Academic literature on the topic 'Chiral solvating agents'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chiral solvating agents.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chiral solvating agents"
Giordano, Claudio, and Angelo Restelli. "New chiral solvating agents: 1,5-Benzothiazepines." Tetrahedron: Asymmetry 2, no. 8 (January 1991): 785–88. http://dx.doi.org/10.1016/s0957-4166(00)80460-7.
Full textLi, Gao-Wei, Xiao-Juan Wang, Dan-Dan Cui, Yu-Fei Zhang, Rong-Yao Xu, Shuai-Hua Shi, Lan-Tao Liu, Min-Can Wang, Hong-Min Liu, and Xin-Xiang Lei. "Azaheterocyclic diphenylmethanol chiral solvating agents for the NMR chiral discrimination of alpha-substituted carboxylic acids." RSC Advances 10, no. 57 (2020): 34605–11. http://dx.doi.org/10.1039/d0ra06312f.
Full textFang, Lixia, Caixia Lv, Guo Wang, Lei Feng, Pericles Stavropoulos, Guangpeng Gao, Lin Ai, and Jiaxin Zhang. "Discrimination of enantiomers of dipeptide derivatives with two chiral centers by tetraaza macrocyclic chiral solvating agents using 1H NMR spectroscopy." Organic Chemistry Frontiers 3, no. 12 (2016): 1716–24. http://dx.doi.org/10.1039/c6qo00521g.
Full textZhang, Hanchang, Hongmei Zhao, Jie Wen, Zhanbin Zhang, Pericles Stavropoulos, Yanlin Li, Lin Ai, and Jiaxin Zhang. "Discrimination of enantiomers of amides with two stereogenic centers enabled by chiral bisthiourea derivatives using 1H NMR spectroscopy." Organic & Biomolecular Chemistry 19, no. 30 (2021): 6697–706. http://dx.doi.org/10.1039/d1ob00742d.
Full textGunaratne, H. Q. Nimal, Tiina Laaksonen, Kenneth R. Seddon, and Kristiina Wähälä. "1-(+)-Dehydroabietylimidazolium Salts as Enantiomer Discriminators for NMR Spectroscopy." Australian Journal of Chemistry 70, no. 7 (2017): 845. http://dx.doi.org/10.1071/ch16545.
Full textLi, Gaowei, Jiangming Cao, Wen Zong, Xinxiang Lei, and Renxiang Tan. "Enantiodiscrimination of carboxylic acids using the diphenylprolinol NMR chiral solvating agents." Organic Chemistry Frontiers 3, no. 1 (2016): 96–102. http://dx.doi.org/10.1039/c5qo00264h.
Full textMoon, Lomary S., Mohan Pal, Yoganjaneyulu Kasetti, Prasad V. Bharatam, and Ravinder S. Jolly. "Chiral Solvating Agents for Cyanohydrins and Carboxylic Acids†." Journal of Organic Chemistry 75, no. 16 (August 20, 2010): 5487–98. http://dx.doi.org/10.1021/jo100445d.
Full textUccello-Barretta, Gloria, Federica Balzano, Jonathan Martinelli, Margherita-Giulia Berni, Claudio Villani, and Francesco Gasparrini. "NMR enantiodiscrimination by cyclic tetraamidic chiral solvating agents." Tetrahedron: Asymmetry 16, no. 22 (November 2005): 3746–51. http://dx.doi.org/10.1016/j.tetasy.2005.10.016.
Full textGIORDANO, C., and A. RESTELLI. "ChemInform Abstract: New Chiral Solvating Agents: 1,5-Benzothiazepines." ChemInform 22, no. 47 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199147290.
Full textLv, Caixia, Lei Feng, Hongmei Zhao, Guo Wang, Pericles Stavropoulos, and Lin Ai. "Chiral discrimination of α-hydroxy acids and N-Ts-α-amino acids induced by tetraaza macrocyclic chiral solvating agents by using 1H NMR spectroscopy." Organic & Biomolecular Chemistry 15, no. 7 (2017): 1642–50. http://dx.doi.org/10.1039/c6ob02578a.
Full textDissertations / Theses on the topic "Chiral solvating agents"
Hoffmann, Herbert C., Silvia Paasch, Philipp Müller, Irena Senkovska, Mohan Padmanaban, Frank Glorius, Stefan Kaskel, and Eike Brunner. "Chiral recognition in metal–organic frameworks studied by solid-state NMR spectroscopy using chiral solvating agents." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138884.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Hoffmann, Herbert C., Silvia Paasch, Philipp Müller, Irena Senkovska, Mohan Padmanaban, Frank Glorius, Stefan Kaskel, and Eike Brunner. "Chiral recognition in metal–organic frameworks studied by solid-state NMR spectroscopy using chiral solvating agents." Royal Society of Chemistry, 2012. https://tud.qucosa.de/id/qucosa%3A27789.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
De, Moragas i. de Torres Maria. "Síntesi i estudi de nous reactius quirals de solvatació d’estructura antracènica: anàlisi de les interaccions associatives." Doctoral thesis, Universitat Autònoma de Barcelona, 1997. http://hdl.handle.net/10803/32156.
Full textSe han preparado Cuatro alquil- y aril- (9-antril)carbinols (metil, isopropil, tert-butil, y fenil) y mostraron la rotación restringida del enlace de C9-Cll. Su energía libre de activación para la rotación ha sido determinada, siendo 11.0, 14.0, 21.7, y 9.8 kcal/mol, respectivamente. Hemos determinado la energía de activación para la rotación de enlace C9-C11 por la aplicación de medidas de NOE y de tiempo de relajación. El buen acuerdo con los valores obtenidos con el método de temperatura coalescencia confirma que el método basado en el NOE es una buena alternativa para la determinación de barreras de rotatorión altas. La Mecánica Molecular (MM2) da valores cercanos a los experimentales. Se ha preparado el carbamato homochiral de 9-antril-tert-butilcarbinol y se ha estudiado su equilibrio conformacional. La configuración absoluta fue determinada por la comparación de los datos NMR con cálculos de MM. Los enantiomers del alcohol fueron obtenidos después de la separación cromatográfica de los carbamatos y tres su hidrólisis. Los mismos alcoholes se obtuvieron a través de una columna HPLC quiral Se han detectado o separado, a temperatura ambiente, los confórmeros cisoide y transoide del 9,10 dipivaloylantraceno y del 9,10-bis(1-imino-2,2- dimetilpropil)antraceno. La transformación entre los dos atropoisómeros se estudió por RMN i se modeló por métodes de MM. La difracción de rayos X se realitzó con los derivados imino. Se ha probado el 9-anthryl-tert-butylcarbinol como agente solvatación chiral (CSA) en presencia de las formas de racemicas de p-toluenesulfinato de mentilo, 9-(1-amino-2,2- dimetilpropil) - 9,19-dihydroanthracene, ácido de R-methoxyphenylacetic y 1-phenyl- 1,2-ethanediol. Se formaron los complejos diastereoisómericos el reactivo quiral y cada enantiomer de estos últimos compuestos. Uno de los enantiomers de 9-anthryltertbutylcarbinol fue estudiado por medio de NOE intermolecular y cálculos de dinámica moleculares. Las diferencias termodinámicas y estructurales principales fueron encontradas.
Four alkyl- and aryl-(9-anthry1)carbinols (methyl, isopropyl, tert-butyl, and phenyl) were synthesized and revealed restricted rotation about the C9-Cll bond. Their free energy of activation for rotation has been determined, being 11.0, 14.0, 21.7, and 9.8 kcal/mol, respectively. The application of NOE enhancement and relaxation time measurements for the determination of the activation energy for bond rotation is described. The good agreement with the values obtained with the coalescence temperature method bears out that the NOE based approach is a good alternative for the determination of high rotational barriers. Molecular Mechanics (MM2) calculations give values close to the experimental ones. The homochiral carbamates of 9-anthryl-tert-butylcarbinol were prepared and their conformational equilibrium was studied. The absolute configuration was determined by comparison of the NMR data with MM calculations. The enantiomers of the alcohol were obtained after chromatographic separation of carbamate derivatives and their hydrolysis. The same homochiral alcohols were prepared by direct chiral column chromatography Cisoid and transoid conformations of 9,10-dipivaloylanthracene and 9,10-bis(1-imino- 2,2-dimethylpropyl) anthracene were separated and detected for the former and isolated for the latter at room temperature. The transformation between two atropisomers was studied by NMR and modeled by MM methods. X-ray diffraction was performed for the imino derivatives. The 9-anthryl-tert-butylcarbinol was tested as a chiral solvating agent (CSA) in the presence of racemic forms of mentil-p-toluenesulfinate, 9-(1-amino-2,2- dimethylpropyl)-9,19-dihydroanthracene, R-methoxyphenylacetic acid and 1-phenyl- 1,2-ethanediol. Diastereomeric complexes were found to form between each enantiomer of these last two compounds. One of the enantiomers of 9-anthryltert-butylcarbinol was studied by means of intermolecular NOE and molecular dynamics calculations. Major thermodynamic and structural differences were found.
Lakshmipriya, Anamalagundam. "Design of Novel Protocols for Chiral Analysis and Exploring Hydrogen Bond Directed Conformations." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5251.
Full textBook chapters on the topic "Chiral solvating agents"
Pirkle, William H., and Dennis J. Hoover. "NMR Chiral Solvating Agents." In Topics in Stereochemistry, 263–331. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470147221.ch4.
Full textTanaka, Koichi. "Asymmetric Azamacrocycles as Chiral Solvating Agents." In Non-covalent Interactions in the Synthesis and Design of New Compounds, 213–27. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch12.
Full textBalzano, Federica, Gloria Uccello-Barretta, and Federica Aiello. "Chiral Analysis by NMR Spectroscopy: Chiral Solvating Agents." In Chiral Analysis, 367–427. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-64027-7.00009-4.
Full textSeco, Josi M., Emilio Quiqoa, and Ricardo Riguera. "The Theoretical Basis for Assignment by NMR." In The Assignment of the Absolute Configuration by NMR using Chiral Derivatizing Agents. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780199996803.003.0004.
Full text