Academic literature on the topic 'Chiral Substrates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chiral Substrates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chiral Substrates"
Matthews, Jermey N. A. "Shedding light on chiral substrates." Physics Today 64, no. 11 (November 2011): 19. http://dx.doi.org/10.1063/pt.3.1320.
Full textCoscolín, Cristina, Mónica Martínez-Martínez, Jennifer Chow, Rafael Bargiela, Antonio García-Moyano, Gro Bjerga, Alexander Bollinger, et al. "Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms." Catalysts 8, no. 1 (January 5, 2018): 10. http://dx.doi.org/10.3390/catal8010010.
Full textFerraccioli, Raffaella. "Progress on the Stereoselective Synthesis of Chiral Molecules Based on Metal-Catalyzed Dynamic Kinetic Resolution of Alcohols with Lipases." Symmetry 13, no. 9 (September 19, 2021): 1744. http://dx.doi.org/10.3390/sym13091744.
Full textMu, Xiaojing, Xiaoqi Yi, Shangyou Xiao, Chengshan Wang, Gang Chen, and Yan Li. "Substrates for Paraoxonase." Current Pharmaceutical Design 24, no. 5 (May 2, 2018): 615–27. http://dx.doi.org/10.2174/1381612824666171213102310.
Full textRecchimurzo, Alessandra, Federica Balzano, Gloria Uccello Barretta, Luca Gherardi, Milo Malanga, and Federica Aiello. "Silylated-Acetylated Cyclodextrins as Chiral Sensors for the Enantiodiscrimination of Fluorinated Anesthetics." Molecules 28, no. 6 (March 20, 2023): 2804. http://dx.doi.org/10.3390/molecules28062804.
Full textBhaskararao, Bangaru, and Raghavan B. Sunoj. "Two chiral catalysts in action: insights into cooperativity and stereoselectivity in proline and cinchona-thiourea dual organocatalysis." Chemical Science 9, no. 46 (2018): 8738–47. http://dx.doi.org/10.1039/c8sc03078b.
Full textLibrizzi, Paulina, Aneek Biswas, Roger Chang, Xiang-Tian Kong, Matthew Moocarme, Gaurav Ahuja, Ilona Kretzschmar, and Luat T. Vuong. "Broadband chiral hybrid plasmon modes on nanofingernail substrates." Nanoscale 12, no. 6 (2020): 3827–33. http://dx.doi.org/10.1039/c9nr07394a.
Full textMüller, Christiane, and Thorsten Bach. "Chirality Control in Photochemical Reactions: Enantioselective Formation of Complex Photoproducts in Solution." Australian Journal of Chemistry 61, no. 8 (2008): 557. http://dx.doi.org/10.1071/ch08195.
Full textPozar, D. M. "Microstrip antennas and arrays on chiral substrates." IEEE Transactions on Antennas and Propagation 40, no. 10 (1992): 1260–63. http://dx.doi.org/10.1109/8.182462.
Full textSukenik, Nir, Francesco Tassinari, Shira Yochelis, Oded Millo, Lech Tomasz Baczewski, and Yossi Paltiel. "Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules." Molecules 25, no. 24 (December 20, 2020): 6036. http://dx.doi.org/10.3390/molecules25246036.
Full textDissertations / Theses on the topic "Chiral Substrates"
Pierson, Nicolas. "New chiral rhodium(II) catalysts for asymmetric synthesis with #apha#-diazocarbonyl substrates." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263509.
Full textToth, Christopher A. "Synthesis of Coupling Substrates for Use in a Highly Enantioselective Conjugated Triene Cyclization Enabled by a Chiral N-Heterocyclic Carbene." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/chemistry_theses/48.
Full textAhmad, Anees. "Exploring the iodine(III)-mediated ring contraction: new substrates, novel conditions and asymmetric reactions." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-29092015-145020/.
Full textA primeira parte desta tese inclui a reatividade de vários alquenos benzofundidos cíclicos contendo oxigênio com HTIB (Hidróxi(tosilóxi)iodobenzeno). Em vez de obter os produtos de contração de anel, 2H-cromeno resultou em 4H-cromenos, juntamente com produtos trans-adição. Apenas produtos de adição de cis foram isolados a partir de 4-metil-2H-cromeno. Contração do anel foi observada em di-hidrobenzoxepinas e 2,2-dimetil-2H-cromenos dando cromanos funcionalizados e benzofuranos, respectivamente. Na segunda parte, a contração de anel de 1,2-di-hidronaftalenos usando HTIB foi expandida para substratos contendo substituintes de oxigênio e de nitrogênio no anel aromático. Os grupos N-protetores Fmoc e Bz são estáveis sob as condições de reação fornecendo indanos em 64-77% de rendimento. O substrato protegido com Ts deu apenas os produtos de adição. Acetóxi e benzoilóxi alquenos geraram indanos em 60-71% de rendimento. Um método novo e eficiente para o rearranjo oxidativo (contração e expansão do anel) de alquenos utilizando iodo(III) gerado in situ é descrito na terceira parte. O protocolo utiliza reagentes baratos e estáveis (PhI, mCPBA e TsOH) fornecendo produtos de rearranjo com rendimentos comparáveis aos obtidos utilizando iodo(III) disponível comercialmente. Além disso, um método para a transformação em uma etapa de 4-metil-1,2-di-hidronaftaleno em 1-metil-2-tetralona utilizando mCPBA e TsOH foi desenvolvido. Na última parte é apresentada a reatividade de iodo(III) quiral com 1,2-di-hidronaftalenos. A espécie de iodo hipervalente é gerada in situ a partir de iodeto de arila quiral, o qual é preparado em uma etapa em rendimento elevado a partir de materiais de partida baratos. Amino alquenos protegidos (Ac, Bz e Fmoc) deram indanos em 60-75% de rendimento e 58-64% ee. Da mesma forma, os substratos oxigenados proporcionram acetais em 41-61% de rendimento e 54-78% de ee. Produtos de contração de anel foram obtidos em 77-88% de rendimento e 34-40% de ee quando alquenos 1-metil e aril substituídos foram utilizados.
Skotnitzki, Juri [Verfasser], and Paul [Akademischer Betreuer] Knochel. "Stereoselective preparation of chiral secondary alkylcopper- and zinc reagents. Subsequent reactions with allylic substrates and palladium-catalyzed cross-couplings with alkenyl and aryl halides / Juri Skotnitzki ; Betreuer: Paul Knochel." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1210424460/34.
Full textDavies, Iwan Rhydian. "Chiral auxiliaries and substrate directable reactions to access highly functionalised chiral lactones." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507750.
Full textChapman, Daniel Taylor. "The enzymatic resolution of chiral amines via substrate engineering." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327561.
Full textNiyadurupola, D. Gangani. "Chiral auxiliaries and substrate-directable reactions in asymmetric synthesis." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436867.
Full textFabrello, Amandine. "Hydrogénation asymétrique de substrats azotés prochiraux en vue de l'obtention d'amines chirales primaires." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0020/document.
Full textAmines, and more generally, nitrogen-containing compounds are key building blocks in the field of fine chemicals, especially agrochemistry and pharmaceuticals. Synthesis of these nitrogen-containing compounds still is a frequent challenge to academic as well as industrial research teams. Several methods are available for the synthesis of amines containing an alpha or beta chiral center and for more than fifty years, one of the most widely investigated methods is the asymmetric hydrogenation of unsaturated substrates. Our research in this field has lead to an industrial partnership with the HOLIS Technologies company. We focus on the development of catalytic tools in order to synthesize chiral primary amines and more precisely, homogeneous catalysis with transition metals to obtain enantioselective hydrogenation. We got involved with the synthesis of three primary chiral amines well known as key targets in the pharmaceutical industry, with the study of analogous models conducted in parallel. We have studied the hydrogenation of prochiral substrates such as enamines, imines, and oximes leading in one or two steps to the desired primary chiral amine. In the first chapter, synthesis and characterization of substrates and chiral amines are described. Use of 15N NMR on these nitrogen-containing molecules allows us to establish a complementary tool for the structure elucidation. The second chapter is dedicated to the optimization of a catalyst system for the asymmetric hydrogenation of these molecules. The third chapter contains the initial studies into the intricate details of the catalytic cycle with the use of multinuclear NMR analysis (especially 103Rh and 31P) and DFT calculations on rhodium cationic complexes. An overview of these results gives us insight into the choice of the best substrate (imine, enamine, oxime) and the optimal catalyst system for the hydrogenation with the goal of addressing the industrial need of a given chiral primary amine
Fukuyama, Sadanobu. "Catalytic and structural characteristics of 2,4-diaminopentanoate dehydrogenase from Fervidobacterium nodosum." Kyoto University, 2014. http://hdl.handle.net/2433/188780.
Full text0048
新制・課程博士
博士(農学)
甲第18342号
農博第2067号
新制||農||1024(附属図書館)
学位論文||H26||N4849(農学部図書室)
31200
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 栗原 達夫, 教授 三上 文三, 教授 平竹 潤
学位規則第4条第1項該当
Müller, Marc-André [Verfasser]. "Study of Chiral Iridium N,P Ligand Complexes as Catalysts for the Asymmetric Hydrogenation of Different Substrate Classes / Marc-André Müller." München : Verlag Dr. Hut, 2014. http://d-nb.info/1060587750/34.
Full textBooks on the topic "Chiral Substrates"
Chapman, Daniel Taylor. The enzymatic resolution of chiral amines via substrate engineering. [s.l.]: typescript, 1998.
Find full textBook chapters on the topic "Chiral Substrates"
Kamlar, Martin, Jan Vesely, and Ramon Rios Torres. "Diastereoselective Pauson-Khand Reaction using Chiral Pool Techniques (Chiral Substrates)." In The Pauson-Khand Reaction, 69–93. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119941934.ch4.
Full textBeliaeva, Veronika S., Dmitriy S. Klyuev, Anatoly M. Neshcheret, Alexander A. Potapov, and Yulia V. Sokolova. "Fractal Antenna Systems with Chiral Metamaterials Substrates for MIMO Systems." In Advances in Artificial Systems for Medicine and Education V, 329–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92537-6_31.
Full textSchneider, M. P., and K. Laumen. "Enzymes in organic synthesis - chiral building blocks from racemic and prochiral substrates." In Bioflavour ’87, edited by Peter Schreier, 483–530. Berlin, Boston: De Gruyter, 1988. http://dx.doi.org/10.1515/9783110867121-036.
Full textLundt, Inge. "Aldonolactones as chiral synthons." In Glycoscience Synthesis of Substrate Analogs and Mimetics, 117–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0119255.
Full textWard, Dale E. "Polypropionate Synthesis via Substrate-Controlled Stereoselective Aldol Couplings of Chiral Fragments." In Modern Methods in Stereoselective Aldol Reactions, 377–429. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527656714.ch6.
Full textWang, Biao. "Strain Engineering: Ferroelectric Films on Compliant Substrates." In Advanced Topics in Science and Technology in China, 269–320. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33596-9_6.
Full textBerglun, Per, Maria Christiernin, and Erik Hedenström. "Enantiorecognition of Chiral Acids byCandida rugosaLipase: Two Substrate Binding Modes Evidenced in an Organic Medium." In ACS Symposium Series, 263–73. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0776.ch017.
Full textWang, Yinli. "Kinetic Resolution of α-Hydroxy Carboxylic Acid Derivatives Based on Chiral Recognition of Substrate–Cocatalyst Complex." In Springer Theses, 65–103. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9398-3_3.
Full textOhno, Masaji, Susumu Kobayashi, and Kunitomo Adachi. "Creation of Novel Chiral Synthons with Pig Liver Esterase: Application to Natural Product Synthesis and the Substrate Recognition." In Enzymes as Catalysts in Organic Synthesis, 123–42. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4686-6_8.
Full textBeliaeva, Veronika S., Dmitriy S. Klyuev, Anatoly M. Neshcheret, Oleg V. Osipov, and Alexander A. Potapov. "Calculation of the Current Distribution Function Over a Radiating Structure with a Chiral Substrate Using Hypersingular Integral Equations." In Advances in Intelligent Systems and Computing, 101–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67133-4_10.
Full textConference papers on the topic "Chiral Substrates"
Li, Jingang, and Yuebing Zheng. "Reconfigurable Assembly of Chiral Nanostructures on Solid Substrates." In 2020 IEEE Photonics Conference (IPC). IEEE, 2020. http://dx.doi.org/10.1109/ipc47351.2020.9252478.
Full textLi, Jingang, and Yuebing Zheng. "Reconfigurable Assembly of Chiral Metamaterials on Solid Substrates." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/noma.2020.notu1f.3.
Full textPozar, D. M. "Comparison of microstrip antennas on ferrite and chiral substrates." In IEEE Antennas and Propagation Society International Symposium 1992 Digest. IEEE, 1992. http://dx.doi.org/10.1109/aps.1992.221888.
Full textNair, Greshma, Rajitha Papukutty Rajan, and Ambarish Ghosh. "Reusable wafer-scale plasmonic chiral substrates for sensing applications." In 2016 IEEE Conference on Recent Advances in Lightwave Technology (CRALT). IEEE, 2016. http://dx.doi.org/10.1109/cralt.2016.8066044.
Full textLi, Jingang, and Yuebing Zheng. "Reconfigurable construction of all-dielectric chiral metamaterials on solid substrates." In Optical Trapping and Optical Micromanipulation XVII, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2020. http://dx.doi.org/10.1117/12.2568038.
Full textPirinoli, P. "Analysis of coupling phenomena in printed structures on chiral substrates." In Ninth International Conference on Antennas and Propagation (ICAP). IEE, 1995. http://dx.doi.org/10.1049/cp:19950302.
Full textPettus, Thomas, Derek Madgziak, and Liping Pettus. "Enantioselective hydride abstraction in organic substrates: future applications for chiral carbenium ions." In The 4th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2000. http://dx.doi.org/10.3390/ecsoc-4-01876.
Full textBiswas, Aritra, Abraham Vázquez-Guardado, and Debashis Chanda. "Superchiral light generation on nanoimprinted achiral plasmonic substrates for chiral drug detection." In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, edited by Georg von Freymann, Eva Blasco, and Debashis Chanda. SPIE, 2021. http://dx.doi.org/10.1117/12.2584087.
Full textVegni, Lucio, Filiberto Bilotti, and Alessandro Toscano. "Properties of cavity-backed patch antennas with homogeneous and inhomogeneous ferromagnetic, bianisotropic, and chiral substrates." In International Symposium on Optical Science and Technology, edited by Akhlesh Lakhtakia, Werner S. Weiglhofer, and Ian J. Hodgkinson. SPIE, 2001. http://dx.doi.org/10.1117/12.432955.
Full textKlyuev, Dmitry S., Anatoly M. Neshcheret, and Aleksandr A. Potapov. "Increasing the Spectral Efficiency of MIMO Systems by Using Fractal Antenna Arrays with Substrates Based on Chiral Metamaterials." In 2022 IEEE Conference on Antenna Measurements and Applications (CAMA). IEEE, 2022. http://dx.doi.org/10.1109/cama56352.2022.10002560.
Full text