Academic literature on the topic 'Chiral ligand-exchange chromatography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chiral ligand-exchange chromatography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chiral ligand-exchange chromatography"

1

Schmid, Martin G., and Gerald Gübitz. "Chiral separation by ligand-exchange." Macedonian Journal of Chemistry and Chemical Engineering 30, no. 2 (December 25, 2011): 127. http://dx.doi.org/10.20450/mjcce.2011.4.

Full text
Abstract:
The principle of chiral ligand-exchange, introduced by Davankov, has become a widely used technique for chiral separation in both chromatography and in electromigration techniques. This simple technique makes use of the formation of mixed metal chelate complexes between a chiral selector and both enantiomers of an analyte. In HPLC, the chiral selector can be either bonded to the stationary phase or added to the mobile phase. In CE the chiral selector is simply added to the electrolyte. A relatively new approach represents CEC, where capillaries contain a chiral stationary phase. More than thousand papers appeared in the field of chiral ligand-exchange. To cite all papers would require several books.The present article gives an overview of both milestones and our activities on chiral separation using the principle of ligand-exchange. Recent advances in chip technology for chiral separations and new approaches regarding improvement of detection sensitivity are mentioned.
APA, Harvard, Vancouver, ISO, and other styles
2

Mathur, R., S. Bohra, V. Mathur, C. K. Narang, and N. K. Mathur. "Chiral ligand exchange chromatography on polygalactomannan (Guaran)." Chromatographia 33, no. 7-8 (April 1992): 336–38. http://dx.doi.org/10.1007/bf02275913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rizzi, Andreas M. "Efficiency in chiral high-performance ligand-exchange chromatography." Journal of Chromatography A 542 (January 1991): 221–37. http://dx.doi.org/10.1016/s0021-9673(01)88763-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jie, Suzhen Zhao, Guangjun Fu, and Zhenzhong Zhang. "Isoleucine ionic liquids as additives to separate mandelic acid and their derivative enantiomers by HPLC." Anal. Methods 6, no. 15 (2014): 5627–31. http://dx.doi.org/10.1039/c3ay41669k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tian, Minglei, Hyung Sang Row, and Kyung Ho Row. "Chiral separation of ofloxacin enantiomers by ligand exchange chromatography." Monatshefte für Chemie - Chemical Monthly 141, no. 3 (February 18, 2010): 285–90. http://dx.doi.org/10.1007/s00706-010-0264-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Remelli, M., P. Fornasari, F. Dondi, and F. Pulidori. "Dynamic column-coating procedure for chiral ligand-exchange chromatography." Chromatographia 37, no. 1-2 (July 1993): 23–30. http://dx.doi.org/10.1007/bf02272183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sanaie, Nooshafarin, and Charles A. Haynes. "Modeling l-dopa purification by chiral ligand-exchange chromatography." AIChE Journal 53, no. 3 (2007): 617–26. http://dx.doi.org/10.1002/aic.11111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiong, Qing, Jing Jin, Liqiong Lv, Zhisi Bu, and Shengqiang Tong. "Chiral ligand exchange countercurrent chromatography: Enantioseparation of amino acids." Journal of Separation Science 41, no. 6 (February 6, 2018): 1479–88. http://dx.doi.org/10.1002/jssc.201701117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nikolić, N., D. Veselinović, J. Vučina, H. Lingeman, and K. Karljiković-Rajić. "Chiral ligand-exchange chromatography for diastereo-enantio separation of exametazime." Journal of Pharmaceutical and Biomedical Analysis 32, no. 6 (August 2003): 1159–66. http://dx.doi.org/10.1016/s0731-7085(03)00230-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natalini, Benedetto, Antonio Macchiarulo, Roccaldo Sardella, Alberto Massarotti, and Roberto Pellicciari. "Descriptive structure-separation relationship studies in chiral ligand-exchange chromatography." Journal of Separation Science 31, no. 13 (July 2008): 2395–403. http://dx.doi.org/10.1002/jssc.200800102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chiral ligand-exchange chromatography"

1

Zaher, Mustapha. "Nouveaux sélecteurs chiraux à base d'aminoglycosides pour la séparation chirale par échange de ligands." Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENV084.

Full text
Abstract:
La séparation d'énantiomères suscite un vif intérêt pour les industries pharmaceutiques, chimiques et agroalimentaires. Les dérivés lipophiles de la néamine ont été utilisés en tant que nouveaux ligands en chromatographie chirale par échange de ligands. Ce travail s'est attaché à étudier les propriétés énantiosélectives des dérivés lipophiles de la néamine en CLHP et en EC. Des dérivés de la néamine (néamine 4'-mono C18, néamine 5-mono C18, néamine 6-mono C18, néamine 3',6-di C18, néamine 4',5-di C18, ou néamine 3′,6-di méthylnaphthalène), ont été synthétisés au sein de notre laboratoire et immobilisés de manière non covalente sur des supports chromatographiques de type C18 et graphite poreux et utilisés avec succès en CCEL pour séparer divers couples d'énantiomères d'acides aminés, de nucléosides et de dipeptides. Néanmoins, certaines molécules hydrophobes, comme le tryptophane, sont éluées trop tardivement et par conséquent, ne sont pas détectables. Pour remédier à ce problème, nous avons considéré la propriété de la néamine 4'-mono C18 à former des micelles, et avons envisagé son utilisation en MEKC. Les énantiomères du tryptophane sont séparés en moins de cinq minutes. Les effets de différentes conditions (concentration du sélecteur chiral, addition de méthanol dans le tampon de migration) sur le temps de migration ont été évalués. Cette méthode d'analyse a ensuite été testée avec succès sur d'autres analytes hydrophobes tels que le 1-méthyl-tryptophane, la 3,5-diiodo-tyrosine et la 1-naphtyl-alanine
The resolution of racemates is necessary in the pharmaceutical, chemical and food fields. The lipophilic derivatives of neamine have been used as a new class of ligands. The aim of this work was to study the enantioselective properties of the lipophilic derivatives of neamine by HPLC and CE. Many derivatives of neamine (4'- mono C18-neamine, 5-mono C18 -neamine, 6-mono C18-neamine, 3 ', 6-di C18-neamine, 4 ', 5-di C18-neamine, or 3′,6-di-O-2-methylnaphthalene-neamine), have been synthesized by our team and immobilized by dynamic coating on a chromatographic support (C18 type or porous graphitic carbon) and used successfully for the first time in LEC to discriminate various couples of enantiomers such as amino acids, nucleosides and dipeptides. However, certain hydrophobic molecules, such as tryptophan, are long retained and consequently not detectable. To overcome these problems, we have considered the property of the neamine 4'-mono C18 to form micelles allowing its use in LE-MEKC. The enantiomers of tryptophan are then separated in less than five minutes. The effects of various conditions (chiral selector concentration and electrolyte methanol content) on the migration time were evaluated. This method was also applied successfully to other hydrophobic enantiomers such as 1-methyl-tryptophan, 3, 5-diiodo-tyrosin and 1-naphtyl-alanine
APA, Harvard, Vancouver, ISO, and other styles
2

Sanaie, Nooshafarin. "A molecular thermodynamic model for chiral drug purification using chiral ligand exchange chromatography." Thesis, 2006. http://hdl.handle.net/2429/18556.

Full text
Abstract:
NR-20081 Chiral ligand exchange chromatography (CLEC) separates enantiomers of alkaloids, amino and carboxylic acids, barbiturates, β-blockers and other adrenergic drugs. It relies on subtle energetic differences between ternary homo- and hetero-chiral complexes formed between a ligand capable of chelating a divalent transition-metal ion and an enantiomer. CLEC separation efficiency is strongly dependent on column operating conditions, including pH, temperature, mobile-phase composition, and feed composition. Each enantiomer participates in a large number of solution and stationary-phase complexes within the column. As a result, the mechanism of separation is complex and poorly understood, making it difficult to identify optimal column operating conditions using conventional empirical strategies. A new model for CLEC-based separations is presented that provides a molecular understanding of the separation process. It combines the non-ideal equilibrium dispersion model of chromatography with multiple chemical equilibria theory to accurately predict enantiomer transport and partitioning, elution band profiles, and separation efficiency over a wide range of permissible column operating conditions. Mass transport parameters are determined by moment analysis and used to show that solute mass transfer and binding is limited by pore diffusion during separation of α-amino acid racemates on a Nucleosil Chiral-1 column (bearing a L-hydroxyproline as the chiral selector) or of dopa enantiomers on a Chirex 3126 column (bearing a derivative of D-penicillamine as the chiral selector). As a result, the local equilibrium approximation can be applied at all standard column operating conditions. Stoichiometries and formation constants for all equilibrium complexes formed in the column are taken from standard thermodynamic databases or independent potentiometric titration experiments. Model performance is assessed through comparison with chromatograms for hydrophobic amino-acid racemates loaded on a Nucleosil Chiral-1 CLEC column. The model is then applied to a medically relevant separation: the resolution of dopa enantiomers on a Chirex 3126 CLEC column. In both cases, the model is shown to provide an accurate and detailed picture of the separation process useful for elucidating the mechanism of separation and the associated influence of key column operating variables on speciation profiles. Finally, the model is successfully applied to a restricted optimization of column operating conditions for the separation of D,L-valine, indicating that it may provide a rapid and comprehensive path to process optimization.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chiral ligand-exchange chromatography"

1

Lam, S. "Chiral ligand exchange chromatography." In Chiral Liquid Chromatography, 83–101. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0861-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lam, S. "Chiral ligand exchange chromatography." In Chiral Liquid Chromatography, 83–101. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0699-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brückner, Hans, Barbara Sorsche, Ali Esna-Ashari, and Rolf Jöster. "Chiral ligand-exchange chromatography of amino acid derivatives." In Amino Acids, 152–58. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-2262-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ianni, Federica, Lucia Pucciarini, Andrea Carotti, Roccaldo Sardella, and Benedetto Natalini. "Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand Exchange." In Methods in Molecular Biology, 279–302. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9438-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Natalini, Benedetto, Roccaldo Sardella, and Federica Ianni. "Enantioseparations by High-Performance Liquid Chromatography Based on Chiral Ligand-Exchange." In Methods in Molecular Biology, 191–208. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-263-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Udvarhelyi, P. M., D. C. Sunter, and J. C. Watkins. "Separation and Assignment of the Stereoisomers of β-(p-Chlorophenyl) Glutamic Acid by Ligand Exchange Chromatography." In Recent Advances in Chiral Separations, 57–62. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8282-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davankov, V. A. "Ligand-Exchange Chromatography of Chiral Compounds." In Complexation Chromatography, 197–246. CRC Press, 2020. http://dx.doi.org/10.1201/9781003066781-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davankov, V. A. "CHIRAL SEPARATIONS | Ligand Exchange Chromatography." In Encyclopedia of Separation Science, 2369–80. Elsevier, 2000. http://dx.doi.org/10.1016/b0-12-226770-2/03111-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Ligand Exchange-Based Chiral Stationary Phases." In Chiral Separations By Liquid Chromatography And Related Technologies, 247–80. CRC Press, 2003. http://dx.doi.org/10.1201/9780203911112.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Mechanistic Aspects and Applications of Chiral Ligand- Exchange Chromatography." In Advances in Chromatography, Volume 49, 80–143. CRC Press, 2016. http://dx.doi.org/10.1201/b10721-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography