To see the other types of publications on this topic, follow the link: Chemically modified electrodes.

Journal articles on the topic 'Chemically modified electrodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemically modified electrodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kaya, Sariye I., Tutku C. Karabulut, Sevinç Kurbanoglu, and Sibel A. Ozkan. "Chemically Modified Electrodes in Electrochemical Drug Analysis." Current Pharmaceutical Analysis 16, no. 6 (July 1, 2020): 641–60. http://dx.doi.org/10.2174/1573412915666190304140433.

Full text
Abstract:
Electrode modification is a technique performed with different chemical and physical methods using various materials, such as polymers, nanomaterials and biological agents in order to enhance sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods are well suited for drug analysis, and they are all-purpose techniques widely used in environmental studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified electrodes are discussed in terms of modification techniques and agents, and recent studies related to chemically modified electrodes in electrochemical drug analysis are summarized.
APA, Harvard, Vancouver, ISO, and other styles
2

Guadalupe, Ana R., and Hector D. Abruna. "Electroanalysis with chemically modified electrodes." Analytical Chemistry 57, no. 1 (January 1985): 142–49. http://dx.doi.org/10.1021/ac00279a036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bonakdar, M., and Horacio A. Mottola. "Electrocatalysis at chemically modified electrodes." Analytica Chimica Acta 224 (1989): 305–13. http://dx.doi.org/10.1016/s0003-2670(00)86567-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Ziling, and Shaojun Dong. "Researches on chemically modified electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 233, no. 1-2 (September 1987): 19–27. http://dx.doi.org/10.1016/0022-0728(87)85002-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shaojun, Dong, and Li Fengbin. "Researches on chemically modified electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 217, no. 1 (January 1987): 49–63. http://dx.doi.org/10.1016/0022-0728(87)85063-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Rongzhong, and Shaojun Dong. "Research on chemically modified electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 246, no. 1 (May 1988): 101–17. http://dx.doi.org/10.1016/0022-0728(88)85054-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shaojun, Dong, and Li Fengbin. "Researches on chemically modified electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 210, no. 1 (October 1986): 31–44. http://dx.doi.org/10.1016/0022-0728(86)90313-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geno, Paul W., K. Ravichandran, and Richard P. Baldwin. "Chemically modified carbon paste electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 183, no. 1-2 (February 1985): 155–66. http://dx.doi.org/10.1016/0368-1874(85)85488-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dong, Shaojun, and Rongzhong Jiang. "Research on chemically modified electrodes." Journal of Molecular Catalysis 42, no. 1 (September 1987): 37–50. http://dx.doi.org/10.1016/0304-5102(87)85037-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chillawar, Rakesh R., Kiran Kumar Tadi, and Ramani V. Motghare. "Voltammetric Techniques at Chemically Modified Electrodes." Журнал аналитической химии 70, no. 4 (2015): 339–58. http://dx.doi.org/10.7868/s0044450215040180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wring, Stephen A., and John P. Hart. "Chemically modified, screen-printed carbon electrodes." Analyst 117, no. 8 (1992): 1281. http://dx.doi.org/10.1039/an9921701281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Guadalupe, Ana R., and Hector D. Abruña. "Organic Electroanalysis with Chemically Modified Electrodes." Analytical Letters 19, no. 15-16 (January 1986): 1613–32. http://dx.doi.org/10.1080/00032718608066311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chillawar, Rakesh R., Kiran Kumar Tadi, and Ramani V. Motghare. "Voltammetric techniques at chemically modified electrodes." Journal of Analytical Chemistry 70, no. 4 (March 21, 2015): 399–418. http://dx.doi.org/10.1134/s1061934815040152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Redepenning, Jody G. "Chemically modified electrodes: a general overview." TrAC Trends in Analytical Chemistry 6, no. 1 (January 1987): 18–22. http://dx.doi.org/10.1016/0165-9936(87)85014-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Imisides, M. D., G. G. Wallace, and E. A. Wilke. "Designing chemically modified electrodes for electroanalysis." TrAC Trends in Analytical Chemistry 7, no. 4 (April 1988): 143–47. http://dx.doi.org/10.1016/0165-9936(88)87012-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hua, Xin, Gui Jun Shen, and Yu Du. "Carbon Materials Electrodes: Electrochemical Analysis Applications." Applied Mechanics and Materials 248 (December 2012): 262–67. http://dx.doi.org/10.4028/www.scientific.net/amm.248.262.

Full text
Abstract:
The electrochemical properties of traditional carbon materials and applications of these materials based electrodes as well as physical and chemically modified carbon materials electrodes would be reviewed. Hence, the scope of the current review is limited to analytical electrochemistry using carbon materials electrode, and 48 references are cited.
APA, Harvard, Vancouver, ISO, and other styles
17

Titse, A. M., A. M. Timonov, and G. A. Shagisultanova. "Photosensitive chemically modified electrodes for photogalvanic cells." Coordination Chemistry Reviews 125, no. 1-2 (May 1993): 43–52. http://dx.doi.org/10.1016/0010-8545(93)85006-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schneeweiss, M. A., H. Hagenström, M. J. Esplandiu, and D. M. Kolb. "Electrolytic metal deposition onto chemically modified electrodes." Applied Physics A: Materials Science & Processing 69, no. 5 (November 1, 1999): 537–51. http://dx.doi.org/10.1007/s003390051465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Said, N. A. Mohd, V. I. Ogurtsov, K. Twomey, L. C. Nagle, and G. Herzog. "Chemically Modified Electrodes for Recessed Microelectrode Array." Procedia Chemistry 20 (2016): 12–24. http://dx.doi.org/10.1016/j.proche.2016.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lindino, C. A., and L. O. S. Bulhões. "The potentiometric response of chemically modified electrodes." Analytica Chimica Acta 334, no. 3 (November 1996): 317–22. http://dx.doi.org/10.1016/s0003-2670(96)00360-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Murray, Royce W., Andrew G. Ewing, and Richard A. Durst. "Chemically modified electrodes. Molecular design for electroanalysis." Analytical Chemistry 59, no. 5 (March 1987): 379A—390A. http://dx.doi.org/10.1021/ac00132a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Murray, Royce W., Andrew G. Ewing, and Richard A. Durst. "Chemically Modified Electrodes Molecular Design for Electroanalysis." Analytical Chemistry 59, no. 5 (March 1987): 379A—390A. http://dx.doi.org/10.1021/ac00132a721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Giannetto, Marco, Giovanni Mori, Anna Notti, Sebastiano Pappalardo, and Melchiorre F. Parisi. "Calixarene-Poly(dithiophene)-Based Chemically Modified Electrodes." Chemistry - A European Journal 7, no. 15 (August 3, 2001): 3354–62. http://dx.doi.org/10.1002/1521-3765(20010803)7:15<3354::aid-chem3354>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kulys, Juozas, and Rolf D. Schmid. "Bienzyme Sensors based on Chemically Modified Electrodes." Biosensors and Bioelectronics 6, no. 1 (January 1991): 43–48. http://dx.doi.org/10.1016/0956-5663(91)85007-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yu, Yuan, Yanli Zhou, Liangzhuan Wu, and Jinfang Zhi. "Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces." International Journal of Electrochemistry 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/567171.

Full text
Abstract:
Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.
APA, Harvard, Vancouver, ISO, and other styles
26

Baronas, Romas, and Juozas Kulys. "Modelling Amperometric Biosensors Based on Chemically Modified Electrodes." Sensors 8, no. 8 (August 19, 2008): 4800–4820. http://dx.doi.org/10.3390/s8084800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Abruña, Hector D. "Coordination chemistry in two dimensions: chemically modified electrodes." Coordination Chemistry Reviews 86 (May 1988): 135–89. http://dx.doi.org/10.1016/0010-8545(88)85013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Barendrecht, E. "Chemically and physically modified electrodes: some new developments." Journal of Applied Electrochemistry 20, no. 2 (March 1990): 175–85. http://dx.doi.org/10.1007/bf01033593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Budnikov, German K., and J. Labuda. "Chemically modified electrodes as amperometric sensors in electroanalysis." Russian Chemical Reviews 61, no. 8 (August 31, 1992): 816–29. http://dx.doi.org/10.1070/rc1992v061n08abeh001000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lyons, Michael E. G., Declan E. McCormack, Orla Smyth, and Philip N. Bartlett. "Transport and kinetics in multicomponent chemically modified electrodes." Faraday Discussions of the Chemical Society 88 (1989): 139. http://dx.doi.org/10.1039/dc9898800139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Guo, Jing, Chu-Ngi Ho, and Peng Sun. "Electrochemical Studies of Chemically Modified Nanometer-Sized Electrodes." Electroanalysis 23, no. 2 (November 4, 2010): 481–86. http://dx.doi.org/10.1002/elan.201000517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stará, Věra, and Miloslav Kopanica. "Chemically modified carbon paste and carbon composite electrodes." Electroanalysis 1, no. 3 (May 1989): 251–56. http://dx.doi.org/10.1002/elan.1140010310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kalcher, Kurt. "Chemically modified carbon paste electrodes in voltammetric analysis." Electroanalysis 2, no. 6 (August 1990): 419–33. http://dx.doi.org/10.1002/elan.1140020603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Albarelli, M. J., J. H. White, G. M. Bommarito, M. McMillan, and H. D. Abruña. "In-situ surface exafs at chemically modified electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 248, no. 1 (June 1988): 77–86. http://dx.doi.org/10.1016/0022-0728(88)85152-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Skoog, Mikael, Karin Kronkvist, and Gillis Johansson. "Blocking of chemically modified graphite electrodes by surfactants." Analytica Chimica Acta 269, no. 1 (November 1992): 59–64. http://dx.doi.org/10.1016/0003-2670(92)85133-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Katz, Eugenii Yu, and Alexander A. Solov'ev. "Chemically modified electrodes with affinity to sulphydryl compounds." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 261, no. 1 (March 1989): 217–22. http://dx.doi.org/10.1016/0022-0728(89)87137-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sabzi, Reza, All Hasanzadeh, Khosrow Ghasemlu, and Parvaneh Heravi. "Preparation and characterization of carbon paste electrode modified with tin and hexacyanoferrate ions." Journal of the Serbian Chemical Society 72, no. 10 (2007): 993–1002. http://dx.doi.org/10.2298/jsc0710993s.

Full text
Abstract:
A carbon paste electrode was modified chemically using Sn(II) or Sn(IV) chlorides and hexacyanoferrate(II) or hexacyanoferrate(III). The electrochemical behavior of such SnHCF carbon paste electrodes was studied by cyclic voltammetry. The study revealed that Sn(IV) and hexacyanoferrate(II) yield the best results. This electrode showed one pair of peaks: the anodic and cathodic peak at the potentials of 0.195 and 0.154 V vs. SCE, respectively, at a scan rate of 20 mV s-1 in a 0.5 M phosphate buffer as the supporting electrolyte. The SnHCF modified electrodes were very stable under potential scanning. The effects of pH and alkali metal cations of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. The results showed that cations have a considerable effect on the electrochemical behavior of the modified electrode. The diffusion coefficients of hydrated K+ and Na+ in the film, the transfer coefficient and the electron transfer rate constant were determined.
APA, Harvard, Vancouver, ISO, and other styles
38

Hossain, Md Faruk, Jae Sang Heo, John Nelson, and Insoo Kim. "Paper-Based Flexible Electrode Using Chemically-Modified Graphene and Functionalized Multiwalled Carbon Nanotube Composites for Electrophysiological Signal Sensing." Information 10, no. 10 (October 22, 2019): 325. http://dx.doi.org/10.3390/info10100325.

Full text
Abstract:
Flexible paper-based physiological sensor electrodes were developed using chemically-modified graphene (CG) and carboxylic-functionalized multiwalled carbon nanotube composites (f@MWCNTs). A solvothermal process with additional treatment was conducted to synthesize CG and f@MWCNTs to make CG-f@MWCNT composites. The composite was sonicated in an appropriate solvent to make a uniform suspension, and then it was drop cast on a nylon membrane in a vacuum filter. A number of batches (0%~35% f@MWCNTs) were prepared to investigate the performance of the physical characteristics. The 25% f@MWCNT-loaded composite showed the best adhesion on the paper substrate. The surface topography and chemical bonding of the proposed CG-f@MWCNT electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The average sheet resistance of the 25% CG-f@MWCNT electrode was determined to be 75 Ω/□, and it showed a skin contact impedance of 45.12 kΩ at 100 Hz. Electrocardiogram (ECG) signals were recorded from the chest and fingertips of healthy adults using the proposed electrodes. The CG-f@MWCNT electrodes demonstrated comfortability and a high sensitivity for electrocardiogram signal detection.
APA, Harvard, Vancouver, ISO, and other styles
39

Kulys, J., and A. Drungiliene. "Chemically modified electrodes for the determination of sulphydryl compounds." Analytica Chimica Acta 243 (1991): 287–92. http://dx.doi.org/10.1016/s0003-2670(00)82572-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Radi, Abd-Elgawad. "Recent Updates of Chemically Modified Electrodes in Pharmaceutical Analysis." Combinatorial Chemistry & High Throughput Screening 13, no. 8 (September 1, 2010): 728–52. http://dx.doi.org/10.2174/138620710791920338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Holden Thorp, H. "Reagentless detection of DNA sequences on chemically modified electrodes." Trends in Biotechnology 21, no. 12 (December 2003): 522–24. http://dx.doi.org/10.1016/j.tibtech.2003.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zen, Jyh-Myng, Annamalai Senthil Kumar, and Dong-Mung Tsai. "Recent Updates of Chemically Modified Electrodes in Analytical Chemistry." Electroanalysis 15, no. 13 (August 2003): 1073–87. http://dx.doi.org/10.1002/elan.200390130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

TITSE, A. M., A. M. TIMONOV, and G. A. SHAGISULTANOVA. "ChemInform Abstract: Photosensitive Chemically Modified Electrodes for Photogalvanic Cells." ChemInform 24, no. 38 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199338339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dong, Shaojun, and Yudong Wang. "The application of chemically modified electrodes in analytical chemistry." Electroanalysis 1, no. 2 (March 1989): 99–106. http://dx.doi.org/10.1002/elan.1140010203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kulys, Juozas, and Alms Drungiliene. "Electrocatalytic oxidation of ascorbic acid at chemically modified electrodes." Electroanalysis 3, no. 3 (April 1991): 209–14. http://dx.doi.org/10.1002/elan.1140030312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Budnikov, G. K., G. A. Evtyugin, Yu G. Budnikova, and V. A. Al’fonsov. "Chemically modified electrodes with amperometric response in enantioselective analysis." Journal of Analytical Chemistry 63, no. 1 (January 2008): 2–12. http://dx.doi.org/10.1134/s1061934808010024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Gangli, Bo Zhang, Joshua R. Wayment, Joel M. Harris, and Henry S. White. "Electrostatic-Gated Transport in Chemically Modified Glass Nanopore Electrodes." Journal of the American Chemical Society 128, no. 23 (June 2006): 7679–86. http://dx.doi.org/10.1021/ja061357r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Felcmann, Ch, and K. Cammann. "Electrochemical studies on chemically modified smooth platinum square electrodes." Sensors and Actuators B: Chemical 19, no. 1-3 (April 1994): 348–52. http://dx.doi.org/10.1016/0925-4005(93)00992-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Baldwin, Richard P., and Karsten N. Thomsen. "Chemically modified electrodes in liquid chromatography detection: A review." Talanta 38, no. 1 (January 1991): 1–16. http://dx.doi.org/10.1016/0039-9140(91)80004-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

He, Ping, Zhiqiang Xu, and Juntao Lu. "ESR-electrochemistry in-situ studies on chemically modified electrodes." Journal of Electroanalytical Chemistry 405, no. 1-2 (April 1996): 217–21. http://dx.doi.org/10.1016/0022-0728(95)04395-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography