Dissertations / Theses on the topic 'Chemistry [mesh]'

To see the other types of publications on this topic, follow the link: Chemistry [mesh].

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Chemistry [mesh].'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Messenbock, Reinhard Christoph. "Rapid pyrolysis and gasification of coal in a high-pressure wire-mesh reactor." Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heer, Joseph Michael. "FDTD Modeling of the Spectroscopy and Resonances of Thin Films and Particles on Plasmonic Nickel Mesh." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293754711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cilwa, Katherine Elizabeth. "Surface Plasmon Polaritons and Single Dust Particles." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301074124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rodriguez, Kenneth Ralph. "The extraordinary infrared transmission of metal microarrays for enhanced absorption spectroscopy of monolayers, nanocoatings, and catalytic surface reactions." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189549712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aratani, Naoki. "Chemistry of meso-meso linked porphyrin arrays." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/73207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kitano, Masaaki. "Chemistry of meso-Free Subporphyrins." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsurumaki, Eiji. "Chemistry of meso-Aryl-Substituted Subporphyrins." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suzuki, Masaaki. "Chemistry of meso-aryl substituted hexaphyrins(1.1.1.1.1.1)." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hau, Lap Wing. "Electrokinetically-driven liquid flows in microchannels using surface-chemistry technology /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20HAU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Gary Peter. "Enantioselective #alpha#-deprotonation/rearrangement of meso-epoxides." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ozturk, Orhan. "Synthesis and characterisation of novel meso-naphthyl porphyrins." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rocha, Lucas Alonso [UNESP]. "Materiais meso-estruturados luminescentes." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/105768.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:35:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-04-12Bitstream added on 2014-06-13T18:46:22Z : No. of bitstreams: 1 rocha_la_dr_araiq.pdf: 3758896 bytes, checksum: 8f9b1dddc8f92a0c77915bd317de357f (MD5)
Partículas esféricas de sílica mesoporosa foram obtidas a partir da síntese “template” pelo processo de pirólise de aerossol. O processo foi otimizado para a obtenção de materiais mesoporosos sem resíduos orgânicos e preparados em uma única etapa, eliminando assim, a longa etapa de remoção do surfactante na metodologia tradicional (tratamento térmico ou extração soxhlet, podendo durar dezenas de horas). A otimização do processo de pirólise de aerossol proposta nesta tese reduziu este tempo para apenas alguns minutos. Os materiais apresentaram uma área superficial (BET) de até 1028 m2 .g-1 , com volume de poros (BJH) de 0,58 cm3 .g-1 . Os difratogramas de raios-X indicaram um alto grau de organização com um arranjo hexagonal de poros, confirmado também pela microscopia eletrônica de transmissão. Além disto, bandas características de grupos orgânicos não foram observadas nos espectros de absorção na região do infra-vermelho para as amostras obtidas acima de 600ºC. Amostras dopadas com íons Eu3+ também foram preparadas durante a tese. A análise por espectroscopia de luminescência, para íons Eu3+ , indicou que o íon está encapsulado nos canais mesoporosos sem prévia modificação química da matriz. Posteriormente, moléculas de 1,10- Fenantrolina foram coordenadas ao íon Eu3+ aumentando a faixa espectral de excitação do íon (efeito antena). Além disto, partículas luminescentes também foram obtidas pela incorporação do complexo Eu(fod)3 ou rodamina-B nos poros das matrizes. Finalmente, testes de recobrimento (core shell, SiO2 mesoporoso-SiO2) das partículas luminescentes foram realizados e os resultados indicaram que independentemente da espessura obtida pelo processo de recobrimento, o grau de organização dos poros e a fotoluminescência não sofreram alterações
Spherical mesoporous silica particles were obtained using the template synthesis by spray pyrolysis process. The process was optimized for the preparation of the mesoporous materials in one-pot route without organic residues, eliminating thus, the long process of removal of the surfactant, usually used in the available methods (heat treatment or soxhlet extraction, which require several hours or days). The one- pot route proposed in this thesis reduced the extraction process to only a several minutes. These materials presented a surface area value (BET) of 1028m2 .g-1 and pore volume (BJH) was 0,58 cm3 .g-1 . The X-ray diffraction patterns and the transmission electronic micrographs show an ordered typical p6mm 2D hexagonal mesostructure. Characteristics bands of organic groups were not observed in the infra-red absorption spectra for the samples obtained at 600ºC. Moreover, SiO2 mesoporous doped with Eu3+ ions were also prepared. Luminescence data suggest that the Eu3+ ions were successful encapsulated into the channels of mesoporous silica without any preliminary chemical modification of the matrix. Moreover, extra ligands such as 1,10-Phenantroline can be further coordinated, increasing the spectral range excitation (antenna effect). Furthermore, luminescent particles were also prepared by the wet impregnation of Eu(fod)3 complex and rhodamine-B molecules. Finally, tests of coating (core shell, SiO2 mesoporous-SiO2) of luminescent particles had been carried through and the The results obtained show spherical shape and the observation of a highly ordered hexagonal array of mesochannels further confirms the 2D hexagonal p6m structure. Luminescence results reveal that rhodamine-B has been successfully encapsulated into the channels of mesoporous particles. Silica coating has been observed in TEM measurements
APA, Harvard, Vancouver, ISO, and other styles
13

Rossi, Emiliano. "Micro/Meso-Structured Reactors for Chemical Synthesis: Applications in Materials Science and Medicinal Chemistry." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422956.

Full text
Abstract:
The research afforded during the present PhD project deals with the application of microfluidic technology for designing new synthetic methods. Compounds with potential applications in medicinal chemistry and material science were considered, with a focus on process suitability for large scale productions. In this optic, development and scaling up of a continuous flow process for safe handling of diazomethane to large scale was afforded. Such study was carried out during a period of three months spent at Corning European Technology Center (CETC) of Avon, France, and the results obtained were been recently published. Flow approaches were developed towards the synthesis, in more efficient and safer way respect to batch-wise methods, of heterocyclic compounds to be used as oncological drugs. A library of molecular structures characterized by pyrimidinamine and 4-anilino-quinazoline scaffolds was prepared, using multi-step continuous processes. This work was carried out in collaboration with a local pharmaceutical company, Fabbrica Italiana Sintetici (FIS) Spa, in the frame of FSE program. Employment of continuous reactors was also studied for the synthesis of functionalized molecular nanostructures. In particular, fullerenes, carbon nanotubes and porphyrins derivatives were prepared, with a definite improvement over traditional synthetic methods in terms of efficiency. Compounds studied have potential useful applications as materials for photovoltaic, molecular electronics and sensoristics. Such work resulted in various publications and in an Italian patent request.
La tematica di ricerca affrontata nel corso del presente progetto di Dottorato è stata l’applicazione di tecnologie microfluidiche per lo sviluppo di nuove metodologie sintetiche. In particolare, sono state studiate molecole con potenziali impieghi in chimica farmaceutica e in scienze dei materiali, con particolare enfasi sulla possibilità di applicare i processi individuati alla produzione industriale. In tale ottica è stato sviluppato, e successivamente adattato per produzioni su larga scala, un processo in flusso continuo per la produzione e l’impiego del diazometano in condizioni di sicurezza. Tale studio è stato svolto durante un periodo di tre mesi presso il Corning European Technology Center (CETC) di Avon, Francia, e i risultati ottenuti sono stati recentemente pubblicati. L’impiego di reattori a flusso è stato inoltre studiato nella sintesi molecole eterocicliche, che possano essere impiegate come farmaci oncologici. Una libreria di composti, contenenti funzionalità strutturali di tipo pirimidinamminico e 4-anilino-chinazolinico, sono stati preparati mediante sintesi multi-step in flusso continuo, in modo più efficiente e sicuro rispetto alle metodologie tradizionali. Tale ricerca è stata portata avanti in collaborazione con un partner industriale, Fabbrica Italiana Sintetici (FIS) Spa, nell’ambito del progetto FSE. Sono stati infine sviluppati processi a flusso continuo per la funzionalizzazione chimica di nanostrutture molecolari, derivate da fullereni, nanotubi di carbonio e porfirine. L’impiego di reattori in continuo in tale campo ha permesso notevoli incrementi di efficienza sintetica rispetto alle metodiche discontinue. I composti preparati hanno inoltre potenziali applicazioni nel campo dei materiali innovativi, in particolare per il fotovoltaico, l’elettronica molecolare e la sensoristica. Tali studi sono stati pubblicati in vari articoli su riviste scientifiche e hanno portato inoltre al deposito di una domanda di brevetto Italiano.
APA, Harvard, Vancouver, ISO, and other styles
14

Rocha, Lucas Alonso. "Materiais meso-estruturados luminescentes." Araraquara : [s.n.], 2010. http://hdl.handle.net/11449/105768.

Full text
Abstract:
Orientador: Sidney José Lima Ribeiro
Orientador: Marc Verelst
Banca: Younès Messaddeq
Banca: Oscar Manoel Loureiro Malta
Banca: Luis Antonio Ferreira Martins Dias Carlos
Banca: Marie-Joëlle Menu
Banca: Jeannette Dexpert-Ghys
Resumo: Partículas esféricas de sílica mesoporosa foram obtidas a partir da síntese "template" pelo processo de pirólise de aerossol. O processo foi otimizado para a obtenção de materiais mesoporosos sem resíduos orgânicos e preparados em uma única etapa, eliminando assim, a longa etapa de remoção do surfactante na metodologia tradicional (tratamento térmico ou extração soxhlet, podendo durar dezenas de horas). A otimização do processo de pirólise de aerossol proposta nesta tese reduziu este tempo para apenas alguns minutos. Os materiais apresentaram uma área superficial (BET) de até 1028 m2 .g-1 , com volume de poros (BJH) de 0,58 cm3 .g-1 . Os difratogramas de raios-X indicaram um alto grau de organização com um arranjo hexagonal de poros, confirmado também pela microscopia eletrônica de transmissão. Além disto, bandas características de grupos orgânicos não foram observadas nos espectros de absorção na região do infra-vermelho para as amostras obtidas acima de 600ºC. Amostras dopadas com íons Eu3+ também foram preparadas durante a tese. A análise por espectroscopia de luminescência, para íons Eu3+ , indicou que o íon está encapsulado nos canais mesoporosos sem prévia modificação química da matriz. Posteriormente, moléculas de 1,10- Fenantrolina foram coordenadas ao íon Eu3+ aumentando a faixa espectral de excitação do íon (efeito antena). Além disto, partículas luminescentes também foram obtidas pela incorporação do complexo Eu(fod)3 ou rodamina-B nos poros das matrizes. Finalmente, testes de recobrimento (core shell, SiO2 mesoporoso-SiO2) das partículas luminescentes foram realizados e os resultados indicaram que independentemente da espessura obtida pelo processo de recobrimento, o grau de organização dos poros e a fotoluminescência não sofreram alterações
Abstract: Spherical mesoporous silica particles were obtained using the template synthesis by spray pyrolysis process. The process was optimized for the preparation of the mesoporous materials in one-pot route without organic residues, eliminating thus, the long process of removal of the surfactant, usually used in the available methods (heat treatment or soxhlet extraction, which require several hours or days). The one- pot route proposed in this thesis reduced the extraction process to only a several minutes. These materials presented a surface area value (BET) of 1028m2 .g-1 and pore volume (BJH) was 0,58 cm3 .g-1 . The X-ray diffraction patterns and the transmission electronic micrographs show an ordered typical p6mm 2D hexagonal mesostructure. Characteristics bands of organic groups were not observed in the infra-red absorption spectra for the samples obtained at 600ºC. Moreover, SiO2 mesoporous doped with Eu3+ ions were also prepared. Luminescence data suggest that the Eu3+ ions were successful encapsulated into the channels of mesoporous silica without any preliminary chemical modification of the matrix. Moreover, extra ligands such as 1,10-Phenantroline can be further coordinated, increasing the spectral range excitation (antenna effect). Furthermore, luminescent particles were also prepared by the wet impregnation of Eu(fod)3 complex and rhodamine-B molecules. Finally, tests of coating (core shell, SiO2 mesoporous-SiO2) of luminescent particles had been carried through and the The results obtained show spherical shape and the observation of a highly ordered hexagonal array of mesochannels further confirms the 2D hexagonal p6m structure. Luminescence results reveal that rhodamine-B has been successfully encapsulated into the channels of mesoporous particles. Silica coating has been observed in TEM measurements
Doutor
APA, Harvard, Vancouver, ISO, and other styles
15

Cilwa, Katherine E. "Surface Plasmons Polaritons and Single Dust Particles." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1304532704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fennessy, Rebecca Valerie. "Synthesis of polydentate ligands and their self-assembly into helicates, meso-helicates and cyclic helicates." Thesis, University of Huddersfield, 2013. http://eprints.hud.ac.uk/id/eprint/23326/.

Full text
Abstract:
Described here is the synthesis and coordination chemistry of various ligands, L1 – L17. Some of the ligands presented form interesting supramolecular assemblies upon reaction with selected metal ions. Chapter 1 provides a general introduction to supramolecular chemistry and self-assembly. Chapter 2 introduces a new class of potentially hexadentate symmetrical ligands, L1 – L5. These ligands consist of two tridentate binding sites separated by a 1,3-phenylene spacer unit. Reaction of L1 with Zn(II) ions results in the formation of a pentanuclear circular helicate [Zn5(L1)5]10+, within the structure all five zinc ions are six-coordinate arising from coordination of two tridentate domains from two different ligand strands. This structure was shown to exist in both the solid state and in solution. Incorporation of various enantiopure units allowed variation of the terminal functional group of the ligand, L2 – L5. These ligands, upon coordination with Zn(II) ions, were shown to from supramolecular assemblies analogous to the pentanuclear species observed for L1. Additionally these ligands were shown to be diastereoselective, controlling the resulting supramolecular architecture giving up to 80% diastereomeric excess. Described in Chapter 3 are a number of potentially hexadentate N-donor ligands, L6 – L14. Each ligand possesses the same thiazole-pyridyl-pyridyl tridentate domains, with variation of the spacer unit. Upon coordination with selected transition metal ions these ligands resulted in the formation of dinuclear species. Reaction of L9 with Cd(II) results in the formation of a dinuclear double helicate, in which the two tridentate domains coordinate each metal ion and the ligands twist in the centre generating an ‘over and under’ arrangement. However, reaction of L9 with Co(II) results in the formation of a dinuclear meso-helicate, in which the ligands adopt a side-by-side configuration. This difference in structure is attributed to unfavourable steric interactions which prevent the formation of the Co(II) double helicate. Reaction of two of these ligands L10, which possesses an ethylene glycol chain, and L11, containing an amine group, with Cd(II) and camphorsulfonic acid results in the formation of a heteroleptic one-dimensional chain. Hydrogen bonding interactions between the protonated amine of L11 and the glycol chains of L10 results in a structure which contains both of these meso-helicate structures in an extended one-dimensional arrangement (([Cd2(L10)2][Cd2(L11-H)2])(ClO4)10)n. Chapter 4 reports the synthesis of three ligands, L15 – L17, each containing the same central phenol unit, and either a hydroxyl, pyridine or pyridine-N-oxide terminal unit. Reaction of each ligand with various trivalent lanthanide ions results in the formation of a dinuclear double helicate. In each structure the central phenol unit is deprotonated and bridges the two lanthanide ions giving [L2M2]4+. L17, which possesses the pyridine-N-oxide as the terminal group, effectively encompasses the cations minimising access for the coordination of any anions or solvent molecules. Photophysical measurements show that this ligand forms emissive complexes with a number of lanthanide ions, whilst the magnitude of the lifetime for [(L17)2Yb2]4+ (= 21.0 s) suggests that both Yb(III) ions are well-shielded from excited state quenching phenomena.
APA, Harvard, Vancouver, ISO, and other styles
17

Cozett, Rudy Edgar. "Studies on the use of peptide auxiliaries in the meso-desymmetrization of epoxides, and the kinetic resolution of secondary alcohols." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/16573.

Full text
Abstract:
Includes bibliographical references
This thesis reports on the use of amino acids and peptides as chiral ligands/catalysts in two asymmetric processes: Meso-desymmetrization of an epoxide and the kinetic resolution of secondary alcohols. Chapter 1 comprises a literature review, which gives a general overview of methods of asymmetric synthesis, followed by an overview on the existing classes of asymmetric DMAP-type acyl-transfer catalysis as the major topic of the thesis. Chapter 2 describes the synthesis and evaluation of four peptide ligands used in combination with scandium(III) triflate for the meso-desymmetrization of cyclohexene oxide. Enantioselectivities were determined by chiral HPLC, and gave results of up to 41 % ee. Chapter 3 discusses the synthesis and characterisation of three clas ses of nucleophilic DMAP-type catalysts, in which various amino acid/peptide auxiliaries were attached either α, β, or γ-to the pyridine nitrogen. The peptides contained tryptophan, chosen to exploit a potential π - π stacking interaction with the acyl-pyridinium cation. Catalysts substituted at the α and γ positions gave no kinetic resolution for 1-(2-naphthyl)ethanol 121 ; however, a dipeptide (Leu-Trp)-containing catalyst 128 substituted at the β-position gave an s-v alue of 5.3. In order to improve the selectivity, 128 was derivatised at the C-terminal to form two tripeptide-containing catalysts, and acylated at the NH group of the indole ring (141). A range of secondary alcohols were tested and selectivity factors in creased to up to 10.7 . A series of second-generation catalysts were synthesised, but s-values did not improve. An NMR study was performed to reveal a possible conformational change during the stereoselective step. Computational modelling was performed using molecular mechanics (MMFF94) and quantum mechanics (B3LYP/6-31G, M06/6-31G*, ω B97X-D/6-31G) to determine a po ssible transition-state model, which indicated a π - cation interaction of the electron-rich indole ring of a tryptophan moiety with the electron-deficient pyridinium cation as a likely determinant of stereoselectivity.
APA, Harvard, Vancouver, ISO, and other styles
18

Santos, Sabrina Gracia dos 1989. "Ligantes dipirrometenos meso-substituídos como blocos de construção em química supramolecular." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248508.

Full text
Abstract:
Orientador: André Luiz Barboza Formiga
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-24T11:05:13Z (GMT). No. of bitstreams: 1 Santos_SabrinaGraciados_M.pdf: 7184130 bytes, checksum: a334f9344fec73d7b0af53f37a86c3f1 (MD5) Previous issue date: 2014
Resumo: Foram sintetizados dois ligantes 5 fenildipirrometeno (2) e 5-(4-piridil)dipirrometeno (4) através da oxidação de seus respectivos intermediários (1) e (3). Um terceiro intermediário, bisdipirrometeno (5) foi sintetizado e oxidado resultando no ligante bisdipirrometeno (6) parcialmente oxidado. Essas moléculas foram caracterizadas através das técnicas de 1HRMN e MS. Realizou-se a síntese com complexo [CulL24]que foi caracterizado por FT-IR, espectroscopia no UV-Vis e MS. Comparando-se os dados de UV-Vis com os resultados de TD-DFT, um modelo de quatro orbitais moleculares de simetria "Pi" foi proposto para a interpretação dos espectros eletrônicos dos ligantes (2), (4), e (6) e do complexo, similar ao já existente para porfirinas. Também foram estudadas via modelagem molecular três supermoléculas distintas derivadas dos ligantes sintetizados, duas lineares e uma em forma de grade. As estruturas e distâncias entre os centros metálicos (entre 12,6 A e 20,2 A) foram então comparadas
Abstract: Abstract: In this work, three ligands and its intermediaries were synthesized and caracterized (5-phenildipyrromethene (2), 5-(4-pyridil)dipyrromethene (6) and bisdipyrromethene (4)), aiming a future complexation of each one of them with transition metals to form metallic complexes. The ligands (4), (6) and its intermediaries have two coordination sites in their structures, making them interesting for coordination polymers and metal organic frameworks synthesis. The intermediaries were synthesized and caracterized by hydrogen nuclear magnetic ressonance (1H NMR) and mass spectrometry (MS). The ligands (2), (4) and (6) were obtained through the oxidation of their respectives intermediaries, with (2) and (6) being known in the literature, while there are no reports of the ligand (4). The final products were caracterized also by 1H NMR and MS. With the ligand \pyreno \ caracterized, we performed the complexation of this ligand with copper, originating the complex [Cu(4-pyrdpm)2], caracterized by infrared spectroscopy (IR), UV-Vis spectroscopy and MS. All the analyses confirmed the complex. We studied the ligands, complexes and coordination polymers with Density Functional Theory
Mestrado
Quimica Inorganica
Mestra em Química
APA, Harvard, Vancouver, ISO, and other styles
19

Weber, Jens. "Meso- und mikroporöse Hochleistungspolymere : Synthese, Analytik und Anwendungen." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1599/.

Full text
Abstract:
Die Arbeit beschreibt die Synthese, Charakterisierung und Anwendung von meso- und mikroporösen Hochleistungspolymeren. Im ersten Teil wird die Synthese von mesoporösen Polybenzimidazol (PBI) auf der Basis einer Templatierungsmethode vorgestellt. Auf der Grundlage kommerzieller Monomere und Silikatnanopartikel sowie eines neuen Vernetzers wurde ein Polymer-Silikat-Hybridmaterial aufgebaut. Das Herauslösen des Silikats mit Ammoniumhydrogendifluorid führt zu mesoporösen Polybenzimidazolen mit spherischen Poren von 9 bis 11 nm Durchmesser. Die Abhängigkeit der beobachteten Porosität vom Massenverhältnis Silikat zu Polymer wurde ebenso untersucht wie die Abhängigkeit der Porosität vom Vernetzergehalt. Die Porosität vollvernetzter Proben zeigt eine lineare Abhängigkeit vom Verhältnis Silikat zu Polymer bis zu einem Grenzwert von 1. Wird der Grenzwert überschritten, ist teilweiser Porenkollaps zu beobachten. Die Abhängigkeit der Porosität vom Vernetzergehalt bei festem Silikatgehalt ist nichtlinear. Oberhalb einer kritischen Vernetzerkonzentration wird eine komplette Replikation der Nanopartikel gefunden. Ist die Vernetzerkonzentration dagegen kleiner als der kritische Wert, so ist der völlige Kollaps einiger Poren bei Stabilität der verbleibenden Poren zu beobachten. Ein komplett unporöses PBI resultiert bei Abwesenheit des Vernetzers. Die mesoporösen PBI-Netzwerke konnten kontrolliert mit Phosphorsäure beladen werden. Die erhaltenen Addukte wurden auf ihre Protonenleitfähigkeit untersucht. Es kann gezeigt werden, dass die Nutzung der vordefinierten Morphologie im Vergleich zu einem unstrukturierten PBI in höheren Leitfähigkeiten resultiert. Durch die vernetzte Struktur war des Weiteren genügend mechanische Stabilität gegeben, um die Addukte reversibel und bei sehr guten Leitfähigkeiten bis zu Temperaturen von 190°C bei 0% relativer Feuchtigkeit zu untersuchen. Dies ist für unstrukturierte Phosphorsäure/PBI - Addukte aus linearem PBI nicht möglich. Im zweiten Teil der Arbeit wird die Synthese intrinsisch mikroporöser Polyamide und Polyimide vorgestellt. Das Konzept intrinsisch mikroporöser Polymere konnte damit auf weitere Polymerklassen ausgeweitet werden. Als zentrales, strukturinduzierendes Motiv wurde 9,9'-Spirobifluoren gewählt. Dieses Molekül ist leicht und vielfältig zu di- bzw. tetrafunktionellen Monomeren modifizierbar. Dabei wurden bestehende Synthesevorschriften modifiziert bzw. neue Vorschriften entwickelt. Ein erster Schwerpunkt innerhalb des Kapitels lag in der Synthese und Charakterisierung von löslichen, intrinsisch mikroporösen, aromatischen Polyamid und Polyimid. Es konnte gezeigt werden, dass das Beobachten von Mikroporosität stark von der molekularen Architektur und der Verarbeitung der Polymere abhängig ist. Die Charakterisierung der Porosität erfolgte unter Nutzung von Stickstoffsorption, Kleinwinkelröntgenstreuung und Molecular Modeling. Es konnte gezeigt werden, dass die Proben stark vom Umgebungsdruck abhängigen Deformationen unterliegen. Die starke Quellung der Proben während des Sorptionsvorgangs konnte durch Anwendung des "dual sorption" Modells, also dem Auftreten von Porenfüllung und dadurch induzierter Henry-Sorption, erklärt werden. Der zweite Schwerpunkt des Kapitels beschreibt die Synthese und Charakterisierung mikroporöser Polyamid- und Polyimidnetzwerke. Während Polyimidnetzwerke auf Spirobifluorenbasis ausgeprägte Mikroporosität und spezifische Oberflächen von ca. 1100 m²/g aufwiesen, war die Situation für entsprechende Polyamidnetzwerke abweichend. Mittels Stickstoffsorption konnte keine Mikroporosität nachgewiesen werden, jedoch konnte mittels SAXS eine innere Grenzfläche von ca. 300 m²/g nachgewiesen werden. Durch die in dieser Arbeit gezeigten Experimente kann die Grenze zwischen Polymeren mit hohem freien Volumen und mikroporösen Polymeren somit etwas genauer gezogen werden. ausgeprägte Mikroporosität kann nur in extrem steifen Strukturen nachgewiesen werden. Die Kombination der Konzepte "Mesoporosität durch Templatierung" und "Mikroporosität durch strukturierte Monomere" hatte ein hierarchisch strukturiertes Polybenzimidazol zum Ergebnis. Die Präsenz einer Strukturierung im molekularen Maßstab konnte SAXS bewiesen werden. Das so strukturierte Polybenzimidazol zeichnete sich durch eine höhere Protonenleitfähigkeit im Vergleich zu einem rein mesoporösen PBI aus. Der letzte Teil der Arbeit beschäftigte sich mit der Entwicklung einer neuen Synthesemethode zur Herstellung von Polybenzimidazol. Es konnte gezeigt werden, dass lineares PBI in einer eutektischen Salzschmelze aus Lithium- und Kaliumchlorid synthetisiert werden kann. Die Umsetzung der spirobifluorenbasierten Monomere zu löslichem oder vernetztem PBI ist in der Salzschmelze möglich.
The first part of the thesis describes the synthesis and characterisation of cross linked, mesoporous poly(benzimidazole) (PBI) prepared by a hard templating approach. Silica nanoparticles were used as template and removed after the polycondensation by immersing the hybrid material in aqueous NH4HF2 solution. The resulting mesoporous PBI showed surface areas up to 200 m²/g as established by N2 BET and porosities up to 37 vol.-%. The influence of the template and cross linker content on the observable porosity was investigated. Nitrogen sorption and small angle x-ray scattering (SAXS) were employed as analytical techniques. The template morphology was reproduced almost perfectly, yielding spherical pores of 11 nm in diameter if the samples were fully cross linked. It was shown that there is a linear dependence of the porosity on the template content up to a critical weight ratio of silica/polymer. If the silica content is raised above 50 wt.-% partial collapse of pores is observed. The dependence of the porosity on the cross linker content at constant amount of template was found to be non-linear. At the absence of any cross linker, no porosity was observed after template removal. At 10 mol-% cross linker the onset of porosity could be observed. At higher cross linker contents, the porosity was nearly the same as for the fully cross linked PBI. The mesoporous PBI could be loaded with crystalline phosphoric acid to yield highly proton conductive materials. It was shown that the material retains its nanostructure when loaded with phosphoric acid even after annealing at 180_C for 12 h. The conductivity of the nanostructured samples was one to two orders of magnitude higher than the conductivity of a nonstructured sample. The impact of the cross linking density on the conductivity was also investigated. The second part of the work describes the synthesis and characterisation of microporous poly(amide)s and poly(imide)s. 9,9'-spirobifluorene derivatives were used to introduce a rigid, structure-directing motif which prevents the polymer chains from close packing. Firstly, the synthesis of soluble poly(amide)s and poly(imide) is described. It was observed that the microporosity is strongly dependent on the processing of the soluble polymers. In the case when polymers were precipitated from solvents of high polarity no microporosity was observed, while polymers prone to solvation in solvents of lower polarity exhibited microporosity as observed in nitrogen sorption measurements. Wide angle x-ray scattering (WAXS) showed that the microstructure was indeed dependent on the processing conditions. SAXS measurements of the polymers revealed that nitrogen sorption alone is not sufficient for the analysis of the porosity. A significant mismatch between the results obtained by the two methods indicated that only a fraction of the pore volume of the polymers was accessible for nitrogen molecules. The second part of the chapter describes the synthesis, characterisation and application of spirobifluorene based, cross linked poly(amide)s and poly(imide)s. The poly(amide) networks did not show any microporosity when analysed by nitrogen sorption. This led to the conclusion that the amide bond is too weak to withstand the interfacial forces. In contrast, poly(imide) networks exhibited pronounced microporosity with surface areas of around 1000 m2/g. The analysis of these networks was again done by nitrogen sorption and SAXS. Furthermore, molecular modelling was used to calculate the true and apparent densities of the networks. In case of the poly(imide) networks, the results of the various measurement techniques were in reasonable agreement. This indicates that the pore volume was nearly completely accessible. Finally it was established that the structure directing motif is necessary to obtain microporous polymers, as a poly(imide) prepared from a spatially undefined monomer did not feature microporosity. Pressure dependent SAXS measurements showed that the polymer networks undergo significant elastic deformations upon evacuation. This behavior complicates the analysis of the nitrogen sorption data, making it impossible to extract reliable pore size distributions. The third and last part of the thesis deals with the development of a new reaction medium for the synthesis of poly(benzimidazole). An eutectic salt melt, composed of lithium chloride and potassium chloride was used in an ionothermal synthesis of linear PBI, opening a green chemistry route towards PBI. The influence of the reaction conditions on the properties of the resulting polymers was investigated. The new reaction medium allowed furthermore the synthesis of linear and cross linked spirobifluorene based PBIs. This is not easily possible by using the classical synthetic pathways towards PBI. The spirobifluorene based PBIs synthesized in this work did, however not feature intrinsic microporosity.
APA, Harvard, Vancouver, ISO, and other styles
20

Ye, Fangmao. "Single molecule studies of meso/macro porous silica materials and gradient films." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lundell, Carl. "RESEARCH STUDY: REACTING METAL BIS(TRIMETHYL)AMIDES WITH DOUBLE-BASE PROPELLANT STABILIZERS." Master's thesis, Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/437570.

Full text
Abstract:
Chemistry
M.A.
During World War II, it was discovered that when lead was added to double-base propellants, it produced beneficial burn rate phenomena. Specifically, the propellant burn rate first increased unexpectedly at low pressures, then the burn rate became independent of pressure, followed lastly by “mesa burning” where the burn rate actually decreased with increasing pressure. This results in a beneficial negative feedback mechanism. Over the past 75 years, researchers have explored different lead complexes to achieve better propellant performance. However, over the last decade, research has shifted to finding an alternative to using lead as an additive to reduce toxicity. Until the attempts detailed herein, researchers had not, to our knowledge attempted to combine double-base propellant stabilizers with various metals to achieve these desired results. In doing so, we prepared two lead complexes, Tetrakis (µ3-(4-methyl-3-nitrophenyl imido lead (II))) 1, and Bis(dinitrophenyl imido lead(II)) 2, that were synthesized by reacting lead bis(trimethylsilyl)amide with a common double-base propellant stabilizer 2-nitrodiphenylamine (NDPA) and 4-methyl-3-nitroaniline. Both complexes formed from protolysis of the trimethylsilylamide ligand by the acidic proton of the amine, and crystallized from tetrahydrofuran (THF). Bomb calorimetry coupled with crystal density structure determined that 1 has a very high energy density of 74.1 MJ/L, more than three times the energy density of conventional nitroamine explosives, whereas 2 was lower at 38.2 MJ/L. The structure, charge and characterization of 1 and 2 are discussed. However, each complex is air sensitive making burn rate experimentation infeasible, so any possible changes to the propellant as an additive remained undetermined. Attempts to use of tin, zinc, or bismuth bis(trimethyl)amides in place of lead, were unsuccessfully characterized, although reactions were likely observed.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
22

Groenewolt, Matthijs. "Mesostrukturierte Materialien durch Neue Templatsysteme und Nutzung Mesoporöser Silikate als Nano-Reaktoren." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/251/.

Full text
Abstract:
In dieser Arbeit wird ein chemisches Abgussverfahren für selbstorganisierte Strukturen in Lösung verwendet, das es ermöglicht definierte poröse Materialien mit Strukturierung auf der Nanometerskala herzustellen. Ähnlich wie beim Gussverfahren von Werkstücken wird die Vorlage durch ein geeignetes Material abgebildet. Durch Entfernen dieser Vorlage erhält man ein poröses (mit Hohlräumen durchsetztes) Negativ derselben. Die auf diese Weise erhaltenen Materialien sind in mehrerer Hinsicht interessant:
So lassen sich aus ihrer Morphologie Rückschlüsse über die Natur der selbstorganisierten Strukturen erhalten, da der hier verwendete Abbildungsprozess selbst kleinste strukturelle Details erfasst. Die Hohlräume der synthetisierten porösen Stoffe hingegen können als winzige Reaktionsgefäße, sogenannte "Nano-Reaktoren" verwendet werden. Dies ermöglicht sowohl die Synthese von Nano-Partikeln, die auf anderem Wege nicht zugänglich sind, als auch die Möglichkeit Einflüsse der räumlichen Restriktion auf die Reaktion zu untersuchen. Besonders räumlich ausgedehnte Strukturen sollten hierbei Auffälligkeiten zeigen.
Somit ist die Gliederung der Arbeit vorgegeben:
- Die Herstellung und Charakterisierung von porösen Stoffen und selbstorganisierten Strukturen
- Ihre Verwendung als "Nano-Reaktor"
This work employs a chemical casting technique, which allows the synthesis of mesoporous materials with definite morphology and pore-size distribution. The structure is thereby determined by a self-assembled template on a nanometer length scale. By removing the template, the final mesoporous materials are formed. The materials are interesting from several points of view:
First, one can learn about the nature of self-organized structures by casting, since the process is known to map even the smallest details. Second, the porous materials can be used as "nano-reactors", both for the synthesis of nano-particles, which are not otherwise accessible, and for the investigation of the reaction itself, since reactions in very small volumes often show differences when compared with their bulk counterparts. For the synthesis of geometrically extended structures this confinement could be especially interesting.
The work therefore divides into two parts:
- The synthesis and characterisation of porous matter and self-organized structures
- Their usage as "nano-reactors"
APA, Harvard, Vancouver, ISO, and other styles
23

Chin, Ami Jun-Yee. "Part A Development of a Fluorescence Resonance Energy Transfer assay or high throughput screening for catalysts in the desymmetrization of meso substrates Part B Application of hydrazide based catalyst in Friedel-Crafts alkylation." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27118.

Full text
Abstract:
Highthroughput methods have been increasingly applied to catalyst screening, however, efforts to use these for enantioselective measures are still lacking. We propose to apply Fluorescence Resonance Energy Transfer (FRET) as a highthroughput screening method to fulfill such a purpose. This concept is applied to the desymmetrization of meso substrates. The meso compound will be equipped with a recognition element for catalyst binding, two different fluorescence donor molecules to distinguish between the chiral centres and also a fluorescence acceptor molecule to suppress fluorescence. Upon catalytic hydrolysis, the fluorescence acceptor molecules will be discharged into solution and thus can be detected by use of a spectrophotometer. As each donor molecule has a characteristic fluorescence emission wavelength, measuring the respective fluorescence intensities will ultimately allow for one to rapidly determine the enantiomeric excess. Efforts towards establishing this FRET based assay are discussed herein.* *Please refer to dissertation for diagrams.
APA, Harvard, Vancouver, ISO, and other styles
24

Hon, Sherman Siu-Man. "Calcium vapour deposition on semiconducting polymers studied by adsorption calorimetry and visible light absorption." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/863.

Full text
Abstract:
A novel UHV microcalorimeter has been used to study the interaction between calcium and three polymers: MEH-PPV, MEH-PPP and P3HT. All three polymers behave differently in their reaction kinetics with calcium. On MEH-PPV we measure 45 μJ/cm² of heat generated in excess of the heat of bulk metal growth, 120 μJ/cm² for MEH-PPP, and 100 μJ/cm² for P3HT. Comparison of the MEH-PPV and MEHPPP data indicate that the initial reaction of calcium with MEH-PPV occurs at the vinylene group. We propose, based on hypothetical models, that calcium reacts with the vinylene groups of MEH-PPV with a reaction heat of 360 kJ/mol and at a projected surface density of 1.7 sites/nm², while it reacts with the phenylene groups of MEH-PPP in a two-step process with reaction heats of 200 and 360 kJ/mol respectively, at a projected surface density of 3.5 sites/nm². Optical absorption experiments, using either a 1.85 eV diode laser or a xenon lamp coupled to a scanning monochromator, have also been performed using the same calorimeter sensor. In the case of MEH-PPV, using the laser we find an optical absorption cross-section of 3E-¹⁷ cm² per incident calcium atom at low coverages. The change in absorptance at higher coverages correlates perfectly with the population of reacted Ca atoms determined calorimetrically. The size of the absorbance cross-section, and its position just within the band gap of the polymer, are consistent with the reaction being one of polaron formation. Calcium does not appear to dope P3HT, while the photon energy range of 1.5 to 3.75 eV used in these experiments is likely too small for probing polaronic energy states in MEH-PPP.
APA, Harvard, Vancouver, ISO, and other styles
25

Lizardi, Christopher Lee. "Aldehydic C-H Amination Reactions via Co(II)-Based Metalloradical Catalysis and Construction of Novel Chiral meso-Amidoporphyrin Ligands." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5526.

Full text
Abstract:
Medium-sized organic ring synthesis poses a seemingly insurmountable challenge, and because of this it is a field under immense investigation. Heterocyclic containing medium-sized rings are common structural motifs in nature, which has caused researchers to investigate their potential biological activity and properties as materials. This research focused on the grand challenge of medium-sized heterocyclic ring synthesis, providing the synthesis community with new tools to generate these highly evasive products, while elucidating energetic and geometric properties of one of Nature's least understood organic ring systems. Cobalt(II)-Amidoporphyrins, [Co(D2-Por)], are an emerging class of metalloradical catalysts (MRC) which can facilitate a wide range of atom and group transfer reactions. A strategy was employed using [Co(D2-Por)] to carry out an intramolecular C-H amination reaction using sulfamoyl azides as the radical nitrene source to aminate the highly reactive aldehydic C-H bond. This newfound reaction allowed for the generation of previously unobtainable medium-sized heterocycles, which surprisingly provided a racemic mixture of chiral medium-sized rings. A wide array of chiral amidoporphyrins including meso-heteroatom containing porphyrins were synthesized as well during the course of research to probe their potential as new chiral ligands for the emerging field of cobalt(II)-amidoporphyrin catalyzed MRC system. A practical synthetic scheme was discovered employing the highly selective Zn(II)-bromoporphyrin synthon to generate a new library of chiral amidoporphyrin ligands for the MRC system through well-established cross-coupling methodologies.
APA, Harvard, Vancouver, ISO, and other styles
26

Van, Lankvelt Amanda L. "Protracted Magmatism within the North Caribou Terrane, Superior Province: Petrology, Geochronology, and Geochemistry of Meso- to Neoarchean TTG Suites." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24130.

Full text
Abstract:
The North Caribou Terrane forms the core of Superior Province and records a protracted history of crustal growth and modification. At the centre of the North Caribou Terrane, lies the North Caribou greenstone belt, which is surrounded by granitoids of diverse compositions and ages. This study reports whole-rock geochemistry, zircon and titanite geochronology, and hornblende geobarometry on these plutonic rocks. Although zircons as old as 3132 ± 7 Ma were found, the main magmatic pulse occurred between 2880 and 2830 Ma, and geobarometry indicates tectonic thickening during this period. This was followed by widespread hydrothermal alteration and limited magmatism from 2760 to 2680 Ma, and shallow, brittle-ductile intrusions at circa 2630 Ma. From 2730 to 2630 Ma, intrusions were emplaced at increasingly shallow crustal levels. All of the rocks, except for the youngest pegmatitic intrusions, show similar patterns in major and trace elements, with a general trend toward more evolved compositions through time. These patterns indicate that the granitoids record mostly reworking of early intrusions, which is also consistent with patterns observed in the geochronology.
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Wenfeng. "Investigation of Energy Alignment Models at Polymer Interfaces." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5148.

Full text
Abstract:
The presented study investigated the Induced Density of Interface States (IDIS) model at different polymer interfaces by using photoemission spectroscopy in combination with electrospray deposition. In recent years, organic electronics have attracted considerable attention due to their advantages of low-cost and easy-fabrication. The performance of such devices crucially depends on the energy barrier that controls the interface charge transfer. A significant effort has been made to explore the mechanisms that determine the direction and magnitude of charge transfer barriers in these devices. As a result of this effort, the IDIS model was developed to predict the energy alignment at metal/organic and organic/organic interfaces. The validity of the IDIS model on molecular interfaces was confirmed by the results of a series of experiments with small molecular materials, which are in good agreement with the theoretical calculations from the IDIS model. The charge neutrality level (CNL) and screening factor for various organic materials can be determined from the linear correlation between the hole injection barrier at metal/organic interface and the work function of its corresponding metal substrate, which stands as one of the most important features of the IDIS model. The study presented here explores whether the IDIS model is also valid for polymer interfaces. Two prototypical polymer materials: poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) were selected for the investigation. In the first part of this study, a series of metal/polymer interfaces were prepared using electrospray and investigated with photoemission spectroscopy. The linear relationship between the hole barriers extracted from the metal/polymer interface and the work function of its respective metal substrate suggests that the IDIS model is also valid for metal/polymer interfaces. The CNLs and the screening factors of P3HT and MEH-PPV are determined respectively. The experiment results are also discussed with regard to the Integer Charge Transfer (ICT) model. The comparison between the two models suggests that the IDIS model should be applied to interfaces prepared in vacuum while the ICT model works on interfaces with an ambient contamination layer present. The second part of the dissertation discusses the photoemission results of the MEH-PPV/P3HT heterojunction from the perspectives of the two models. The results indicate that the IDIS model is valid for polymer/polymer heterojunctions. The IDIS model more accurately predicted the measured orbital line up by using its principles for organic/organic heterojunction than the ICT model.
APA, Harvard, Vancouver, ISO, and other styles
28

Andersson, Lovisa. "Vilken kurs är mest intressant? : Gymnasieelevers inställning till Biologi 2 och Kemi 2 med fokus på ämnesomsättning." Thesis, Högskolan Kristianstad, Fakulteten för lärarutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19077.

Full text
Abstract:
Som blivande lärare i biologi och kemi på gymnasiet är det intressant att undersöka elevers inställning till dessa ämnen. Finns det en parallell mellan elevers intresse för en kurs och vad elever upplever är en svår kurs? För att kunna göra en jämförelse mellan kurserna har studien gjorts utifrån ämnesomsättningen i Biologi 2 samt Kemi 2. Syftet har varit att ta reda på vad som påverkar gymnasieelevernas intresse till Biologi 2 och Kemi 2, samt vilken kurs de tycker är svårast. Syftet har även varit att undersöka elevernas beskrivning av ämnesomsättningen i de båda kurserna. Studien behandlar även vad lärare i kurserna tror att eleverna har svarat på dessa frågor. Studien har genomförts genom enskilda kvalitativa intervjuer med 20 gymnasieelever samt två lärare från ett naturvetenskapligt program. Intervjuresultatet visade att 94 procent av eleverna tyckte att Kemi 2 var svårt och ointressant. Kemikursen innehöll delar som de hade svårt att relatera till samt var svåra att koppla till sin vardag. Biologi 2 beskrevs som mer intressant då kursen bland annat var lättare att koppla till vardagen. Elevernas beskrivningar av ämnesomsättningen i de båda kurserna hade stora skillnader. Eleverna beskrev området utifrån spjälkning av näringsämnena i Biologi 2, men utifrån cellandningen i Kemi 2. Studien har givit ny kunskap om gymnasieelevers inställning till Biologi 2 och Kemi 2. För att ta reda på varför eleverna har beskrivit ämnesomsättningen olika i de båda kurserna samt varför Kemi 2 anses vara en svår kurs krävs vidare forskning.
As a future teacher in biology and chemistry in high-school it’s interesting to investigate students' attitude towards these courses. Is there a parallel between students' interest in a course and what they experience is a difficult course? To make a comparison, the study has been done based on the metabolism in Biology 2 and Chemistry 2. The purpose has been to find out what influences the high schoolers' interest in Biology 2 and Chemistry 2, and what course they find most difficult. It has also been to investigate how students describe the metabolism in both courses. The study corporate what teachers think that the students have answered on these questions. The study has been conducted through individual qualitative interviews with 20 high-school students and two teachers from a science program. The result showed that 94% of the students felt that Chemistry 2 was difficult and uninteresting. Chemistry included parts that students had difficult to relate to and to connect to their everyday lives. Biology 2 was described as more interesting as the course easier connected to their everyday life. The students' descriptions of the metabolism in both courses differed. The students described the area from the digestion of nutrients in biology, but from the respiration in chemistry. The study has given new knowledge of high-school students attitudes towards Biology 2 and Chemistry 2. To find out why the students have described the metabolism differently in both courses and why Chemistry 2 is considered a difficult course, further research is required.
APA, Harvard, Vancouver, ISO, and other styles
29

Mayer, Ildemar. "Obtenção e propriedades de meso tetra(piridil)porfirinas supermoleculares e dos nanomateriais obtidos por montagem eletrostática camada por camada." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/46/46134/tde-05062007-090328/.

Full text
Abstract:
Uma nova série de metaloporfirinas supermoleculares não-planares foi obtida por meio de automontagem coordenativa de meso tetra(3-piridil)porfirinas e complexos de rutênio polipiridina ([Ru(bipy)2Cl]+ e [Ru(bipy)2(OH2)]2+). Suas propriedades estruturais e eletrônicas foram investigadas por espectroscopia eletrônica, espectrometria de massas, voltametria cíclica e espectroeletroquímica. As influências do acoplamento eletrônico e da mudança da geometria molecular também foram avaliados, tanto no estado gasoso quanto em solução, e os resultados, comparados com a série de isômeros planares obtidos através da coordenação de complexos de rutênio polipiridina as meso tetra(4-piridil)porfirinas. Nanomateriais eletrostaticamente montados, camada por camada, com derivados aniônicos de porfirinas e ftalocianinas foram elaborados. As propriedades eletrocatalíticas dos mesmos foram investigadas, frente a substratos de interesse como nitrito e sulfito. Efeitos supramoleculares conformacionais e eletrônicos foram observados, tanto em solução quanto nos filmes dos nanomateriais porfirínicos supramoleculares. Verificou-se também, uma influência significativa do pH e do íon metálico coordenado à porfirina nos processos de oxidação e de redução de nitrito e de sulfito.
A new series of nonplanar supermolecular metalloporphyrins have been obtained by coordenative self-assembly of meso-tetra(3-pyridyl)porphyrins and ruthenium complexes such as [Ru(bipy)2Cl]+ and [Ru(bipy)2(OH2)]2+. The electronic and structural properties have been investigated by electronic spectroscopy, mass spectrometry, cyclic voltammetry, and spectroelectrochemistry. The effects of the electronic coupling and molecular geometry on the molecular and nanomaterials properties were investigated in the gas phase and in solution. All results were compared with that obtained for the planar isomers obtained by the coordination of four [Ru(bipy)2Cl] groups to the meso-tetra(4-pyridyl)porphyrins. New nanomaterials were obtained by layer-by-layer electrostatic assembly of those supermolecular cationic porphyrins and tetrasulfonated porphyrins or phthalocyanines. The electrocatalytic properties were investigated for nitrite and sulfite. Electronic and supramolecular conformational effects were observed for those species in solution and in films of the nanomaterials. Moreover, a significant effect of the pH and of the transition metal ion coordinated to the porphyrin ring on the electrocatalytic activity were also observed.
APA, Harvard, Vancouver, ISO, and other styles
30

Gross, Dustin Eugene. "ITC and NMR spectroscopy binding studies of meso- octamethyl-calix[4]pyrrole and its derivatives." Thesis, 2009. http://hdl.handle.net/2152/ETD-UT-2009-05-42.

Full text
Abstract:
This dissertation reports on the recent discovery that calix[4]pyrrole not only functions as an anion receptor, but also has the ability to act as an ion pair receptor. It was discovered that in the solid state large diffuse cations, such as Cs+ and imidazolium, will occupy the electron-rich cone-like cavity that is formed upon anion binding to the NH region of the calix[4]pyrrole core. Also discussed are efforts devoted to improving the anion binding ability of calixpyrroles and fine-tuning their inherent selectivity. This has been probed through a variety of structural modifications. One of the most attractive of the modification strategies currently being explored involves expansion of the central binding cavity by using higher order β-fluorinated calix[n]pyrroles; n = 5, 6, and 8. An advantage of β-fluorinated calix[4]pyrrole is that it shows enhanced anion binding affinities toward several anions compared to the parent calix[4]pyrrole. Fluorinated calixpyrroles have also shown an ability to extract anions from aqueous environments into organic media. An alternative strategy has been to attach “straps” resulting in bicyclic systems, which further define the binding cavity achieving higher affinity and anion selectivity. The binding interactions of calixpyrrole and it derivative have been quantified using analytical techniques, such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. The results of these latter studies will be discussed herein.
text
APA, Harvard, Vancouver, ISO, and other styles
31

Gonzalez, Jorge Alberto. "Part I. Spin-state isomerism in crystalline (trifluoromethanesulfonato)(meso-tetraphenylporphinato)iron(III). Part II. Toward refined model compounds for the cytochrome c oxidase active site: A new picket-fence porphyrin with short imidazole pickets." Thesis, 1991. http://hdl.handle.net/1911/16443.

Full text
Abstract:
Part I. The unsolvated porphyrin compound (Fe$\sp{\rm III}$(TPP)(OSO$\sb2$CF$\sb3$)) has been structurally characterized by single-crystal X-ray diffraction in a monoclinic phase at 293 K and in a triclinic phase at 293, 188 and 103 K. While only one type of molecular site is found in the monoclinic phase, the temperature-dependent structural parameters and magnetic susceptibility data (5.82 $\mu\sb{\rm B}$ at 293 K; 4.86 $\mu\sb{\rm B}$ at 20 K) together indicate the existence of two crystallographically and magnetically distinct spin-admixed crystal lattice sites in the triclinic phase. One site (molecule 1) is unique in that its structure is temperature dependent, whereas the second site (molecule 2) has a structure which is essentially independent of temperature. This distinct site assignment has been further investigated by Mossbauer and EPR spectroscopies which suggest different spin ground states for molecules 1 and 2. This triclinic phase is also the first report of molecule pairs of the same porphyrin complex interacting in very different ways in the same crystal lattice in that molecule 1 pairs form $\pi$-$\pi$ dimers, whereas molecule 2 pairs do not. Part II. A new binucleating picket-fence porphyrin ligand, 5,10,15,20-Tetrakis (o-4-methylimidazole-5-ethylcarboxyl-2-oxy)phenyl) porphyrin, N$\sb4$-PH$\sb2$, has been synthesized and characterized to be used eventually as a vehicle to study the structure, function and reactivity patterns of the active site of cytochrome c oxidase. The enzyme itself contains an (Fe(porphyrin)$\cdots$Cu) binuclear active site of unknown structure. The properties which set N$\sb4$-PH$\sb2$ apart from other binucleating picket-fence porphyrin ligands previously prepared as active site ligating molecules are the four authentic imidazole nitrogen donor atoms in the potential binding site for the Cu center and a separation between potential metal binding sites of only 3.5 to 4.0 A, made possible by the ligand's exceptionally "short" picket-fence arms derived from imidazole-ether linkages.
APA, Harvard, Vancouver, ISO, and other styles
32

Venu, Lingampally. "Stereochemical And Synthetic Investigations." Thesis, 2013. https://etd.iisc.ac.in/handle/2005/2632.

Full text
Abstract:
PART I RESOLUTION AND DESYMMETRISATION Chapter I. ‘A Novel Racemate Resolution’. This describes a novel resolution strategy as applied to racemic α-amino acids in the solid state. The strategy is based on the possibility that second order asymmetric transformations (SOAT) would be more likely in the case of achiral molecules that form chiral crystals (i.e. a non- centrosymmetric space group).1 In such cases, a fundamental requirement of SOAT – that the molecules racemise in solution prior to crystallization – is obviated. Furthermore, the resulting enantiomerically-enriched crystals may be employed to effect a solid-state kinetic resolution of a different racemate (composed of chiral molecules). This strategy was explored with crystalline succinic anhydride (1, Scheme 1), which not only exists in a non-centrosymmetric space group (P212121) but also possesses reactive functionality to effect the resolution step.2 Thus, a finely-ground mixture of 1 (0.5 eqiv.) and a racemic α-amino acid (2, 1.0 eqiv.) was heated at ~ 70 oC over ~ 5 h without solvent. The resulting N-succinoyl derivative (3) was separated from the unreacted 2, which was found to possess significant levels of optical purity (typically ~ 70%). The strategy was applied to several common α-amino acids, the results being summarized in Table 1. These results, apart from establishing ‘proof-of-concept’ and the viability of the resolution strategy, indicate that crystalline succinic anhydride (1) is enantiomerically enriched as originally hypothesized. Chapter II. ‘Enantiospecific Alkylation and Desymmetrisations’. This deals with two enolate-mediated strategies of asymmetric synthesis: one describes approaches towards the alkylation of the stereogenic centre in benzoin without loss of stereogenicity (Section A), and the other the desymmetrisation of a meso tartarate derivative with a chiral base catalyst (Section B). Section A. This describes exploratory studies aimed at achieving the enantiospecific α-alkylation of optically-active benzoin (4, Scheme 2) via its enolate anion 5. The strategy depends on the possibility that 5 would exist in atropisomeric forms, because of steric interactions between the vicinal phenyl groups. (This is indicated in the crystal structure of the analogous enediol carbonate derived from racemic 4.)3 In such a case, remarkably, 5 would be chiral, despite its planar enediolate core! Thus, possibly, the configurational chirality in 4 (by virtue of the C2 stereogenic centre) would be transformed to the helical chirality in 5 (by virtue of the atropisomerism). Furthermore, enantioface-selective alkylation of 5 with achiral alkylating agents would, in principle, be possible. Preliminary studies were then directed towards establishing that controlled deprotonation of optically-active 4, followed by the protonation of the resulting enediolate 5, leads back to the original 4. (+)-Benzoin (4) was prepared via resolution,4 and deprotonated with KH in THF.5 The resulting enediolate (5) was neutralized with acetic acid at -70 oC/THF to recover 4, but with insignificant levels of optical activity (e.e. ~ 12%). The results possibly indicate that ortho-substituted benzoin analogs may show greater retention of chirality upon deprotonation, as the racemisation of the enediolate atropisomers would be suppressed by steric hindrance between the aryl moities. Section B. This describes studies directed towards the catalytic desymmetrisation of meso dimethyl tartarate (6, Scheme 3). The strategy involves the formation of the acetonide derivative 7 and its regioselective α-deprotonation with a chiral base catalyst. The enantioface-selective protonation of the resulting enolate (8) would lead to the chiral analog 9. The overall sequence offers a possible alternative to catalytic deracemisation, which is normally unviable for thermodynamic reasons.6 The above strategy hinges on the meso derivative 7 being thermodynamically less stable than the enantiomeric 9, which would thus be favoured at equilibrium. In fact, this is likely as the eclipsing interactions between the syn ester moieties in 7 would be relieved in 9, in which the ester moieties are anti. However, deprotonation of 7 at the other α position would compete to varying extents, depending on the selectivity induced by the chiral base. At total equilibrium, the sequence would occur via deprotonation at both α sites at equal rates, and no net optical induction would be observed. (This is a thermodynamic requirement via the principle of microscopic reversibility.) Thus, the success of the above strategy depends on stalling the deprotonation-protonation sequence at a quasi-equilibrium stage involving only one of the enantiomers (9).6 The other operational requirement was the compatibility of the pKa’s of 7 and the chiral base employed: too low a pKa of the base would result in inefficient deprotonation and slow overall rate, but a high pKa would generate a large quantity of the enolate 8 at equilibrium. After due consideration, the lithiated chiral fluorene derivative 11 (pKa ~ 22) was chosen as the chiral base catalyst [11 was prepared from fluorene (10) as indicated]. Treating 7 with 0.2 equivalent of 10 in THF at -65 oC over 2 h, led to the formation of a mixture of 7 and 9 in a 45:55 ratio (isolated in 85% total yield). Chromatographic separation of the mixture led to the isolation of pure (+)-9, which was identified spectrally; it was found to possess [α]D24 = +21.84 (c 1.0, CHCl3), corresponding to e.e. = 64%. (This implies the indicated (4S, 5S) configuration for 1, 3-dioxolane 9, as previously reported.)7 These results, despite the moderate e.e. levels obtained, indicate the viability of the above catalytic desymmetrisation strategy, bearing in mind the mechanistic ambiguities mentioned above. PART II SYNTHESES OF ALDEHYDES AND AMINO ACIDS Chapter III. ‘An Asymmetric Synthesis of Aldehydes’. This describes an oxazoline approach to the synthesis of chiral aldehydes. The oxazoline methodology for the synthesis of homochiral α-alkylated carboxylic acids is well known,8 and it was of interest to adapt this to the synthesis of the corresponding aldehydes. Essentially, it was envisaged that the reaction sequence could be diverted towards aldehydes via reduction of the alkylated oxazoline intermediate (Scheme 4). Thus, 2-ethyl-4(S)-methoxymethyl-5(R)-phenyl-1,3-oxazoline (12) was deprotonated with lithium diisopropylamide in THF, and the resulting anion treated with various alkyl halides, in the reported manner.8 The resulting alkylated product (13) was N-methylated with MeI in refluxing MeNO2 over 6 h, to obtain the quaternary salt 14. This was reduced with NaBH4 in MeOH to obtain the expected N- methyl oxazolidine 15, which was hydrolyzed in refluxing aqueous oxalic acid to the free aldehydes 16. These were isolated in moderate yields and e.e. values as shown. Chapter IV. ‘A Darzens Route to α-Amino Acids’. This describes a novel route to α-amino acids, based on the classical Darzens glycidic ester synthesis.9 In this approach (Scheme 5), the glycidic ester (19) was prepared from benzaldehyde (17) and t-butyl bromoformate (18), with KOH in THF as base, and tetrabutylammonium bromide (TBAB) as phase transfer catalyst.9b The oxirane ring in 19 was cleaved via nucleophilic attack with an amine (20), to furnish the two regio-isomeric hydroxy- amino acids (21) and (22). Generally, the β-hydroxy-α-amino acid product (21) predominated over the α-hydroxy-β-amino acid product (22), the two being separated chromatographically. The hydroxyl group in 21 was reductively cleaved via its xanthate derivative (23), by refluxing it in toluene with AIBN (10 mol %) over 4 h. The resulting α-amino acid derivatives (24) were obtained in moderate yields (< 60 %) upon chromatographic purification. (The β-amino analog 22, would lead to the corresponding β-amino acid, but this was not pursued further.) This strategy lends itself to creating structural diversity at the β-centre in the α- amino acid, drawing upon the wide scope of the well-established Darzens condensation reaction. Also, the introduction of the amino moiety is facilitated by the enhanced reactivity at the α-centre of the oxirane ring in the glycidic ester (19), presumably for both electronic and steric reasons.
APA, Harvard, Vancouver, ISO, and other styles
33

Venu, Lingampally. "Stereochemical And Synthetic Investigations." Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2632.

Full text
Abstract:
PART I RESOLUTION AND DESYMMETRISATION Chapter I. ‘A Novel Racemate Resolution’. This describes a novel resolution strategy as applied to racemic α-amino acids in the solid state. The strategy is based on the possibility that second order asymmetric transformations (SOAT) would be more likely in the case of achiral molecules that form chiral crystals (i.e. a non- centrosymmetric space group).1 In such cases, a fundamental requirement of SOAT – that the molecules racemise in solution prior to crystallization – is obviated. Furthermore, the resulting enantiomerically-enriched crystals may be employed to effect a solid-state kinetic resolution of a different racemate (composed of chiral molecules). This strategy was explored with crystalline succinic anhydride (1, Scheme 1), which not only exists in a non-centrosymmetric space group (P212121) but also possesses reactive functionality to effect the resolution step.2 Thus, a finely-ground mixture of 1 (0.5 eqiv.) and a racemic α-amino acid (2, 1.0 eqiv.) was heated at ~ 70 oC over ~ 5 h without solvent. The resulting N-succinoyl derivative (3) was separated from the unreacted 2, which was found to possess significant levels of optical purity (typically ~ 70%). The strategy was applied to several common α-amino acids, the results being summarized in Table 1. These results, apart from establishing ‘proof-of-concept’ and the viability of the resolution strategy, indicate that crystalline succinic anhydride (1) is enantiomerically enriched as originally hypothesized. Chapter II. ‘Enantiospecific Alkylation and Desymmetrisations’. This deals with two enolate-mediated strategies of asymmetric synthesis: one describes approaches towards the alkylation of the stereogenic centre in benzoin without loss of stereogenicity (Section A), and the other the desymmetrisation of a meso tartarate derivative with a chiral base catalyst (Section B). Section A. This describes exploratory studies aimed at achieving the enantiospecific α-alkylation of optically-active benzoin (4, Scheme 2) via its enolate anion 5. The strategy depends on the possibility that 5 would exist in atropisomeric forms, because of steric interactions between the vicinal phenyl groups. (This is indicated in the crystal structure of the analogous enediol carbonate derived from racemic 4.)3 In such a case, remarkably, 5 would be chiral, despite its planar enediolate core! Thus, possibly, the configurational chirality in 4 (by virtue of the C2 stereogenic centre) would be transformed to the helical chirality in 5 (by virtue of the atropisomerism). Furthermore, enantioface-selective alkylation of 5 with achiral alkylating agents would, in principle, be possible. Preliminary studies were then directed towards establishing that controlled deprotonation of optically-active 4, followed by the protonation of the resulting enediolate 5, leads back to the original 4. (+)-Benzoin (4) was prepared via resolution,4 and deprotonated with KH in THF.5 The resulting enediolate (5) was neutralized with acetic acid at -70 oC/THF to recover 4, but with insignificant levels of optical activity (e.e. ~ 12%). The results possibly indicate that ortho-substituted benzoin analogs may show greater retention of chirality upon deprotonation, as the racemisation of the enediolate atropisomers would be suppressed by steric hindrance between the aryl moities. Section B. This describes studies directed towards the catalytic desymmetrisation of meso dimethyl tartarate (6, Scheme 3). The strategy involves the formation of the acetonide derivative 7 and its regioselective α-deprotonation with a chiral base catalyst. The enantioface-selective protonation of the resulting enolate (8) would lead to the chiral analog 9. The overall sequence offers a possible alternative to catalytic deracemisation, which is normally unviable for thermodynamic reasons.6 The above strategy hinges on the meso derivative 7 being thermodynamically less stable than the enantiomeric 9, which would thus be favoured at equilibrium. In fact, this is likely as the eclipsing interactions between the syn ester moieties in 7 would be relieved in 9, in which the ester moieties are anti. However, deprotonation of 7 at the other α position would compete to varying extents, depending on the selectivity induced by the chiral base. At total equilibrium, the sequence would occur via deprotonation at both α sites at equal rates, and no net optical induction would be observed. (This is a thermodynamic requirement via the principle of microscopic reversibility.) Thus, the success of the above strategy depends on stalling the deprotonation-protonation sequence at a quasi-equilibrium stage involving only one of the enantiomers (9).6 The other operational requirement was the compatibility of the pKa’s of 7 and the chiral base employed: too low a pKa of the base would result in inefficient deprotonation and slow overall rate, but a high pKa would generate a large quantity of the enolate 8 at equilibrium. After due consideration, the lithiated chiral fluorene derivative 11 (pKa ~ 22) was chosen as the chiral base catalyst [11 was prepared from fluorene (10) as indicated]. Treating 7 with 0.2 equivalent of 10 in THF at -65 oC over 2 h, led to the formation of a mixture of 7 and 9 in a 45:55 ratio (isolated in 85% total yield). Chromatographic separation of the mixture led to the isolation of pure (+)-9, which was identified spectrally; it was found to possess [α]D24 = +21.84 (c 1.0, CHCl3), corresponding to e.e. = 64%. (This implies the indicated (4S, 5S) configuration for 1, 3-dioxolane 9, as previously reported.)7 These results, despite the moderate e.e. levels obtained, indicate the viability of the above catalytic desymmetrisation strategy, bearing in mind the mechanistic ambiguities mentioned above. PART II SYNTHESES OF ALDEHYDES AND AMINO ACIDS Chapter III. ‘An Asymmetric Synthesis of Aldehydes’. This describes an oxazoline approach to the synthesis of chiral aldehydes. The oxazoline methodology for the synthesis of homochiral α-alkylated carboxylic acids is well known,8 and it was of interest to adapt this to the synthesis of the corresponding aldehydes. Essentially, it was envisaged that the reaction sequence could be diverted towards aldehydes via reduction of the alkylated oxazoline intermediate (Scheme 4). Thus, 2-ethyl-4(S)-methoxymethyl-5(R)-phenyl-1,3-oxazoline (12) was deprotonated with lithium diisopropylamide in THF, and the resulting anion treated with various alkyl halides, in the reported manner.8 The resulting alkylated product (13) was N-methylated with MeI in refluxing MeNO2 over 6 h, to obtain the quaternary salt 14. This was reduced with NaBH4 in MeOH to obtain the expected N- methyl oxazolidine 15, which was hydrolyzed in refluxing aqueous oxalic acid to the free aldehydes 16. These were isolated in moderate yields and e.e. values as shown. Chapter IV. ‘A Darzens Route to α-Amino Acids’. This describes a novel route to α-amino acids, based on the classical Darzens glycidic ester synthesis.9 In this approach (Scheme 5), the glycidic ester (19) was prepared from benzaldehyde (17) and t-butyl bromoformate (18), with KOH in THF as base, and tetrabutylammonium bromide (TBAB) as phase transfer catalyst.9b The oxirane ring in 19 was cleaved via nucleophilic attack with an amine (20), to furnish the two regio-isomeric hydroxy- amino acids (21) and (22). Generally, the β-hydroxy-α-amino acid product (21) predominated over the α-hydroxy-β-amino acid product (22), the two being separated chromatographically. The hydroxyl group in 21 was reductively cleaved via its xanthate derivative (23), by refluxing it in toluene with AIBN (10 mol %) over 4 h. The resulting α-amino acid derivatives (24) were obtained in moderate yields (< 60 %) upon chromatographic purification. (The β-amino analog 22, would lead to the corresponding β-amino acid, but this was not pursued further.) This strategy lends itself to creating structural diversity at the β-centre in the α- amino acid, drawing upon the wide scope of the well-established Darzens condensation reaction. Also, the introduction of the amino moiety is facilitated by the enhanced reactivity at the α-centre of the oxirane ring in the glycidic ester (19), presumably for both electronic and steric reasons.
APA, Harvard, Vancouver, ISO, and other styles
34

Kolishetti, Nagesh. "Functional Derivatives Of MEHPPV Using The Dithiocarbamate Precursor Route." Thesis, 2006. https://etd.iisc.ac.in/handle/2005/445.

Full text
Abstract:
Emissive conjugated polymers, namely PPV, PPP, polyfluorenes, etc, have gained considerable attention in recent times, specifically because of their potential application in the fields of PLED’s, displays, FET’s and sensors. The main target of the present work is the synthesis and utilization of dithiocarbamate (DTC) precursor polymers for: (a) generation of segmented conjugated polymers of poly[2-methoxy-5-((2'-ethylhexyl)oxy)-1,4- phenylenevinylene], MEHPPV-x, for color control and the study of their thermal elimination kinetics, (b) modulating phase separation and energy transfer in MEHPPV-x blends, (c) generation of tunable two-color patterns of conjugated polymers and (d) modification of the precursor polymer backbone by grafting and the study of its fluorescence modulation in the presence of different probe molecules. In the first part of this work, various dithiocarbamate (DTC) precursor copolymers, MDP-x, containing two types of leaving groups viz. methoxy and diethyldithiocarbamate with precise control over the DTC composition, were synthesized. Thermal elimination of these precursor polymers generated segmented MEHPPV with controlled conjugation, and hence the tuning of color from green to red is achieved (figure 1). These copolymers were synthesized via a modified Wessling’s route previously developed in our laboratory.1 The advantage of the DTC precursor over the acetate and xanthate precursor routes was that the elimination can be carried out at lower temperature (160OC) for the generation of segmented MEHPPV-x.2 (Figure 1) Kinetic parameters, namely activation energy (Ea) and pre-exponential factor (A), associated with the thermal elimination process of MDP-x to MEHPPV-x were determined in solution and as well as in thin films by following the evolution of the absorption spectra during the elimination process (figure 2). It was seen that the activation energy required for the elimination process was similar in both thin film and solution, whereas the pre-exponential factor was two order magnitude higher in thin films.2 This fact holds good for all the DTC compositions investigated. The thermal degradation products, carbon disulphide and diethyl amine, were analyzed using a mass spectrometer coupled with TGA instrument, confirming the selective elimination of the DTC groups. (Figure 2) Phase separation and energy transfer characteristics of segmented MEHPPV blends containing two different distributions of conjugation lengths, namely MEHPPV-8 (LC) and MEHPPV-100 (HC), were investigated using FL, UV and confocal fluorescence microscopic studies (figure 3). The phase separation and energy transfer in blends of the HC and LC were (Figure 3) modulated by addition of selective non-solvent for HC, namely cyclohexane, to the film casting solution. Typically, the extent of energy transfer to HC from LC is reduced in the presence of high volume fraction of cyclohexane.3 A novel way to generate two-color patterned substrates of MEHPPV was developed based on the control of “molecular conjugation length” using standard photo-acid generator based photolithographic methods (figure 4). This approach relies on the use of a single precursor containing controllable amounts of two types of thermally eliminatable groups, only one of which eliminates in the presence of an acid while the other that is labile even in its absence. An important feature of this approach is that the colour of the unexposed regions can be controlled by varying the composition of the MDP-x precursor. (Figure 4) Benzyl diethyl dithiocarbamate (BDTC) is known to act as iniferter (initiator-transfer agent and terminator). MDP-x precursor polymers, which contain similar benzyl dithiocarbamate groups, were used as macro-iniferter for grafting various acrylates, viz, (Figure 5) methyl acrylate, benzoyloxy ethyl acrylate and t-butyl acrylate, on to the precursor backbone, which resulted in MEHPPV-g-polyacrylate after acid catalyzed thermal elimination of the residual methoxy groups (figure 5).4 The t-butyl acrylate-grafted precursor polymers, namely, MDP-g-PtBA on thermal elimination in presence of acid underwent simultaneous acid-catalyzed thermal elimination as well as the complete hydrolysis of the t-butyl groups, leading to the formation of water soluble MEHPPV-grafted with polyacrylic acid chains, namely MEHPPV-g-PAA (figure 6). These PAA-grafted MEHPPV’s were shown to respond to various probe molecules and their optical responses were studied using fluorescence spectroscopy. These polymers could sense methyl viologen at very low concentrations. Single-tail ammonium surfactants and non-ionic surfactant, like triton-X-100, caused a dramatic enhancement of fluorescence in solution, due to the modulation of the conjugated backbone conformation, and as a consequence the break up of intra-chain inter-chromophore excitons (figure 6). (Figure 6) Fof figures and molecular formula pl see the original thesis)
APA, Harvard, Vancouver, ISO, and other styles
35

Kolishetti, Nagesh. "Functional Derivatives Of MEHPPV Using The Dithiocarbamate Precursor Route." Thesis, 2006. http://hdl.handle.net/2005/445.

Full text
Abstract:
Emissive conjugated polymers, namely PPV, PPP, polyfluorenes, etc, have gained considerable attention in recent times, specifically because of their potential application in the fields of PLED’s, displays, FET’s and sensors. The main target of the present work is the synthesis and utilization of dithiocarbamate (DTC) precursor polymers for: (a) generation of segmented conjugated polymers of poly[2-methoxy-5-((2'-ethylhexyl)oxy)-1,4- phenylenevinylene], MEHPPV-x, for color control and the study of their thermal elimination kinetics, (b) modulating phase separation and energy transfer in MEHPPV-x blends, (c) generation of tunable two-color patterns of conjugated polymers and (d) modification of the precursor polymer backbone by grafting and the study of its fluorescence modulation in the presence of different probe molecules. In the first part of this work, various dithiocarbamate (DTC) precursor copolymers, MDP-x, containing two types of leaving groups viz. methoxy and diethyldithiocarbamate with precise control over the DTC composition, were synthesized. Thermal elimination of these precursor polymers generated segmented MEHPPV with controlled conjugation, and hence the tuning of color from green to red is achieved (figure 1). These copolymers were synthesized via a modified Wessling’s route previously developed in our laboratory.1 The advantage of the DTC precursor over the acetate and xanthate precursor routes was that the elimination can be carried out at lower temperature (160OC) for the generation of segmented MEHPPV-x.2 (Figure 1) Kinetic parameters, namely activation energy (Ea) and pre-exponential factor (A), associated with the thermal elimination process of MDP-x to MEHPPV-x were determined in solution and as well as in thin films by following the evolution of the absorption spectra during the elimination process (figure 2). It was seen that the activation energy required for the elimination process was similar in both thin film and solution, whereas the pre-exponential factor was two order magnitude higher in thin films.2 This fact holds good for all the DTC compositions investigated. The thermal degradation products, carbon disulphide and diethyl amine, were analyzed using a mass spectrometer coupled with TGA instrument, confirming the selective elimination of the DTC groups. (Figure 2) Phase separation and energy transfer characteristics of segmented MEHPPV blends containing two different distributions of conjugation lengths, namely MEHPPV-8 (LC) and MEHPPV-100 (HC), were investigated using FL, UV and confocal fluorescence microscopic studies (figure 3). The phase separation and energy transfer in blends of the HC and LC were (Figure 3) modulated by addition of selective non-solvent for HC, namely cyclohexane, to the film casting solution. Typically, the extent of energy transfer to HC from LC is reduced in the presence of high volume fraction of cyclohexane.3 A novel way to generate two-color patterned substrates of MEHPPV was developed based on the control of “molecular conjugation length” using standard photo-acid generator based photolithographic methods (figure 4). This approach relies on the use of a single precursor containing controllable amounts of two types of thermally eliminatable groups, only one of which eliminates in the presence of an acid while the other that is labile even in its absence. An important feature of this approach is that the colour of the unexposed regions can be controlled by varying the composition of the MDP-x precursor. (Figure 4) Benzyl diethyl dithiocarbamate (BDTC) is known to act as iniferter (initiator-transfer agent and terminator). MDP-x precursor polymers, which contain similar benzyl dithiocarbamate groups, were used as macro-iniferter for grafting various acrylates, viz, (Figure 5) methyl acrylate, benzoyloxy ethyl acrylate and t-butyl acrylate, on to the precursor backbone, which resulted in MEHPPV-g-polyacrylate after acid catalyzed thermal elimination of the residual methoxy groups (figure 5).4 The t-butyl acrylate-grafted precursor polymers, namely, MDP-g-PtBA on thermal elimination in presence of acid underwent simultaneous acid-catalyzed thermal elimination as well as the complete hydrolysis of the t-butyl groups, leading to the formation of water soluble MEHPPV-grafted with polyacrylic acid chains, namely MEHPPV-g-PAA (figure 6). These PAA-grafted MEHPPV’s were shown to respond to various probe molecules and their optical responses were studied using fluorescence spectroscopy. These polymers could sense methyl viologen at very low concentrations. Single-tail ammonium surfactants and non-ionic surfactant, like triton-X-100, caused a dramatic enhancement of fluorescence in solution, due to the modulation of the conjugated backbone conformation, and as a consequence the break up of intra-chain inter-chromophore excitons (figure 6). (Figure 6) Fof figures and molecular formula pl see the original thesis)
APA, Harvard, Vancouver, ISO, and other styles
36

Modak, Arindam. "Designing The Functional Building Blocks For Syntheses Of Organic And Organic-Inorganic Hybrid Porous Materials." Thesis, 2019. http://hdl.handle.net/10821/8309.

Full text
Abstract:
The research embodied in the present thesis entitled “Designing The Functional Building Blocks For Syntheses Of Organic And Organic-Inorganic Hybrid Porous Materials” deals with synthesis and characterization of several novel nanoporous organic and hybrid organicinorganic materials and their applications in the field of gas adsorption and storage, heterogeneous catalysis, ion-exchange, chromatography and so on. Template directed synthesis of phloroglucinol diimine functionalized pore wall has been developed and showed as outstanding catalytic support for metal mediated catalysis. Further surfactant templating approach for allylic polymerization of Triazine based monomer for the formation of pure organic polymer with hexagonal arrangement of mesopores has been shown to have excellent scaffold for metal mediated catalysis. On the other hand porphyrin functionalized pure organic polymers are synthesized which act as good sorbent for adsorption and storage of CO2; thereby largely contributes to curb global pollution.
The research was carried out under the supervision of Prof. Asim Bhaumik of the Materials Science division under SMS [School of Materials Sciences]
The research was conducted under CSIR fellowship and research grant
APA, Harvard, Vancouver, ISO, and other styles
37

Mukherjee, Sanjoy. "Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3933.

Full text
Abstract:
Luminescent materials find numerous applications in recent times and have enriched human lives in several different ways. From display and lighting technologies to security, sensing and biological investigations, luminescent organic compounds have become indispensible and often preferred over their inorganic counterparts. The versatility of organic materials arises from their comparative low costs, ease of fine-tuning, low toxicity and the possibility to develop flexible devices. Even until very recent times, the investigations and usage of organic luminescent materials were mostly limited to solution-state properties. However, with progress of available characterisation techniques and parallel development of their usage in solid-state devices and other applications (e.g. security, forensics, sensing etc.), significantly greater attention has been paid to the development and investigations of solid-state emissive organic materials. In solid-state applications, apart from the molecular properties of any given material, their cumulative i.e. bulk physical properties are of even greater importance. Thus, investigations of structure-property relationships in organic luminescent compounds to understand their molecular and bulk properties are of fundamental interest. In this thesis, NPI (1,8-naphthalimide) and BODIPY (boron-dipyrromethene) dyes were investigated to provide a broad overview of their structure-property correlations. Among commonly encountered organic luminescent materials, NPIs and BODIPYs have emerged as two broad classes of luminescent organic compounds, finding applications as functional luminescent materials in various fields. However, lack of understanding for controlling the cumulative emissive properties of these compounds has limited their usage as active solid-state emitters in various applications. This thesis presents several new insights into the molecular and bulk emissive properties of these two classes of luminescent dyes (NPIs and BODIPYs). The contents of the six chapters contained in this thesis are summarised below. Chapter 1 summarises the available understanding of the basic concepts of photoluminescence and the design strategies to develop solid-state luminescent and AIE (aggregation-induced emission) active materials. This chapter also emphasises in the basic nature of the NPI and BODIPY compounds, their substitution patterns and their inherent characteristics and touches upon the relatively unexplored properties of NPI and BODIPY based materials. The importance and scope of the work reported in the thesis is outlined at the end of the chapter. Chapter 2 describes a detailed investigation of a series of seven (4-oxoaryl substituted) NPI compounds (1-7) providing an insight into the molecular and cumulative photophysical behaviour of these compounds. The low ICT characteristics of the NPIs, coupled with the twisted geometry, facilitated solid-state luminescence in these materials. The solution and solid-state luminescent properties of these compounds can be directly correlated to their structural rigidity, nature of substituents and solid-state intermolecular interactions (e.g. π-π stacking, C-H•••O interactions etc.). The solid-state crystal structures of the NPI siblings are profoundly affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric π-π stacking interactions in the solid-state which can further extend in parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4′ substituents. Structural investigations including Hirsfeld surface analysis methods reveal that while strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in the solid-state. DFT computational studies were utilized to understand the molecular and cumulative electronic behavior of the NPIs. Apart from the investigation of solid-state luminescence, other functional potentials of these NPIs were also explored. One of the compounds (i.e. 4) shows chemodosimetric response towards aqueous Hg(II) species with a ‘turn-on’ response. Also, depending on the molecular flexibility of the compounds, promising AIEE (aggregation-induced emission enhancement) features were observed in these NPIs. Later (in Chapter 3), we developed a systematic investigation in a series of purely organic NPIs, restricting various parameters, to attain a thorough understanding of such AIEE properties. Chapter 3 describes a detailed experimental and computational study in order gain an insight into the AIE (aggregation-induced emission) and AIEE mechanisms in NPI compounds. Systematic structural perturbation was used to fine tune the luminescence properties of three new 1,8-naphthalimides (8-10) in solution and as aggregates. The NPIs (8-10) show blue emission in solution state and the fluorescence quantum yields depend on their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to result in quenching of fluorescence. In contrast, upon aggregation (in THF:H2O mixtures), two of the NPIs show aggregation-induced-emission-enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (~10-12.7 %). The AIEE behaviors of the NPIs depend on their molecular rigidity and nature of intermolecular interactions. The NPIs (8-10) show different extents of intermolecular (π-π and C-H•••O) interactions in their solid-state structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that only an optimal balance of structural flexibility and intermolecular communication is the effective recipe for achieving AIEE characteristics in these NPIs. Chapter 4 presents the design, synthesis and detailed investigations and potential applications of a series of NPI-BODIPY dyads (11-13). The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges and the compounds only differ structurally with respect to methyl substitutions on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in these molecular dyads (11- 13). Dyads 11-13 show dual emission in solution state originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibility of the systems. The dyads also show significant AIES (Aggregation-Induced-Emission Switching) features upon formation of nano-aggregates in THF-H2O mixtures with visual changes in emission from green to red color. Whereas the flexible and aggregation prone system (i.e. compound 11) shows aggregation-induced enhancement of emission, rigid systems with less favorable intermolecular interactions (i.e. compound 12-13) show aggregation-induced quenching of emission. The emission-intensity vs. the structural-flexibility correlations were found to be reverse in solution and aggregated states. Photophysical and structural investigations suggest that the intermolecular interactions (e.g. π-π stacking etc.) play major role in controlling emission of these compounds in aggregated states. Similar trends were also observed in the solid-state luminescence of these compounds. The applications of the luminescent dyads 11-13 as live-cell imaging dyes was also investigated. Chapter 5 describes investigations of photophysical properties of a series of six BODIPY dyes (14-19) in which there is a systematic alteration of a common -C6H4Si(CH3)3 substituent. Inrelated constitutional isomers, the systematic increment of steric congestion and lowering of molecular symmetry around the BODIPY core result in a steady increment of solution and solid- state fluorescence quantum yields. The increasing fluorescence quantum yields (solution, solid state) with increasing steric congestions show that the molecular free rotation and aggregation-induced fluorescence quenching of BODIPYs can be successfully suppressed by lowering the flexibility of the molecules. Photophysical and DFT investigations reveal that the electronic band gap in any set of these constitutional isomers remain almost similar. However, the crystal structures of the compounds reveal that the solid-state colour and quantum yields of the compounds in solid-state are also related to the nature of intermolecular interactions. Chapter 6 demonstrates the use of DFT computational methods to understand the effect of alkyl groups in governing the basic structural and electronic aspects of BODIPY dyes. As demonstrated in Chapter 4 and Chapter 5, apparently electronically inactive alkyl groups can be of immense importance to control the overall photophysics of BODIPYs. In this context, a systematic strategy su was utilized considering all possible outcomes of constitutionally-isomeric molecules to understand the effects of alkyl groups on the BODIPY molecules. Four different computational methods were employed to ascertain the unanimity of the observed trends associated with the molecular properties. In line with experimental observations, it was found that alkyl substituents in BODIPY dyes situated at 3/5-positions effectively participate in stabilization as well as planarization of such molecules. Screening of all the possible isomeric molecular systems was used to understand the individual properties and overall effects of the typical alkyl substituents in controlling several basic properties of such BODIPY molecules.
APA, Harvard, Vancouver, ISO, and other styles
38

Mukherjee, Sanjoy. "Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material." Thesis, 2015. http://etd.iisc.ernet.in/2005/3933.

Full text
Abstract:
Luminescent materials find numerous applications in recent times and have enriched human lives in several different ways. From display and lighting technologies to security, sensing and biological investigations, luminescent organic compounds have become indispensible and often preferred over their inorganic counterparts. The versatility of organic materials arises from their comparative low costs, ease of fine-tuning, low toxicity and the possibility to develop flexible devices. Even until very recent times, the investigations and usage of organic luminescent materials were mostly limited to solution-state properties. However, with progress of available characterisation techniques and parallel development of their usage in solid-state devices and other applications (e.g. security, forensics, sensing etc.), significantly greater attention has been paid to the development and investigations of solid-state emissive organic materials. In solid-state applications, apart from the molecular properties of any given material, their cumulative i.e. bulk physical properties are of even greater importance. Thus, investigations of structure-property relationships in organic luminescent compounds to understand their molecular and bulk properties are of fundamental interest. In this thesis, NPI (1,8-naphthalimide) and BODIPY (boron-dipyrromethene) dyes were investigated to provide a broad overview of their structure-property correlations. Among commonly encountered organic luminescent materials, NPIs and BODIPYs have emerged as two broad classes of luminescent organic compounds, finding applications as functional luminescent materials in various fields. However, lack of understanding for controlling the cumulative emissive properties of these compounds has limited their usage as active solid-state emitters in various applications. This thesis presents several new insights into the molecular and bulk emissive properties of these two classes of luminescent dyes (NPIs and BODIPYs). The contents of the six chapters contained in this thesis are summarised below. Chapter 1 summarises the available understanding of the basic concepts of photoluminescence and the design strategies to develop solid-state luminescent and AIE (aggregation-induced emission) active materials. This chapter also emphasises in the basic nature of the NPI and BODIPY compounds, their substitution patterns and their inherent characteristics and touches upon the relatively unexplored properties of NPI and BODIPY based materials. The importance and scope of the work reported in the thesis is outlined at the end of the chapter. Chapter 2 describes a detailed investigation of a series of seven (4-oxoaryl substituted) NPI compounds (1-7) providing an insight into the molecular and cumulative photophysical behaviour of these compounds. The low ICT characteristics of the NPIs, coupled with the twisted geometry, facilitated solid-state luminescence in these materials. The solution and solid-state luminescent properties of these compounds can be directly correlated to their structural rigidity, nature of substituents and solid-state intermolecular interactions (e.g. π-π stacking, C-H•••O interactions etc.). The solid-state crystal structures of the NPI siblings are profoundly affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric π-π stacking interactions in the solid-state which can further extend in parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4′ substituents. Structural investigations including Hirsfeld surface analysis methods reveal that while strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in the solid-state. DFT computational studies were utilized to understand the molecular and cumulative electronic behavior of the NPIs. Apart from the investigation of solid-state luminescence, other functional potentials of these NPIs were also explored. One of the compounds (i.e. 4) shows chemodosimetric response towards aqueous Hg(II) species with a ‘turn-on’ response. Also, depending on the molecular flexibility of the compounds, promising AIEE (aggregation-induced emission enhancement) features were observed in these NPIs. Later (in Chapter 3), we developed a systematic investigation in a series of purely organic NPIs, restricting various parameters, to attain a thorough understanding of such AIEE properties. Chapter 3 describes a detailed experimental and computational study in order gain an insight into the AIE (aggregation-induced emission) and AIEE mechanisms in NPI compounds. Systematic structural perturbation was used to fine tune the luminescence properties of three new 1,8-naphthalimides (8-10) in solution and as aggregates. The NPIs (8-10) show blue emission in solution state and the fluorescence quantum yields depend on their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to result in quenching of fluorescence. In contrast, upon aggregation (in THF:H2O mixtures), two of the NPIs show aggregation-induced-emission-enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (~10-12.7 %). The AIEE behaviors of the NPIs depend on their molecular rigidity and nature of intermolecular interactions. The NPIs (8-10) show different extents of intermolecular (π-π and C-H•••O) interactions in their solid-state structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that only an optimal balance of structural flexibility and intermolecular communication is the effective recipe for achieving AIEE characteristics in these NPIs. Chapter 4 presents the design, synthesis and detailed investigations and potential applications of a series of NPI-BODIPY dyads (11-13). The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges and the compounds only differ structurally with respect to methyl substitutions on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in these molecular dyads (11- 13). Dyads 11-13 show dual emission in solution state originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibility of the systems. The dyads also show significant AIES (Aggregation-Induced-Emission Switching) features upon formation of nano-aggregates in THF-H2O mixtures with visual changes in emission from green to red color. Whereas the flexible and aggregation prone system (i.e. compound 11) shows aggregation-induced enhancement of emission, rigid systems with less favorable intermolecular interactions (i.e. compound 12-13) show aggregation-induced quenching of emission. The emission-intensity vs. the structural-flexibility correlations were found to be reverse in solution and aggregated states. Photophysical and structural investigations suggest that the intermolecular interactions (e.g. π-π stacking etc.) play major role in controlling emission of these compounds in aggregated states. Similar trends were also observed in the solid-state luminescence of these compounds. The applications of the luminescent dyads 11-13 as live-cell imaging dyes was also investigated. Chapter 5 describes investigations of photophysical properties of a series of six BODIPY dyes (14-19) in which there is a systematic alteration of a common -C6H4Si(CH3)3 substituent. Inrelated constitutional isomers, the systematic increment of steric congestion and lowering of molecular symmetry around the BODIPY core result in a steady increment of solution and solid- state fluorescence quantum yields. The increasing fluorescence quantum yields (solution, solid state) with increasing steric congestions show that the molecular free rotation and aggregation-induced fluorescence quenching of BODIPYs can be successfully suppressed by lowering the flexibility of the molecules. Photophysical and DFT investigations reveal that the electronic band gap in any set of these constitutional isomers remain almost similar. However, the crystal structures of the compounds reveal that the solid-state colour and quantum yields of the compounds in solid-state are also related to the nature of intermolecular interactions. Chapter 6 demonstrates the use of DFT computational methods to understand the effect of alkyl groups in governing the basic structural and electronic aspects of BODIPY dyes. As demonstrated in Chapter 4 and Chapter 5, apparently electronically inactive alkyl groups can be of immense importance to control the overall photophysics of BODIPYs. In this context, a systematic strategy su was utilized considering all possible outcomes of constitutionally-isomeric molecules to understand the effects of alkyl groups on the BODIPY molecules. Four different computational methods were employed to ascertain the unanimity of the observed trends associated with the molecular properties. In line with experimental observations, it was found that alkyl substituents in BODIPY dyes situated at 3/5-positions effectively participate in stabilization as well as planarization of such molecules. Screening of all the possible isomeric molecular systems was used to understand the individual properties and overall effects of the typical alkyl substituents in controlling several basic properties of such BODIPY molecules.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography