Academic literature on the topic 'Chemistry, bioinorganic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chemistry, bioinorganic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chemistry, bioinorganic"

1

Vilar, Ramon. "Bioinorganic chemistry." Annual Reports Section "A" (Inorganic Chemistry) 105 (2009): 477. http://dx.doi.org/10.1039/b818285j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McMaster, J. "Bioinorganic chemistry." Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 564. http://dx.doi.org/10.1039/b514851k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Que, Lawrence, and Lucia Banci. "Bioinorganic chemistry." Current Opinion in Chemical Biology 6, no. 2 (April 2002): 169–70. http://dx.doi.org/10.1016/s1367-5931(02)00316-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Broderick, J. "Bioinorganic chemistry." Current Opinion in Chemical Biology 7, no. 2 (April 2003): 157–59. http://dx.doi.org/10.1016/s1367-5931(03)00030-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brauman, J. "Bioinorganic chemistry." Science 261, no. 5122 (August 6, 1993): 663. http://dx.doi.org/10.1126/science.8342030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sola, Marco. "Bioinorganic chemistry." Inorganica Chimica Acta 230, no. 1-2 (March 1995): 253–54. http://dx.doi.org/10.1016/0020-1693(95)90533-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raven, Emma, Nicholas E. Le Brun, Jonathan McMaster, Jan Reedijk, and Nigel J. Robinson. "Bioinorganic chemistry." Dalton Transactions 42, no. 9 (2013): 3027. http://dx.doi.org/10.1039/c2dt90214a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berg, Jeremy M., and Stephen J. Lippard. "Bioinorganic chemistry." Current Opinion in Chemical Biology 8, no. 2 (April 2004): 160–61. http://dx.doi.org/10.1016/j.cbpa.2004.02.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Theil, Elizabeth C., and H. Holden Thorp. "Bioinorganic chemistry." Current Opinion in Chemical Biology 9, no. 2 (April 2005): 95–96. http://dx.doi.org/10.1016/j.cbpa.2005.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rosenzweig, Amy C., and David M. Dooley. "Bioinorganic chemistry." Current Opinion in Chemical Biology 10, no. 2 (April 2006): 89–90. http://dx.doi.org/10.1016/j.cbpa.2006.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chemistry, bioinorganic"

1

Brophy, Megan Brunjes. "Bioinorganic Chemistry of the Human Host-Defense Protein Calprotectin." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98823.

Full text
Abstract:
Thesis: Ph. D. in Biological Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2015.
Vita. Cataloged from PDF version of thesis.
Includes bibliographical references.
The human innate immune system responds to bacterial and fungal pathogens by releasing the metal-chelating protein calprotectin (CP) at sites of infection and in the upper layers of the epidermis. CP is a Mn(II)- and Zn(ll)-binding protein. The work described in this thesis elucidates the metal-binding properties of CP, and correlates these properties with in vitro growth inhibition of bacteria and fungi. We report that the metal-binding properties of CP are modulated by Ca(ll), and we propose a working model in which CP responds to physiological Ca(Il)-ion gradients to become a potent Zn(ll)- and Mn(Il)-chelating agent in the extracellular space. Individual chapter summaries follow. Chapter 1: Bioinorganic Chemistry of the Host Pathogen Interaction. Transition metal ions are required for all forms of life. During the course of infection, pathogenic microorganisms must acquire transition metals from the host. Three metals of interest from this standpoint are iron, zinc, and manganese. This chapter describes bacterial metal-ion homeostasis machineries, and metal-requiring processes with a focus on Zn(II) and Mn(II). This chapter then highlights the S100 family of Ca(ll)-binding proteins and discuses the Zn(Il)-, Cu(ll)-, and Mn(Il)-binding properties of S100B, S100A12, S100A7, S10OA15, and S100A8/S100A9. Finally, an overview of the scope of this thesis is presented. Chapter 2: Calcium Ion Gradients Modulate the Zinc(Il) Affinity and Antibacterial Activity of Human Calprotectin. Calprotectin (CP) is a human neutrophil protein that is produced and released by neutrophils at sites of infection, where it prevents the growth of microorganisms by sequestering bioavailable zinc(II) and manganese(II). In this chapter, we present metalbinding studies to elucidate the Zn(ll)-binding properties of CP. We report unique optical absorption and EPR spectroscopic signatures for the interfacial His 3Asp and His 4 sites of human CP by using Co(II) as a spectroscopic probe. Zinc competition titrations employing colorimetric and fluorimetric Zn(II) sensors establish that CP coordinates two Zn(II) ions / CP heterodimer. The Ca(ll)-insensitive Zn(ll) sensor ZP4 is used to determine the Kd of CP for Zn(II) in Ca(Il)-deplete and Ca(Il)-replete conditions. These competition titrations afford apparent Kdsitel = 133 58 pM and Kdsite2 = 185 219 nM in the absence of Ca(II). In the presence of excess Ca(Il) these values decrease to Kd,sitel 5 10 pM and Kd,site2 : 240 pM. In vitro antibacterial assays indicate that the metal-binding sites and Ca(ll)-replete conditions are required to inhibit the growth of Gram-negative and Gram-positive bacteria. We propose a model in which Ca(II) ion gradients modulate the antibacterial activity and Zn(Il)-binding properties of human CP. Chapter 3: High-Affinity Manganese Coordination by Human Calprotectin Is Calcium- Dependent and Requires the Histidine-Rich Site at the Dimer Interface. In this chapter, we report that the His 4 motif at the S10OA8/S100A9 dimer interface of CP is required for high-affinity Mn(II) coordination. We identify a low-temperature EPR spectroscopic signal for this site that is consistent with high-spin Mn(II) in an octahedral coordination sphere. This site could be simulated with zero-field splitting parameters D = 270 MHz and EID = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that (A8)Hisl7, (A8)His27, (A9)His9l, (A9)His95 and two as-yet unidentified ligands coordinate Mn(ll) at site 2. These studies support a model in which CP responds to Ca(ll) ion gradients to become a potent metal-ion chelator in the extracellular space. Chapter 4: Contributions of the C-terminal Tail of S100A9 to High-Affinity Manganese Binding by Human Calprotectin. This chapter examines the role of the S100A9 C-terminal tail to high-affinity Mn(ll) coordination by human CP. We present a 16-member mutant family with mutations in the S100A9 C-terminal tail (residues 96-114), which houses three histidine and four acidic residues, to evaluate its contribution to Mn(ll) sequestration. These studies confirm that two His residues at positions 103 and 105 complete the octahedral coordination sphere of CP in solution. Appendix 1: Sequence Alignments of Transition-Metal Binding S100 Proteins. Sequence alignments of S100A7, S100A8, S100A9, S100A12, S100A15, and S100B proteins from multiple organisms are presented. Appendix 2: Characterization of CP Mutant Proteins by Circular Dichroism and Analytical Size Exclusion Chromatography. Additional characterization of CP and mutant proteins employed in Chapters 2-4 is presented. Appendix 3: Structures of Sensors Used In this Work. The structures of Zincon, MagFura-2, Zinpyr-1, and Zinpyr-4 are presented. Appendix 4: Manganese Binding Properties of Human Calprotectin under Conditions of High and Low Calcium. This appendix represents a collaborative work with the Drennan Lab (MIT) and Britt Lab (UC Davis) to study the Mn(Il)-CP complex in low- and high-Ca(II) conditions. We report a crystal structure of Mn(Il)-, Ca(Il)-, and Na(l)-bound CP with Mn(II) exclusively coordinated to the His6 motif. Electron spin-echo envelope modulation and electron-nuclear double resonance experiments demonstrate that the six coordinating histidine residues are spectroscopically equivalent. The observed 15N ( = %/h)y perfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating E-nitrogen of the imidazole ring of each histidine (A = [3.45, 3.71, 5.91] MHz) and the distal 6-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the affinity of CP for Mn(II) drops by two to three orders of magnitude, and Mn(II) coordinates to the His6 site as well as other sites on the protein.
by Megan Brunjes Brophy.
Ph. D. in Biological Chemistry
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Siu-cheong. "Bioinorganic chemistry of antimony : interaction of antimonial with biomolecules /." View the Table of Contents & Abstract, 2004. http://sunzi.lib.hku.hk/hkuto/record/B30575540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seifert, S., and J. Van Den Hoff. "Annual Report 2004 - Institute of Bioinorganic and Radiopharmaceutical Chemistry." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seifert, S., and H. Spies. "Annual Report 2003 - Institute of Bioinorganic and Radiopharmaceutical chemistry." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johannsen, Bernd, and Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2002." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johannsen, Bernd, and Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2001." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seifert, Sepp, and Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 2000." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-29716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Johannsen, Bernd, and Sepp Seifert. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1997." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-30891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seifert, Sepp, and Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1996." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-31238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seifert, Sepp, and Bernd Johannsen. "Institute of Bioinorganic and Radiopharmaceutical Chemistry; Annual Report 1995." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-31653.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Chemistry, bioinorganic"

1

Long, Eric C., and Michael J. Baldwin, eds. Bioinorganic Chemistry. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kessissoglou, Dimitris P., ed. Bioinorganic Chemistry. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Armstrong Fraser, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ivano, Bertini, ed. Bioinorganic chemistry. Mill Valley, Calif: University Science Books, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivano, Bertini, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1953-, Bill E., ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Philip, Aisen, ed. Bioinorganic chemistry. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

B, Goodenough J., Ibers J. A, Jørgensen C. K, Mingos D. M. P, Neilands J. B, Palmer G. A, Reinen D, Sadler P. J, Weiss Ronald 1937-, and Williams R. J. P, eds. Bioinorganic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alessio, Enzo, ed. Bioinorganic Medicinal Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thorp, H. Holden, and Vincent L. Pecoraro, eds. Mechanistic Bioinorganic Chemistry. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/ba-1995-0246.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chemistry, bioinorganic"

1

Roat-Malone, Rosette. "Bioinorganic Chemistry." In Molecular Life Sciences, 1–29. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_407-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roat-Malone, Rosette. "Bioinorganic Chemistry." In Molecular Life Sciences, 47–72. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weber, Birgit. "Bioinorganic Chemistry." In Coordination Chemistry, 215–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-66441-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jordan, Robert B. "Bioinorganic Chemistry." In Principles of Inorganic Chemistry, 823–52. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-22926-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Küpper, Frithjof C., and Peter M. H. Kroneck. "Iodine Bioinorganic Chemistry." In Iodine Chemistry and Applications, 555–89. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118909911.ch32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lippard, Stephen J. "Methane Monooxygenase." In Bioinorganic Chemistry, 1–12. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morgenstern-Badarau, Irene. "Magnetic and EPR Studies of Superoxide Dismutases (SOD): Electronic Structure of the Active Sites for the (Copper-Zinc)SOD, its Cobalt Substituted Derivative and the Iron(III)SOD from E. Coli." In Bioinorganic Chemistry, 105–11. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hadjiliadis, N., K. Dodi, and M. Louloudi. "Mechanism of Action of Thiamin Enzymes Role of Metal Ions." In Bioinorganic Chemistry, 113–28. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lippard, Stephen J. "Platinum Anticancer Drugs." In Bioinorganic Chemistry, 131–40. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sletten, Einar, and Nils Ăge Frøystein. "NMR Spectroscopic Structure Determination of Metal Ion — Oligonucleotide Complexes — The Results of Sequence-Selective Binding Studies." In Bioinorganic Chemistry, 141–53. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chemistry, bioinorganic"

1

Glass, Jennifer. "Planetary Metabolism: Linking Solid Interiors to Gaseous Biosignatures via Bioinorganic Chemistry." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bren, Kara. "2023 Metals in Biology Gordon Research Conference and Bioinorganic Chemistry Gordon Research Seminar." In The 2023 Metals in Biology Gordon Research Conference and Bioinorganic Chemistry Gordon Research Seminar took place at the Four Points Sheraton / Holiday Inn Express in Ventura, California from January 20-27, 2023. US DOE, 2023. http://dx.doi.org/10.2172/1973842.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chemistry, bioinorganic"

1

Raymond, Kenneth N. Marine Bioinorganic Chemistry Workshop Held in Heron Island on 28 June - 2nd July 1989. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada218348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drury, Owen Byron. Development of High Resolution X-Ray spectrometers for the Investigation of Bioinorganic Chemistry in Metalloproteins. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/957593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography