution system and to evaluate granular activated carbon (GAC) columns for removing ClO₂⁻ from the finished water. The ClO₂ dosages applied during this study were relatively low (<0.75 mg/L), and, as a result, ClO₂⁻ concentrations never approached the maximum contaminant level (MCL) (1.0 mg/L). Likewise, the plant effluent ClO₂ concentration never approached the maximum residual disinfectant level (MRDL) (0.80 mg/L), but concentrations as high as 0.15 mg/L reformed in the distribution system by ClO₂⁻ reaction with chlorine. Chlorate ion was monitored despite the fact that no ClO₃⁻ MCL has been proposed, and concentrations were quite low (never greater than 0.10 mg/L) throughout the treatment plant and in the distribution system. The reasons for the low concentrations are that ClO₃⁻ is not produced by the gas-solid generator used at the facility and ClO₂⁻ concentrations in the clearwell prior to chlorination were uniformly low. The average ClO₂⁻ reduction upon passage of treated water through the GAC contactor was approximately 64 percent, but the GAC effectiveness was declining over the six-month study period. Apparently, GAC effectiveness, as shown by others, is short-lived, and if higher ClO₂ dosages are ever applied at the Roanoke County facility, the ClO₂⁻ concentrations will have to be reduced by either ferrous coagulants or reduced-sulfur compounds. Regenerated ClO₂ concentrations in the distribution system were below 0.2 mg/L, but concentrations as low as 0.03 mg/L were found at homes of customers who complained of odors. During this study, twelve complaints were received from eight customers, and each complainant had recently installed new carpeting, which has been shown to contribute volatile organics that react with ClO₂ to produce odors similar to kerosene and cat urine. While meeting the Cl₂ MCL likely will be no problem if the ClO₂ dose at the plant remains below 1.0 mg/L, the problem of offensive odors in the distribution system will likely continue as long as any ClO₂ is in the finished water when chlorine is present.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Chih-Yao, and 楊智堯. "Cyanuric chloride based chlorine-resistant nanofiltration membrane." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/23309060406872597592.

Full text
Abstract:
碩士
國立中央大學
化學工程與材料工程研究所
96
One of the critical steps in fabricating a nanofiltration membrane is to firmly attach the separating layer on a ultrafiltration membrane. We suggest here a strategy to attach the hydrophilic separating layer on a hydrophobic support. Allylamine was first grafted onto the polyvinyldifluoride support through ozone surface activation and the following free radical polymerization. Primary amines in polyallylamine layer provided hinges to firmly grasp the interfacially polymerized layer. Positively charged nanofiltration membranes were fabricated by interfacial polymerization. Trimesoyl chloride (TMC) and cyanuric chloride (CC) were selected to be the monomer in the organic phase. Polyethylenimine(PEI) and diethylenetriamine (DETA) was adopted to be the monomer in the aqueous phase. Interfacial polymerization occurs at the interface between organic and aqueous phase to form a thin layer. In this study, Fourier transformed infrared attenuated total reflection spectroscopy (FTIR-ATR) was employed to characterize the nanofiltration layer. Scanning electron microscopy (SEM) was applied to determine the thickness of the nanofltration layer. PEI type membrane, 1.25μm, was thicker than DETA type membrane, 1.05μm. PEI type membrane also has bigger pore size than DETA type membrane from MWCO test. Flux and salt rejection performance were determined by dead-end filtration. The salt rejection order for polyamide type nanofiltration membrane in this study were R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4) which was dominated by Donnan exclusion. In this study, I have successfully fabricated a nanofiltration layer on allylamine grafted PVDF membrane from the salt rejection performance. The salt rejection order for CC type membrane was R(MgCl2)>R(NaCl)>R(MgSO4)>R(Na2SO4). CC type membrane also shows good chlorine tolerance for 96hrs chlorine exposure. But it only can tolerate alkaline exposure for 24hrs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography