Academic literature on the topic 'Chicxulub'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chicxulub.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chicxulub"

1

Melosh, Jay. "Deep down at Chicxulub." Nature 414, no. 6866 (December 2001): 861–62. http://dx.doi.org/10.1038/414861a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Urrutia-Fucugauchi, Jaime, Ligia Perez-Cruz, and Araxi O. Urrutia. "Chicxulub museum, geosciences in Mexico, outreach and science communication – built from the crater up." Geoscience Communication 4, no. 2 (May 10, 2021): 267–80. http://dx.doi.org/10.5194/gc-4-267-2021.

Full text
Abstract:
Abstract. The Chicxulub science museum is special, in that it is built around an event in geological time representing a turning point in the planet's history and which brings together the Earth system components. Studies on the Chicxulub impact, mass extinction and Cretaceous–Paleogene boundary provide an engaging context for effective geoscience communication, outreach and education. The museum is part of a research complex in Yucatán Science and Technology Park in Mexico. Natural history museums with research components allow for the integration of up-to-date advances, expanding their usefulness and capabilities. The impact ranks among the major single events shaping Earth's history, triggering global climatic change and wiping out ∼76 % of species. The ∼200 km Chicxulub crater is the best preserved of three large terrestrial multi-ring impact structures, being a natural laboratory for investigating impact dynamics, crater formation and planetary evolution. The initiative builds on the interest that this geological site has for visitors, scholars and students by developing wide-reaching projects, a collaboration network and academic activities. The Chicxulub complex serves as a hub for multi- and interdisciplinary projects on the Earth and planetary sciences, climate change and life evolution, fulfilling a recognized task for communication of geosciences. After decades of studies, the Chicxulub impact remains under intense scrutiny, and this programme with the core facilities built inside the crater will be a major player.
APA, Harvard, Vancouver, ISO, and other styles
3

Schultz, Peter. "The buried record of Chicxulub." Nature Geoscience 1, no. 2 (February 2008): 90–91. http://dx.doi.org/10.1038/ngeo120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schuraytz, Benjamin C., and Virgil L. Sharpton. "Chicxulub — K/T melt complexities." Nature 362, no. 6420 (April 1993): 503–4. http://dx.doi.org/10.1038/362503b0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Connors, Martin, Alan R. Hildebrand, and Mark Pilkington. "New light on Chicxulub Crater." Astronomy & Geophysics 38, no. 1 (February 1, 1997): 4. http://dx.doi.org/10.1093/astrog/38.1.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goto, Kazuhisa. "The Great Chicxulub Debate-Synchronicity of the Chicxulub impact and the Cretaceous/Tertiary boundary-." Journal of the Geological Society of Japan 111, no. 4 (2005): 193–205. http://dx.doi.org/10.5575/geosoc.111.193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DePalma, Robert A., Jan Smit, David A. Burnham, Klaudia Kuiper, Phillip L. Manning, Anton Oleinik, Peter Larson, et al. "A seismically induced onshore surge deposit at the KPg boundary, North Dakota." Proceedings of the National Academy of Sciences 116, no. 17 (April 1, 2019): 8190–99. http://dx.doi.org/10.1073/pnas.1817407116.

Full text
Abstract:
The most immediate effects of the terminal-Cretaceous Chicxulub impact, essential to understanding the global-scale environmental and biotic collapses that mark the Cretaceous–Paleogene extinction, are poorly resolved despite extensive previous work. Here, we help to resolve this by describing a rapidly emplaced, high-energy onshore surge deposit from the terrestrial Hell Creek Formation in Montana. Associated ejecta and a cap of iridium-rich impactite reveal that its emplacement coincided with the Chicxulub event. Acipenseriform fish, densely packed in the deposit, contain ejecta spherules in their gills and were buried by an inland-directed surge that inundated a deeply incised river channel before accretion of the fine-grained impactite. Although this deposit displays all of the physical characteristics of a tsunami runup, the timing (<1 hour postimpact) is instead consistent with the arrival of strong seismic waves from the magnitude Mw∼10 to 11 earthquake generated by the Chicxulub impact, identifying a seismically coupled seiche inundation as the likely cause. Our findings present high-resolution chronology of the immediate aftereffects of the Chicxulub impact event in the Western Interior, and report an impact-triggered onshore mix of marine and terrestrial sedimentation—potentially a significant advancement for eventually resolving both the complex dynamics of debris ejection and the full nature and extent of biotic disruptions that took place in the first moments postimpact.
APA, Harvard, Vancouver, ISO, and other styles
8

Delgado-Rodríguez, Omar, Oscar Campos-Enríquez, Jaime Urrutia-Fucugauchi, and Jorge A. Arzate. "Occam and Bostick 1-D inversion of magnetotelluric soundings in he Chicxulub Impact Crater, Yucatán, Mexico." Geofísica Internacional 40, no. 4 (October 1, 2001): 271–83. http://dx.doi.org/10.22201/igeof.00167169p.2001.40.4.410.

Full text
Abstract:
En este estudio se presenta la investigación realizada en el sector sureste del cráter de Chicxulub mediante la aplicación del método de Sondeo Magnetotelúrico (MT). El perfil MT analizado consta de diez sondeos MT distribuidos a lo largo de 92.5 km en la dirección radial SE-NW, tomando como centro el puerto de Chicxulub. En general, los sondeos MT exponen un medio uni-dimensional, con magnitudes de Tipper menores de 0.2. Tres sondeos contiguos presentan una ligera anisotropía y los mayores valores de Tipper para períodos largos. El comportamiento de la resistividad en estos sondeos para períodos mayores de 16 s define el límite estructural del cráter, implicando para la estructura de impacto de Chicxulub un diámetro aproximado de 200 km. Modelos unidimensionales, utilizando los esquemas de inversión de Bostick y Occam, fueron utilizados para investigar la estructura del cráter. Resistividades superiores e inferiores a 150 ohm-m caracterizan el medio fuera y dentro del anillo de cenotes, respectivamente.
APA, Harvard, Vancouver, ISO, and other styles
9

Pickersgill, Annemarie E., Darren F. Mark, Martin R. Lee, Simon P. Kelley, and David W. Jolley. "The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction." Science Advances 7, no. 25 (June 2021): eabe6530. http://dx.doi.org/10.1126/sciadv.abe6530.

Full text
Abstract:
Both the Chicxulub and Boltysh impact events are associated with the K-Pg boundary. While Chicxulub is firmly linked to the end-Cretaceous mass extinction, the temporal relationship of the ~24-km-diameter Boltysh impact to these events is uncertain, although it is thought to have occurred 2 to 5 ka before the mass extinction. Here, we conduct the first direct geochronological comparison of Boltysh to the K-Pg boundary. Our 40Ar/39Ar age of 65.39 ± 0.14/0.16 Ma shows that the impact occurred ~0.65 Ma after the mass extinction. At that time, the climate was recovering from the effects of the Chicxulub impact and Deccan trap flood volcanism. This age shows that Boltysh has a close temporal association with the Lower C29n hyperthermal recorded by global sediment archives and in the Boltysh crater lake sediments. The temporal coincidence raises the possibility that even a small impact event could disrupt recovery of the Earth system from catastrophic events.
APA, Harvard, Vancouver, ISO, and other styles
10

Pope, Kevin O., Adriana C. Ocampo, Gary L. Kinsland, and Randy Smith. "Surface expression of the Chicxulub crater." Geology 24, no. 6 (1996): 527. http://dx.doi.org/10.1130/0091-7613(1996)024<0527:seotcc>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chicxulub"

1

Vermeesch, Peggy Marie-Therese. "Geophysical modelling of the Chicxulub crater." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goldin, Tamara Joan. "Atmospheric Interactions during Global Deposition of Chicxulub Impact Ejecta." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195889.

Full text
Abstract:
Atmospheric interactions affected both the mechanics of impact ejecta deposition and the environmental effects from the catastrophic Chicxulub impact at the Cretaceous-Paleogene (K-Pg) boundary. Hypervelocity reentry and subsequent sedimentation of Chicxulub impact spherules through the Earth's atmosphere was modeled using the KFIX-LPL two-phase flow code, which includes thermal radiation and operates at the necessary range of flow regimes and velocities. Spherules were injected into a model mesh approximating a two-dimensional slice of atmosphere at rates based on ballistic models of impact plume expansion. The spherules decelerate due to drag, compressing the upper atmosphere and reaching terminal velocity at ~70 km in altitude. A band of spherules accumulates at this altitude, below which is compressed cool air and above which is hot (>3000 K) relatively-empty atmosphere.Eventually the spherule-laden air becomes unstable and density currents form, transporting the spherules through the lower atmosphere collectively as plumes rather than individually at terminal velocity. This has implications for the depositional style and sedimentation rate of the global K-Pg boundary layer. Vertical density current formation in both incompressible (water) and compressible (air) fluids is evaluated numerically via KFIX-LPL simulations and analytically using new instability criteria. Models of density current formation due to particulate loading of water are compared to tephra fall experiments in order to validate the model instabilities.The impact spherules themselves obtain peak temperatures of 1300-1600 K and efficiently radiate that heat as thermal radiation. However, the downward thermal radiation emitted from decelerating spherules is increasingly blocked by previously-entered spherules settling lower in the atmosphere. This self-shielding effect strengthens with time as the settling spherule cloud thickens and becomes increasingly opaque, limiting both the magnitude and duration of the thermal pulse at the ground. For a nominal Chicxulub reentry model, the surface irradiance peaks at 6 kW/m 2 and is above normal solar fluxes for ~25 minutes. Although biologic effects are still likely, self-shielding by spherules may have prevented the global wildfires previously postulated. However, submicron dust may act as a hot opaque cap in the upper atmosphere, potentially increasing the thermal pulse beyond the threshold for forest ignition.
APA, Harvard, Vancouver, ISO, and other styles
3

Salge, Tobias. "The ejecta blanket of the Chicxulub impact crater, Yucatán, Mexico." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2007. http://dx.doi.org/10.18452/15579.

Full text
Abstract:
Impaktite des Chicxulubkraters wurden petrographisch (Polarisationsmikroskopie, REM, KL) und chemisch (RFA, TRFA, PGE, EMS) untersucht, um das Verhalten von Ejekta während des atmosphärischen Transports zu erforschen. Die proximalen Impaktite der UNAM-7 Bohrung bestehen aus einer suevitischen Brekzie (222.2 bis 384.4 m) und einer basalen, polymikten Brekzie mit geringem Silikatschmelzanteil. Letztere beinhaltet Evaporit-Megablöcke und Karbonatschmelzpartikel; Zersetzung von Kalzit und Anhydrit ist durch Entgasungsbläschen indiziert. An der distalen Kreide-Paläogen Grenze von El Guayal (520 km SW vom Kraterzentrum) beinhaltet eine 10 m mächtige suevitische Abfolge in einer oberen Untereinheit akkretionäre Lapilli und darüber eine Toneinheit. Das Auftreten von Karbonatschmelzen mit der PGE-angereicherten Impaktorkomponente in der Toneinheit belegt den Zusammenhang der K-P Grenze mit dem Chicxulub-Impakt. Die folgenden Stadien können für die Ablagerung und Alteration der Ejekta unterschieden werden: (1) Ein Hochgeschwindigkeitsauswurf beschleunigte Zersetzungsprodukte und initiierte einen Gasstrom. (2) Karbonatschmelzen wurden mit Anhydrit-Megablöcken ausgeworfen und initiierten einen lateral ausbreitenden Ejektavorhang. Kalzitrückreaktionen erhitzte das Material während des Transports. (3) Die Ejektionswolke kollabierte teilweise, wobei der zurückfallende Suevit vom Impaktormaterial, das in die Stratosphäre verteilt wurde, fraktioniert wurde. Die Kombination von Silikatschmelze mit Kalzit initiierte einen heißen, gas-angetriebenen Strom. In einer oberen, moderat temperierten, turbulenten Aschewolke kondensierte Wasserdampf, und durch Akkretion von Asche entstanden akkretionäre Lapilli. (4) Die Impaktorkomponente wurde mit den feinsten Ejektamassen für Wochen bis Jahre abgelagert. (5) Der Transport von Ejekta in der heißen Ejektionswolke induzierte Alterationsprozesse in den Ablagerungen. Es kann geschlussfolgert werden, dass ein gewisser Anteil des CO2 zu Kalzit zurückreagierte, währenddessen SOX Gase vollständig in die Atmosphäre freigesetzt wurden. Diese Beobachtungen inklusive des Auftretens von Karbonatschmelzen unterstützen die Aussage, dass der freigesetzte Anteil von CO2 in die Atmosphäre in der Vergangenheit überbewertet wurde.
Impactites of the Chicxulub crater were studied petrographically (polarisation microscopy, SEM, CL) and chemically (XRF, TXRF, PGE, EMPA) to investigate the evolution of ejecta during transit through the atmosphere. At the proximal UNAM-7 borehole, the sequence of impactites consists of a suevitic breccia (222.2 to 348.4 m) on top of a polymict silicate melt-poor breccia. The latter is intercalated with evaporite megablocks representing an analogue to the Bunte Breccia of the Nördlinger Ries crater. It contains carbonate melt particles; calcite and anhydrite decomposition is indicated by degassing vesicles. At the distal Cretaceous-Palaeogene site of El Guayal (~520 km SW of the crater centre), a ~10 m thick suevitic succession contains at its upper subunit accretionary lapilli and on top a clay unit. Intermixing of calcite with hot silicate melt resulted in recrystallisation and decomposition of calcite. In the clay unit, the presence of carbonate melt spheroids together with the PGE-enriched impactor component links the Chicxulub impact with the K-P boundary. The following stages can be distinguished for the deposition and alteration of the ejecta: (1) Jetting accelerated decomposition products and initiated a vapour flow. (2) Carbonate melts were excavated with anhydrite megablocks and initiated a lateral extending ejecta curtain. Calcite reformations heated the material during transport. (3) The expanding ejecta plume partially collapsed separating the falling suevite from impactor material that had been lifted into the stratosphere. The combination of silicate melt with calcite initiated a hot, gas-driven, basal flow. In an upper, moderately tempered, turbulent ash cloud, steam condensed and accretion of ash-sized material formed accretionary lapilli. (4) The impactor component was deposited with the finest ejecta for weeks to years. (5) The prolonged transport of ejecta in the hot ejecta plume induced alteration processes observed in the deposits. It can be concluded that a certain amount of CO2 has back-reacted to calcite, whereas SOX gases were completely liberated. These observations including the abundant presence of carbonate melts support that the amount of CO2 released to the atmosphere during the Chicxulub impact was overestimated previously.
APA, Harvard, Vancouver, ISO, and other styles
4

Croskell, Michael Sinclair. "Geologic and environmental modelling of impact ejecta processes." Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/8199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mackenzie, Graeme Douglas. "The shallow crustal structure of the Chicxulub impact crater from surface wave dispersion studies." Thesis, University of Leicester, 1999. http://hdl.handle.net/2381/30436.

Full text
Abstract:
A surface wave dispersion study has been conducted on high frequency (0.5-5 Hz) crustal Rayleigh waves propagating across the 65 Ma. Chicxulub impact structure in Mexico. These were recorded on a 20 station seismic array deployed along 4 radial arms across the region and originated from nearby quarries within the array. Events originating from the same quarry were stacked prior to the application of a multiple filter technique to produce group velocity dispersion curves. Using a genetic algorithm several one-dimensional shear wave velocity-depth models have then been obtained through the optimisation of the fundamental and higher mode dispersion curves. The models provide information on the velocity structure of the upper few kilometres of the crust and suggest an infilling of the crater from the crater rim inwards. An inverted velocity gradient is modelled over the upper few hundred metres across most of the region with the exception of a central radial area. This inverted velocity zone may be connected to dolomitization during a late Miocene regression. The base of the Tertiary sequence is modelled at c. 1-1.5 km depth and shows increased velocities compared to the overlying sediments. This velocity increase may imply some form of hydrothermal alteration of the sediments caused by a thermal blanket effect created by the underlying crater breccia and melt. Immediately below the Tertiary sediments a c. 200 m thick low velocity zone is interpreted as a layer of suevitic impact breccia. Models obtained at c. 35-45 km radius from the crater centre are consistent with the existence of a peak ring as a topographic high above the crater floor. The results from the velocity models provide fresh information on the sedimentation of the region and some constraints on the crater morphology.
APA, Harvard, Vancouver, ISO, and other styles
6

Pierazzo, Elisabetta 1963. "The Chicxulub impact event and the environmental catastrophe at the end of the Cretaceous Period." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282564.

Full text
Abstract:
Impact events may have affected the evolution of life on Earth. The mass extinction event at the end of the Cretaceous Period, which includes the demise of the dinosaurs, has been linked to the large impact event that produced the Chicxulub structure located in the Yucatán Peninsula, Mexico. Unfortunately, the geologic record is too spotty to prove any causal relation between the impact event and the mass extinction event that occurred 65 Myr ago. However, the size and location of the impact structure have drawn attention to impact-related abrupt perturbations of the climate and their effects on the biota. My main approach to studying these impact-related perturbations is through hydrocode models of the impact event. Few simulations of the Chicxulub impact event have previously been done. In these simulations the event was modeled as an asteroid impact, using two-dimensional hydrocodes that permit modeling only vertical impacts (i.e. perpendicular to the surface). This work presents the results of a series of high-resolution two- and three-dimension hydrocode simulations of the Chicxulub impact event. The simulations span several different projectile sizes, cover asteroid as well as comet impacts, and explore the effects of impact angle on the impact event. The focus of the simulations is to obtain reliable estimates of the climatically active gases, namely S-bearing gases, CO₂ and water vapor, released to the atmosphere by the impact event. These estimates will be used in modeling the perturbation of the climate of the end of the Cretaceous, and, hopefully, will shed new light on the relation between the impact event and the mass extinction that occurred 65 Myr ago.
APA, Harvard, Vancouver, ISO, and other styles
7

Siret, Delphine. "Evaluation des rejets atmosphériques engendrés par un impact météoritique : approche thermodynamique." Paris 7, 2004. http://www.theses.fr/2004PA077168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harting, Markus [Verfasser], and D. [Akademischer Betreuer] Stüben. "Zum Kreide/Tertiär-Übergang in NE-Mexiko: Geochemische Charakterisierung der Chicxulub-Impaktejekta. Hauptband / Markus Harting ; Betreuer: D. Stüben." Karlsruhe : KIT-Bibliothek, 2008. http://d-nb.info/1183123787/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harting, Markus [Verfasser], and D. [Akademischer Betreuer] Stüben. "Zum Kreide/Tertiär-Übergang in NE-Mexiko: Geochemische Charakterisierung der Chicxulub-Impaktejekta. Anlagenband / Markus Harting ; Betreuer: D. Stüben." Karlsruhe : KIT-Bibliothek, 2008. http://d-nb.info/118312368X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salge, Tobias. "The ejecta blanket of the Chicxulub impact crater, Yucatán, Mexico petrographic and chemical studies of the K-P section of El Guayal and UNAM boreholes /." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983173230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Chicxulub"

1

Shonting, David, and Cathy Ezrailson. Chicxulub: The Impact and Tsunami. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39487-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alpha, Tau Rho. Chicxulub impact event: Computer animations and paper models. Menlo Park, CA: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Frankel, Charles. The end of the dinosaurs: Chicxulub crater and mass extinctions. New York: Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

The end-Cretaceous mass extinction and the Chicxulub impact in Texas. Tulsa, Okla: SEPM (Society for Sedimentary Geology), 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chicxulub : The Impact and Tsunami: The Story of the Largest Known Asteroid to Hit the Earth. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shonting, David H. Chicxulub: The impact and tsunami : the story of the largest known asteroid to hit the Earth. 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

L, Sharpton Virgil, and United States. National Aeronautics and Space Administration., eds. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Sharpton Virgil, and United States. National Aeronautics and Space Administration., eds. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biospheric effects of the Chicxulub impact and their role in the Cretaceous/Tertiary mass extinction: Annual report, NASA contract NASW-96030. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chicxulub"

1

Claeys, Philippe. "Chicxulub Crater." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_282-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Claeys, Philippe. "Chicxulub Crater." In Encyclopedia of Astrobiology, 444–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flamini, Enrico, Alessandro Coletta, Maria Libera Battagliere, and Maria Virelli. "Chicxulub, Mexico." In Encyclopedic Atlas of Terrestrial Impact Craters, 477–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05451-9_131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Claeys, Philippe. "Chicxulub Crater." In Encyclopedia of Astrobiology, 296–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shonting, David, and Cathy Ezrailson. "The Chicxulub Tsunami." In Chicxulub: The Impact and Tsunami, 69–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39487-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Urrutia-Fucugauchi, Jaime, and Ligia Pérez-Cruz. "Chicxulub Asteroid Impact." In Extreme Events, 93–111. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119157052.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shonting, David, and Cathy Ezrailson. "The Tale of Chicxulub." In Chicxulub: The Impact and Tsunami, 21–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39487-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shonting, David, and Cathy Ezrailson. "The Orbiting Objects." In Chicxulub: The Impact and Tsunami, 1–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39487-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shonting, David, and Cathy Ezrailson. "A Scenario for the Chicxulub Impact and Energies." In Chicxulub: The Impact and Tsunami, 43–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39487-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shonting, David, and Cathy Ezrailson. "Long Term Global Effects." In Chicxulub: The Impact and Tsunami, 107–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39487-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chicxulub"

1

Bralower, Timothy, Julie Cosmidis, Matthew S. Fantle, Katherine H. Freeman, Sean P. S. Gulick, Elizabeth Hajek, Peter J. Heaney, et al. "HABITAT OF THE NASCENT CHICXULUB CRATER." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-336889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schaefer, B., K. Grice, M. J. L. Coolen, R. E. Summons, X. Cui, T. Bauersachs, L. Schwark, et al. "Microbial Mayhem in the Nascent Chicxulub Crater." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parkos, Devon, Marat Kulakhmetov, Brandon Johnson, Henry J. Melosh, and Alina Alexeenko. "Climatic effects of the Chicxulub impact ejecta." In 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4769724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burney, D., C. R. Neal, David A. Kring, Sean P. S. Gulick, Joanna V. Morgan, and Honami Sato. "QUANTIFYING PGES IN THE CHICXULUB IMPACT BASIN." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-320570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flores‐Márquez, E. Leticia, and René E. Chávez. "Geothermal model of the Chicxulub impact region." In SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000. http://dx.doi.org/10.1190/1.1816164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morgan, Joanna, Natalia Artemieva, Sean S. P. Gulick, and Gareth Collins. "THE RELEASE OF CLIMATIC GASES BY THE CHICXULUB IMPACT." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-301942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Vann, Sophie Warny, Vivi Vajda, Johan Vellekoop, David M. Jarzen, and Thomas D. Demchuk. "PALEOCENE-EOCENE TERRESTRIAL PALYNOLOGY OF THE CHICXULUB IMPACT CRATER, IODP 364." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-334630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McDonald, C. S., Matthew Heizler, Kip Hodges, Gerta Keller, and Thierry Adatte. "40AR/39AR DATING OF CHICXULUB IMPACT SPHERULES FROM ISLA GORGONILLA, COLOMBIA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morris, William A., Hernan Ugalde, and Bernd Milkereit. "Borehole Magnetics: Magnetostratigraphy: An example from UNAM‐7, Chicxulub impact crater." In SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. http://dx.doi.org/10.1190/1.3063748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoyer, Patrick A., Marcel Regelous, Karsten M. Haase, and Frédéric Fluteau. "Rapid Change in Deccan Volcanism Triggered by Delamination Prior to Chicxulub Impact." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography