Journal articles on the topic 'Chiral Plasmonic Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 journal articles for your research on the topic 'Chiral Plasmonic Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Urban, Maximilian J., Chenqi Shen, Xiang-Tian Kong, Chenggan Zhu, Alexander O. Govorov, Qiangbin Wang, Mario Hentschel, and Na Liu. "Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 275–99. http://dx.doi.org/10.1146/annurev-physchem-050317-021332.
Full textToffoli, Daniele, Marco Medves, Giovanna Fronzoni, Emanuele Coccia, Mauro Stener, Luca Sementa, and Alessandro Fortunelli. "Plasmonic Circular Dichroism in Chiral Gold Nanowire Dimers." Molecules 27, no. 1 (December 24, 2021): 93. http://dx.doi.org/10.3390/molecules27010093.
Full textSong, Justin C. W., and Mark S. Rudner. "Chiral plasmons without magnetic field." Proceedings of the National Academy of Sciences 113, no. 17 (April 11, 2016): 4658–63. http://dx.doi.org/10.1073/pnas.1519086113.
Full textLi, Jianmei, Jingyi Liu, Zirui Guo, Zeyu Chang, and Yang Guo. "Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors." Molecules 27, no. 9 (April 28, 2022): 2807. http://dx.doi.org/10.3390/molecules27092807.
Full textLi, Feng, Skandan Chandrasekar, Aftab Ahmed, and Anna Klinkova. "Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies." Nanotechnology 33, no. 12 (December 28, 2021): 125203. http://dx.doi.org/10.1088/1361-6528/ac3f12.
Full textChen, Zhao, Yaolun Yu, Yilin Wang, Zhiling Hou, and Li Yu. "Plasmon-Induced Transparency for Tunable Atom Trapping in a Chiral Metamaterial Structure." Nanomaterials 12, no. 3 (February 1, 2022): 516. http://dx.doi.org/10.3390/nano12030516.
Full textA. Paiva-Marques, Willian, Faustino Reyes Gómez, Osvaldo N. Oliveira, and J. Ricardo Mejía-Salazar. "Chiral Plasmonics and Their Potential for Point-of-Care Biosensing Applications." Sensors 20, no. 3 (February 10, 2020): 944. http://dx.doi.org/10.3390/s20030944.
Full textCheng, Haowei, Kun Liang, Xuyan Deng, Lei Jin, Jingcheng Shangguan, Jiasen Zhang, Jiaqi Guo, and Li Yu. "Optical Chirality of Gold Chiral Helicoid Nanoparticles in the Strong Coupling Region." Photonics 10, no. 3 (February 27, 2023): 251. http://dx.doi.org/10.3390/photonics10030251.
Full textFeng, Hua Yu, Carolina de Dios, Fernando García, Alfonso Cebollada, and Gaspar Armelles. "Analysis and magnetic modulation of chiro-optical properties in anisotropic chiral and magneto-chiral plasmonic systems." Optics Express 25, no. 25 (November 28, 2017): 31045. http://dx.doi.org/10.1364/oe.25.031045.
Full textZhu, Jinjin, Fan Wu, Zihong Han, Yingxu Shang, Fengsong Liu, Haiyin Yu, Li Yu, Na Li, and Baoquan Ding. "Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami." Nano Letters 21, no. 8 (April 8, 2021): 3573–80. http://dx.doi.org/10.1021/acs.nanolett.1c00596.
Full textProctor, Matthew, Xiaofei Xiao, Richard V. Craster, Stefan A. Maier, Vincenzo Giannini, and Paloma Arroyo Huidobro. "Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces." Photonics 7, no. 4 (September 24, 2020): 81. http://dx.doi.org/10.3390/photonics7040081.
Full textLi, Lianmeng, Xiangyu Zeng, Manna Gu, Yuqin Zhang, Rui Sun, Ziheng Zhang, Guosen Cui, Yuxiang Zhou, Chuanfu Cheng, and Chunxiang Liu. "Plasmonic Metasurfaces for Superposition of Profile-Tunable Tightly Focused Vector Beams and Generation of the Structured Light." Photonics 10, no. 3 (March 15, 2023): 317. http://dx.doi.org/10.3390/photonics10030317.
Full textGonzález-Rubio, Guillermo, Jesús Mosquera, Vished Kumar, Adrián Pedrazo-Tardajos, Pablo Llombart, Diego M. Solís, Ivan Lobato, et al. "Micelle-directed chiral seeded growth on anisotropic gold nanocrystals." Science 368, no. 6498 (June 25, 2020): 1472–77. http://dx.doi.org/10.1126/science.aba0980.
Full textPedrueza-Villalmanzo, Esteban, Francesco Pineider, and Alexandre Dmitriev. "Perspective: plasmon antennas for nanoscale chiral chemistry." Nanophotonics 9, no. 2 (February 25, 2020): 481–89. http://dx.doi.org/10.1515/nanoph-2019-0430.
Full textShen, Jinyong, Tianyun Zhu, Jing Zhou, Zeshi Chu, Xiansong Ren, Jie Deng, Xu Dai, et al. "High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors." Sensors 23, no. 1 (December 24, 2022): 168. http://dx.doi.org/10.3390/s23010168.
Full textDUCOURTIEUX, S., S. GRÉSILLON, A. C. BOCCARA, J. C. RIVOAL, X. QUELIN, P. GADENNE, V. P. DRACHEV, et al. "PERCOLATION AND FRACTAL COMPOSITES: OPTICAL STUDIES." Journal of Nonlinear Optical Physics & Materials 09, no. 01 (March 2000): 105–16. http://dx.doi.org/10.1142/s0218863500000108.
Full textSadeghi, Seyed M., and Judy Z. Wu. "Intervalley Quantum Coherence Transfer and Coherently-Induced Chiral Plasmon Fields in WS2–Metallic Nanoantenna Systems." ACS Photonics 6, no. 10 (September 24, 2019): 2441–49. http://dx.doi.org/10.1021/acsphotonics.9b00672.
Full textShan, Lingxiao, Fan Zhang, Juanjuan Ren, Qi Zhang, Qihuang Gong, and Ying Gu. "Large Purcell enhancement with nanoscale non-reciprocal photon transmission in chiral gap-plasmon-emitter systems." Optics Express 28, no. 23 (October 26, 2020): 33890. http://dx.doi.org/10.1364/oe.404166.
Full textChen, Xudong, Qihui Ye, Mingyuan Sun, Gang Song, Song Wang, and Yanzhu Hu. "Chirality of Dispersion Relations and Propagation Lengths of Surface Plasmon Polaritons in Single Silver Nanowire Coated with Chiral TDBC Systems." Plasmonics 16, no. 4 (February 25, 2021): 1357–63. http://dx.doi.org/10.1007/s11468-021-01416-7.
Full textItas, Yahaya Saadu, Abdussalam Balarabe Suleiman, Chifu E. Ndikilar, Abdullahi Lawal, Razif Razali, Ismail Ibrahim Idowu, Mayeen Uddin Khandaker, et al. "Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications." Crystals 12, no. 6 (June 20, 2022): 870. http://dx.doi.org/10.3390/cryst12060870.
Full textTadgell, Ben, and Luis M. Liz-Marzán. "Probing Interactions Between Chiral Plasmonic Nanoparticles and Biomolecules." Chemistry – A European Journal, August 15, 2023. http://dx.doi.org/10.1002/chem.202301691.
Full textMargetis, Dionisios, and Tobias Stauber. "Theory of plasmonic edge states in chiral bilayer systems." Physical Review B 104, no. 11 (September 20, 2021). http://dx.doi.org/10.1103/physrevb.104.115422.
Full textDai, Mingjin, Chongwu Wang, Bo Qiang, Fakun Wang, Ming Ye, Song Han, Yu Luo, and Qi Jie Wang. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection." Nature Communications 13, no. 1 (August 5, 2022). http://dx.doi.org/10.1038/s41467-022-32309-w.
Full textAhn, Seongjin, E. H. Hwang, and Hongki Min. "Collective modes in multi-Weyl semimetals." Scientific Reports 6, no. 1 (September 30, 2016). http://dx.doi.org/10.1038/srep34023.
Full textKumar, Anshuman, Andrei Nemilentsau, Kin Hung Fung, George Hanson, Nicholas X. Fang, and Tony Low. "Chiral plasmon in gapped Dirac systems." Physical Review B 93, no. 4 (January 19, 2016). http://dx.doi.org/10.1103/physrevb.93.041413.
Full textHeyl, M., S. Kehrein, F. Marquardt, and C. Neuenhahn. "Electron-plasmon scattering in chiral one-dimensional systems with nonlinear dispersion." Physical Review B 82, no. 3 (July 20, 2010). http://dx.doi.org/10.1103/physrevb.82.033409.
Full text