Journal articles on the topic 'Chiral active matter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chiral active matter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Workamp, Marcel, Gustavo Ramirez, Karen E. Daniels, and Joshua A. Dijksman. "Symmetry-reversals in chiral active matter." Soft Matter 14, no. 27 (2018): 5572–80. http://dx.doi.org/10.1039/c8sm00402a.
Full textMetselaar, Luuk, Amin Doostmohammadi, and Julia M. Yeomans. "Topological states in chiral active matter: Dynamic blue phases and active half-skyrmions." Journal of Chemical Physics 150, no. 6 (February 14, 2019): 064909. http://dx.doi.org/10.1063/1.5085282.
Full textBeppu, Kazusa, Ziane Izri, Tasuku Sato, Yoko Yamanishi, Yutaka Sumino, and Yusuke T. Maeda. "Edge current and pairing order transition in chiral bacterial vortices." Proceedings of the National Academy of Sciences 118, no. 39 (September 24, 2021): e2107461118. http://dx.doi.org/10.1073/pnas.2107461118.
Full textLiu, Peng, Hongwei Zhu, Ying Zeng, Guangle Du, Luhui Ning, Dunyou Wang, Ke Chen, et al. "Oscillating collective motion of active rotors in confinement." Proceedings of the National Academy of Sciences 117, no. 22 (May 19, 2020): 11901–7. http://dx.doi.org/10.1073/pnas.1922633117.
Full textMoore, Jeffrey M., Matthew A. Glaser, and Meredith D. Betterton. "Chiral self-sorting of active semiflexible filaments with intrinsic curvature." Soft Matter 17, no. 17 (2021): 4559–65. http://dx.doi.org/10.1039/d0sm01163k.
Full textBuchecker, R., J. Fünfschilling, and M. Schadt. "New Optically Active Dopants Based on Chiral Dioxanes." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 213, no. 1 (March 1992): 259–67. http://dx.doi.org/10.1080/10587259208028736.
Full textShibata, T., M. Kimura, S. Takano, and K. Ogasawara. "Novel Chiral Dopants from Optically Active 2.4-pentanediol." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 237, no. 1 (December 1993): 483–85. http://dx.doi.org/10.1080/10587259308030161.
Full textWANG, Mingcheng. "Confinement Leads to Spatially Oscillatory Collective Motion of Chiral Active Matter." Bulletin of the Chinese Academy of Sciences 34, no. 2 (January 1, 2020): 106–7. http://dx.doi.org/10.3724/sp.j.7103161524.
Full textKuball, H. G., Th Müller, H. Brüning, and A. Schünhofer. "Chiral Induction by Optically Active Aminoanthraquinones in Nematic Phases." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 261, no. 1 (March 1995): 205–16. http://dx.doi.org/10.1080/10587259508033467.
Full textShibata, T., M. Kimura, and K. Ogasawara. "Novel Chiral Dopants From Optically Active 2.4-Pentanediol (II)." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 350, no. 1 (October 1, 2000): 293–95. http://dx.doi.org/10.1080/10587250008025251.
Full textMarkovich, Tomer, Elsen Tjhung, and Michael E. Cates. "Chiral active matter: microscopic ‘torque dipoles’ have more than one hydrodynamic description." New Journal of Physics 21, no. 11 (November 25, 2019): 112001. http://dx.doi.org/10.1088/1367-2630/ab54af.
Full textAi, Bao-quan, Zhi-gang Shao, and Wei-rong Zhong. "Mixing and demixing of binary mixtures of polar chiral active particles." Soft Matter 14, no. 21 (2018): 4388–95. http://dx.doi.org/10.1039/c8sm00444g.
Full textCaprini, Lorenzo, and Umberto Marini Bettolo Marconi. "Active chiral particles under confinement: surface currents and bulk accumulation phenomena." Soft Matter 15, no. 12 (2019): 2627–37. http://dx.doi.org/10.1039/c8sm02492h.
Full textYang, Ya, Jing Lu, and Lan Zhou. "Few-photon routing via chiral light-matter couplings." Communications in Theoretical Physics 74, no. 2 (January 21, 2022): 025101. http://dx.doi.org/10.1088/1572-9494/ac46a6.
Full textCarenza, L. N., G. Gonnella, D. Marenduzzo, and G. Negro. "Chaotic and periodical dynamics of active chiral droplets." Physica A: Statistical Mechanics and its Applications 559 (December 2020): 125025. http://dx.doi.org/10.1016/j.physa.2020.125025.
Full textYoo, SeokJae, and Q.-Han Park. "Metamaterials and chiral sensing: a review of fundamentals and applications." Nanophotonics 8, no. 2 (January 11, 2019): 249–61. http://dx.doi.org/10.1515/nanoph-2018-0167.
Full textKim, Kyongwan, Natsuhiko Yoshinaga, Sanjib Bhattacharyya, Hikaru Nakazawa, Mitsuo Umetsu, and Winfried Teizer. "Large-scale chirality in an active layer of microtubules and kinesin motor proteins." Soft Matter 14, no. 17 (2018): 3221–31. http://dx.doi.org/10.1039/c7sm02298k.
Full textLiao, Guo-Jun, and Sabine H. L. Klapp. "Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions." Soft Matter 17, no. 28 (2021): 6833–47. http://dx.doi.org/10.1039/d1sm00545f.
Full textShaltout, Amr, Jingjing Liu, Vladimir M. Shalaev, and Alexander V. Kildishev. "Optically Active Metasurface with Non-Chiral Plasmonic Nanoantennas." Nano Letters 14, no. 8 (July 29, 2014): 4426–31. http://dx.doi.org/10.1021/nl501396d.
Full textSalmón, Manuel, and Gerard Bidan. "Chiral Polypyrroles from Optically Active Pyrrole Monomers." Journal of The Electrochemical Society 132, no. 8 (August 1, 1985): 1897–99. http://dx.doi.org/10.1149/1.2114249.
Full textMa, Fuduo, Sijia Wang, David T. Wu, and Ning Wu. "Electric-field–induced assembly and propulsion of chiral colloidal clusters." Proceedings of the National Academy of Sciences 112, no. 20 (May 4, 2015): 6307–12. http://dx.doi.org/10.1073/pnas.1502141112.
Full textJeeva, S., S. J. Cowling, E. P. Raynes, and J. W. Goodby. "Chiral liquid crystal dopants derived from optically active drugs." Liquid Crystals 36, no. 10-11 (October 2009): 1193–99. http://dx.doi.org/10.1080/02678290903056087.
Full textHernández, Raúl Josué, Francisco J. Sevilla, Alfredo Mazzulla, Pasquale Pagliusi, Nicola Pellizzi, and Gabriella Cipparrone. "Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam." Soft Matter 16, no. 33 (2020): 7704–14. http://dx.doi.org/10.1039/c9sm02404b.
Full textShen, Zaiyi, Alois Würger, and Juho S. Lintuvuori. "Hydrodynamic self-assembly of active colloids: chiral spinners and dynamic crystals." Soft Matter 15, no. 7 (2019): 1508–21. http://dx.doi.org/10.1039/c8sm02352b.
Full textTakehara, Sadao, Masashi Osawa, Kayoko Nakamura, Tetsuo Kusumoto, Ken-Ichi Sato, Akiko Nakayama, and Tamejiro Hiyama. "New chiral dopants for FLC materials: optically active cyclic ethers." Ferroelectrics 148, no. 1 (November 1993): 195–202. http://dx.doi.org/10.1080/00150199308019946.
Full textLevis, Demian, and Benno Liebchen. "Micro-flock patterns and macro-clusters in chiral active Brownian disks." Journal of Physics: Condensed Matter 30, no. 8 (January 30, 2018): 084001. http://dx.doi.org/10.1088/1361-648x/aaa5ec.
Full textToxvaerd, S. "Origin of homochirality in biological systems." International Journal of Astrobiology 4, no. 1 (January 2005): 43–48. http://dx.doi.org/10.1017/s1473550405002326.
Full textMasuda, Ryoji, Yoshio Kaneko, Yoshinori Tokura, and Youtarou Takahashi. "Electric field control of natural optical activity in a multiferroic helimagnet." Science 372, no. 6541 (April 29, 2021): 496–500. http://dx.doi.org/10.1126/science.aaz4312.
Full textMiyazawa, Kazutoshi, Shinichi Saito, Kanetsugu Terashima, Makoto Kikuchi, and Takashi Inukai. "Novel optically active compounds having 2-alkanoyloxypropyl moiety as chiral dopants." Ferroelectrics 121, no. 1 (September 1991): 179–85. http://dx.doi.org/10.1080/00150199108217622.
Full textLin, Wenbin. "Metal-Organic Frameworks for Asymmetric Catalysis and Chiral Separations." MRS Bulletin 32, no. 7 (July 2007): 544–48. http://dx.doi.org/10.1557/mrs2007.104.
Full textOuchi, Yuko, Yasuhiro Morisaki, and Yoshiki Chujo. "Synthesis of Optically Active Dendrimers Having Chiral Bisphosphine as a Core." Polymer Bulletin 59, no. 3 (May 22, 2007): 339–50. http://dx.doi.org/10.1007/s00289-007-0780-y.
Full textAsakura, Kouichi, Kayo Kobayashi, Yoshinori Mizusawa, Takehiro Ozawa, Shuichi Osanai, and Sadao Yoshikawa. "Generation of an optically active octahedral cobalt complex by a chiral autocatalysis." Physica D: Nonlinear Phenomena 84, no. 1-2 (June 1995): 72–78. http://dx.doi.org/10.1016/0167-2789(95)00013-t.
Full textZullo, Valerio, Tianao Guo, Anna Iuliano, and Mark R. Ringenberg. "Control of Molecular Packing in Crystal and Electron Communication of Two Ferrocenyl Moieties across Chiral Isomannide or Isosorbide Bridge." Crystals 13, no. 3 (March 18, 2023): 520. http://dx.doi.org/10.3390/cryst13030520.
Full textLemmerer, Andreas, Susan A. Bourne, Mino R. Caira, Jonathan Cotton, Umraan Hendricks, Laura C. Peinke, and Lee Trollope. "Incorporating active pharmaceutical ingredients into a molecular salt using a chiral counterion." CrystEngComm 12, no. 11 (2010): 3634. http://dx.doi.org/10.1039/c0ce00043d.
Full textCrossland, W. A., and A. B. Davey. "Addressing requirements for chiral smectic liquid crystal active backplane spatial light modulators." Ferroelectrics 149, no. 1 (December 1993): 361–74. http://dx.doi.org/10.1080/00150199308217307.
Full textMirzaei, Mitra, and Per Berglund. "Engineering of ωTransaminase for Effective Production of Chiral Amines." Journal of Computational and Theoretical Nanoscience 17, no. 6 (June 1, 2020): 2827–32. http://dx.doi.org/10.1166/jctn.2020.8947.
Full textLei, Qun-Li, Massimo Pica Ciamarra, and Ran Ni. "Nonequilibrium strongly hyperuniform fluids of circle active particles with large local density fluctuations." Science Advances 5, no. 1 (January 2019): eaau7423. http://dx.doi.org/10.1126/sciadv.aau7423.
Full textSaha, Rajat, Susobhan Biswas, and Golam Mostafa. "pH-Triggered construction of NLO active CMOFs: change in supramolecular assembly, water clusters, helical architectures and their properties." CrystEngComm 13, no. 3 (2011): 1018–28. http://dx.doi.org/10.1039/c0ce00505c.
Full textIkemoto, T., K. Sakashita, Y. Kageyama, F. Onuma, Y. Shibuya, K. Ichimura, and K. Mori. "Relationship between Molecular Structure and Induced Spontaneous Polarization for Chiral Dopants Containing an Optically Active Lactone." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 250, no. 1 (July 1994): 247–56. http://dx.doi.org/10.1080/10587259408028210.
Full textCui, Ying, Xiaosai Wang, Huan Jiang, and Yongyuan Jiang. "High-efficiency and tunable circular dichroism in chiral graphene metasurface." Journal of Physics D: Applied Physics 55, no. 13 (December 30, 2021): 135102. http://dx.doi.org/10.1088/1361-6463/ac4450.
Full textZiarani, Ghodsi M., Fatemeh Mohajer, Razieh Moradi, and Parisa Mofatehnia. "The Molecular Diversity Scope of Urazole in the Synthesis of Organic Compounds." Current Organic Synthesis 16, no. 7 (December 26, 2019): 953–67. http://dx.doi.org/10.2174/1570179416666190925162215.
Full textLiu, Li, Shu-Ping Huang, Guo-Dong Yang, Hao Zhang, Xiao-Li Wang, Zhi-Yong Fu, and Jing-Cao Dai. "Zn[Htma][ddm]: An Interesting Three-Dimensional Chiral Nonlinear Optical-Active Zinc-Trimesate Framework†." Crystal Growth & Design 10, no. 2 (February 3, 2010): 930–36. http://dx.doi.org/10.1021/cg901259e.
Full textAndreani, Franco, Luigi Angiolini, Valeria Grenci, and Elisabetta Salatelli. "Optically active polyalkylthiophenes: synthesis and polymerization of chiral, symmetrically substituted, quinquethiophene monomer." Synthetic Metals 145, no. 2-3 (September 2004): 221–27. http://dx.doi.org/10.1016/j.synthmet.2004.05.006.
Full textARIGA, KATSUHIKO, TAKUJI AIMIYA, QINGMIN ZHANG, AKIHIRO OKABE, MAKIKO NIKI, and TAKUZO AIDA. ""PROTEOSILICA" A NOVEL NANOCOMPOSITE WITH PEPTIDE ASSEMBLIES IN SILICA NANOSPACE: PHOTOISOMERIZATION OF SPIROPYRAN DOPED IN CHIRAL ENVIRONMENT." International Journal of Nanoscience 01, no. 05n06 (October 2002): 521–25. http://dx.doi.org/10.1142/s0219581x02000607.
Full textLee, Kwang Yeon, Young Hee Lee, Chang Kyo Shin, and Geon Joong Kim. "Chiral (Salen) Complexes Encapsulated in Mesoporous ZSM-5 as an Optical Active Catalyst for Asymmetric Phenolic Ring Opening of Terminal Epoxides." Solid State Phenomena 124-126 (June 2007): 1809–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1809.
Full textSłomka, Jonasz, Piotr Suwara, and Jörn Dunkel. "The nature of triad interactions in active turbulence." Journal of Fluid Mechanics 841 (February 26, 2018): 702–31. http://dx.doi.org/10.1017/jfm.2018.108.
Full textFilippi, Antonello, and Maurizio Speranza. "Chiral ions in the gas phase. 5. Acid-induced methanolysis of optically active styrene oxide." International Journal of Mass Spectrometry 185-187 (April 1999): 425–35. http://dx.doi.org/10.1016/s1387-3806(98)14184-2.
Full textLai, Xin, and Shaofan Li. "Substrate elasticity and surface tension mediate the spontaneous rotation of active chiral droplet on soft substrates." Journal of the Mechanics and Physics of Solids 161 (April 2022): 104788. http://dx.doi.org/10.1016/j.jmps.2022.104788.
Full textAlhendawi, Hussein, Ernesto Brunet, Elena Rodríguez Payán, and Huda Alkahlout. "Novel optically active 2D materials based on λ-zirconium phosphate and chiral monocarboxylic acids: Synthesis and characterization." Journal of Inclusion Phenomena and Macrocyclic Chemistry 99, no. 3-4 (February 5, 2021): 217–26. http://dx.doi.org/10.1007/s10847-021-01043-z.
Full textMorisaki, Yasuhiro, Yuko Ouchi, Kazuhiko Tsurui, and Yoshiki Chujo. "Synthesis of the Optically Active Polymer Consisting of Chiral Phosphorus Atoms and p-Phenylene-ethynylene Units." Polymer Bulletin 58, no. 4 (November 20, 2006): 665–71. http://dx.doi.org/10.1007/s00289-006-0703-3.
Full text