Journal articles on the topic 'Chemical vapor deposition'

To see the other types of publications on this topic, follow the link: Chemical vapor deposition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemical vapor deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Besmann, T. M., D. P. Stinton, and R. A. Lowden. "Chemical Vapor Deposition Techniques." MRS Bulletin 13, no. 11 (November 1988): 45–51. http://dx.doi.org/10.1557/s0883769400063910.

Full text
Abstract:
Chemical vapor deposition (CVD) is one of the few deposition processes in which the deposited phase is produced in situ via chemical reaction(s). Thus the vapor source for CVD can consist of high vapor pressure species at moderate temperatures and yet deposit very high-melting phases. For example, pure TiB2, which melts at 3225°C, can be produced at 900°C from TiCl4, BC13, and H2.Chemical vapor deposition and its variants such as low pressure CVD (LPCVD), plasma-assisted CVD (PACVD), and laser CVD (LCVD) have been active areas of research for many years. Recent review articles have contained extensive lists of the phases deposited by CVD, which include most of the metals and many carbides, nitrides, borides, silicides, and sulfides. The techniques have found increased acceptance as commercial methods for the fabrication of films and coatings which are fundamental to the semiconductor device and the high-performance tool bit industries. They have been used to prepare multiphase-multilayer coatings, stand-alone bodies, and fiber-reinforced composites. As the demand increases for more complex and sophisticated materials, it is expected that CVD will play a still larger role.In CVD a solid material is deposited from gaseous precursors onto a substrate. The substrate is typically heated to promote the deposition reaction and/or provide sufficient mobility of the adatoms to form the desired structure. Chemical vapor deposition was performed for the first time when early humans inadvertently coated cooking utensils with soot from the campfire. In this CVD process, hydrocarbons generated by the heated wood pyrolyzed on the utensil surface, depositing carbon.
APA, Harvard, Vancouver, ISO, and other styles
2

Celii, F. G., and J. E. Butler. "Diamond Chemical Vapor Deposition." Annual Review of Physical Chemistry 42, no. 1 (October 1991): 643–84. http://dx.doi.org/10.1146/annurev.pc.42.100191.003235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, Linda M., and James J. Coleman. "Metalorganic chemical vapor deposition." Critical Reviews in Solid State and Materials Sciences 15, no. 1 (January 1988): 1–26. http://dx.doi.org/10.1080/10408438808244623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eigenbrod, Volkmar J., Christina Hensch, and Alexander Kemper. "Combustion chemical vapor deposition." Vakuum in Forschung und Praxis 27, no. 3 (June 2015): 30–34. http://dx.doi.org/10.1002/vipr.201500581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdulrazza, Firas H. "Comparison between Chemical Vapor Deposition and Flame Fragments Deposition Techniques for Synthesizing Carbon Nanotubes." NeuroQuantology 18, no. 4 (April 20, 2020): 05–10. http://dx.doi.org/10.14704/nq.2020.18.4.nq20154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SEKIGUCHI, Atsushi. "Fundamentals of Chemical Vapor Deposition Technologies." Journal of the Vacuum Society of Japan 59, no. 7 (2016): 171–83. http://dx.doi.org/10.3131/jvsj2.59.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhirnov, V. V. "Chemical vapor deposition and plasma-enhanced chemical vapor deposition carbonization of silicon microtips ∗." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 2 (March 1994): 633. http://dx.doi.org/10.1116/1.587402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Healy, Matthew D., and David C. Smith. "Metallic Chemical Vapor Deposition: New Deposition Technologies." Materials Technology 8, no. 7-8 (July 1993): 149–53. http://dx.doi.org/10.1080/10667857.1993.11784968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Byun, Dongjin, Yongki Jin, Bumjoon Kim, Joong Kee Lee, and Dalkeun Park. "Photocatalytic TiO2 deposition by chemical vapor deposition." Journal of Hazardous Materials 73, no. 2 (April 2000): 199–206. http://dx.doi.org/10.1016/s0304-3894(99)00179-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KAKIUCHI, Hiroaki. "Plasma-Enhanced Chemical Vapor Deposition." Journal of the Japan Society for Precision Engineering 82, no. 11 (2016): 956–60. http://dx.doi.org/10.2493/jjspe.82.956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Heberlein, J. V. R., and E. Pfender. "Thermal Plasma Chemical Vapor Deposition." Materials Science Forum 140-142 (October 1993): 477–96. http://dx.doi.org/10.4028/www.scientific.net/msf.140-142.477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Larson, Carl E., Thomas H. Baum, and Robert L. Jackson. "Chemical Vapor Deposition of Gold." Journal of The Electrochemical Society 134, no. 1 (January 1, 1987): 266. http://dx.doi.org/10.1149/1.2100427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Boyd, David A., Leslie Greengard, Mark Brongersma, Mohamed Y. El-Naggar, and David G. Goodwin. "Plasmon-Assisted Chemical Vapor Deposition." Nano Letters 6, no. 11 (November 2006): 2592–97. http://dx.doi.org/10.1021/nl062061m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tsubouchi, Kazuo, and Kazuya Masu. "Selective aluminum chemical vapor deposition." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 4 (July 1992): 856–62. http://dx.doi.org/10.1116/1.577684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pedersen, Henrik. "Simple Chemical Vapor Deposition Experiment." Journal of Chemical Education 91, no. 9 (July 2014): 1495–97. http://dx.doi.org/10.1021/ed500183k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yuan, Zheng, Neil H. Dryden, Jagadese J. Vittal, and Richard J. Puddephatt. "Chemical vapor deposition of silver." Chemistry of Materials 7, no. 9 (September 1995): 1696–702. http://dx.doi.org/10.1021/cm00057a019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Klages, C. P. "Chemical vapor deposition of diamond." Applied Physics A Solids and Surfaces 56, no. 6 (June 1993): 513–26. http://dx.doi.org/10.1007/bf00331401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

NISHIZAWA, Jun-ichi. "Photo-assisted chemical vapor deposition." Hyomen Kagaku 7, no. 1 (1986): 76–82. http://dx.doi.org/10.1380/jsssj.7.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Carlsson, Jan-Otto, and Ulf Jansson. "Progress in chemical vapor deposition." Progress in Solid State Chemistry 22, no. 4 (January 1993): 237–92. http://dx.doi.org/10.1016/0079-6786(93)90003-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

G.W.A.D. "Chemical vapor deposition for microelectronics." Microelectronics Reliability 28, no. 5 (January 1988): 821. http://dx.doi.org/10.1016/0026-2714(88)90017-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Devi, Anjana, J. Goswami, R. Lakshmi, S. A. Shivashankar, and S. Chandrasekaran. "A novel Cu(II) chemical vapor deposition precursor: Synthesis, characterization, and chemical vapor deposition." Journal of Materials Research 13, no. 3 (March 1998): 687–92. http://dx.doi.org/10.1557/jmr.1998.0086.

Full text
Abstract:
A nonfluorinated β-diketonate precursor, bis(t-butylacetoacetato)Cu(II) or Cu(tbaoac)2, was synthesized by modifying bis(dipivaloylmethanato)Cu(II) or Cu(dpm)2 for chemical vapor deposition (CVD) of copper. The complex was characterized by a variety of techniques, such as melting point determination, mass spectrometry, infraredspectroscopy, elemental analysis, thermogravimetric and differential thermal analysis, and x-ray diffraction. Cu(tbaoac)2 has a higher sublimation rate than Cu(dpm)2 over the temperature range 90–150 °C. Pyrolysis of Cu(tbaoac)2 leads to the formation of copper films at 225 °C, compared to 330 °C for Cu(dpm)2. As-deposited copper films ere highly dense, mirror-bright, adhered strongly to SiO2, and showed a resistivity of less than 2.9 μΩ-cm at a thickness as low as 1300 Å. A possible mechanism for the decomposition of the ligand tbaoac has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Yiping, Sam W. K. Choi, and Richard J. Puddephatt. "Catalyst Enhanced Chemical Vapor Deposition: Effects on Chemical Vapor Deposition Temperature and Film Purity." Journal of the American Chemical Society 119, no. 39 (October 1997): 9295–96. http://dx.doi.org/10.1021/ja971588l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Sun-Hee, Bong-June Kim, Do-Heyoung Kim, and June-Key Lee. "Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors." Korean Journal of Materials Research 18, no. 6 (June 30, 2008): 302–6. http://dx.doi.org/10.3740/mrsk.2008.18.6.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Josell, D., D. Wheeler, and T. P. Moffat. "Superconformal Deposition by Surfactant-Catalyzed Chemical Vapor Deposition." Electrochemical and Solid-State Letters 5, no. 3 (2002): C44. http://dx.doi.org/10.1149/1.1449304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Donahue, Edward J., and Donald M. Schleich. "The deposition of BaFe12O19by metalorganic chemical vapor deposition." Journal of Applied Physics 71, no. 12 (June 15, 1992): 6013–17. http://dx.doi.org/10.1063/1.350456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yeh, Wen-Kuan, Mao-Chieh Chen, Pei-Jan Wang, Lu-Min Liu, and Mou-Shiung Lin. "Deposition properties of selective tungsten chemical vapor deposition." Materials Chemistry and Physics 45, no. 3 (September 1996): 284–87. http://dx.doi.org/10.1016/0254-0584(96)80120-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Glass, John A., Seong-Don Hwang, Saswatti Datta, Brian Robertson, and James T. Spencer. "Chemical vapor deposition precursor chemistry. 5. The photolytic laser deposition of aluminum thin films by chemical vapor deposition." Journal of Physics and Chemistry of Solids 57, no. 5 (May 1996): 563–70. http://dx.doi.org/10.1016/0022-3697(96)80011-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bachmann, P. K., G. Gärtner, and H. Lydtin. "Plasma-Assisted Chemical Vapor Deposition Processes." MRS Bulletin 13, no. 12 (December 1988): 52–59. http://dx.doi.org/10.1557/s0883769400063703.

Full text
Abstract:
Over the past two decades a vast number of publications have emerged from laboratories all over the world, describing the application of plasmas for preparing and processing materials. MRS symposia, scientific journals and books, and complete conference series are solely devoted to this specific topic.Modern VLSI integrated circuits, for instance, would simply not exist without sophisticated plasma etching techniques. But highly reactive, partly ionized and dissociated, quasi-neutral gases—plasmas—are not only useful for etching purposes, i.e., the removal of materials. They are also very valuable tools for the deposition of materials with unique structures and compositions at lower temperatures than for conventional thermally induced chemical vapor deposition processes. Backed by intensive research activities and more than a decade of practical experiences, plasma deposition technologies are now penetrating a number of industrial manufacturing processes.Plasmas can be classified into two basic categories — non-isothermal, and isothermal or thermal plasmas.Within the high electric fields applied for non-isothermal plasma generation at reduced pressure, free electrons are accelerated to energies that correspond to several thousand degrees in the case of thermal activation. The neutral species in the gas phase and the heavy ions are either not influenced by the fields or cannot follow changing fields fast enough. Their temperature stays low, resulting in a difference between electron and gas temperature. In these nonequilibrium plasmas, the collisions of high energy electrons and gas molecules result in dissociation processes that would only occur at very high temperatures of more than 5,000 K in the case of thermal equilibrium. Therefore, non-isothermal plasmas allow the preparation of materials and compositions that are difficult to obtain using thermally activated, conventional CVD. Due to the initiation of chemical reaction by collisions with “hot” electrons rather than hot gas molecules, the processing temperature can, in many cases, be kept lower than in conventional deposition processes.
APA, Harvard, Vancouver, ISO, and other styles
29

Fahlman, Bradley. "Recent Advances in Chemical Vapor Deposition." Current Organic Chemistry 10, no. 9 (June 1, 2006): 1021–33. http://dx.doi.org/10.2174/138527206777435481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sarhangi, Ahmad, and David A. Thompson. "Chemical Vapor Deposition of Fluoride Glasses." Materials Science Forum 19-20 (January 1987): 259–68. http://dx.doi.org/10.4028/www.scientific.net/msf.19-20.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ohyama, Masanori. "Functional Material by Chemical Vapor Deposition." Journal of the Japan Welding Society 61, no. 3 (1992): 187–93. http://dx.doi.org/10.2207/qjjws1943.61.3_187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jasinski, J. M., B. S. Meyerson, and B. A. Scott. "Mechanistic Studies of Chemical Vapor Deposition." Annual Review of Physical Chemistry 38, no. 1 (October 1987): 109–40. http://dx.doi.org/10.1146/annurev.pc.38.100187.000545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nandamuri, G., S. Roumimov, and R. Solanki. "Chemical vapor deposition of graphene films." Nanotechnology 21, no. 14 (March 10, 2010): 145604. http://dx.doi.org/10.1088/0957-4484/21/14/145604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Jiming, Charles P. Beetz, and S. B. Krupanidhi. "Photoenhanced chemical‐vapor deposition of BaTiO3." Applied Physics Letters 65, no. 19 (November 7, 1994): 2410–12. http://dx.doi.org/10.1063/1.112691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mun, J., D. Kim, J. Yun, Y. Shin, S. Kang, and T. Kim. "Chemical Vapor Deposition of MoS2 Films." ECS Transactions 58, no. 7 (August 31, 2013): 199–202. http://dx.doi.org/10.1149/05807.0199ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cohen, Susan L., Michael Liehr, and Srinandan Kasi. "Selectivity in copper chemical vapor deposition." Applied Physics Letters 60, no. 13 (March 30, 1992): 1585–87. http://dx.doi.org/10.1063/1.107259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cohen, Susan L., Michael Liehr, and Srinandan Kasi. "Mechanisms of copper chemical vapor deposition." Applied Physics Letters 60, no. 1 (January 6, 1992): 50–52. http://dx.doi.org/10.1063/1.107370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Houle, F. A., C. R. Jones, T. Baum, C. Pico, and C. A. Kovac. "Laser chemical vapor deposition of copper." Applied Physics Letters 46, no. 2 (January 15, 1985): 204–6. http://dx.doi.org/10.1063/1.95685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Baum, Thomas H., and Carol R. Jones. "Laser chemical vapor deposition of gold." Applied Physics Letters 47, no. 5 (September 1985): 538–40. http://dx.doi.org/10.1063/1.96119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

van Buskirk, Peter C., Jeffrey Roeder, Steve Bilodeau, Sonya Pombrik, and Howard Beratan. "Chemical vapor deposition of Pb1−xLaxTiO3." Integrated Ferroelectrics 6, no. 1-4 (January 1995): 141–53. http://dx.doi.org/10.1080/10584589508019360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Coltrin, Michael E., William G. Breiland, and Pauline Ho. "Model Studies of Chemical Vapor Deposition." Materials Technology 8, no. 11-12 (November 1993): 250–53. http://dx.doi.org/10.1080/10667857.1993.11784996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rodgers, Seth T., and Klavs F. Jensen. "Multiscale modeling of chemical vapor deposition." Journal of Applied Physics 83, no. 1 (January 1998): 524–30. http://dx.doi.org/10.1063/1.366666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

West, Gary A., and K. W. Beeson. "Chemical Vapor Deposition of Molybdenum Silicide." Journal of The Electrochemical Society 135, no. 7 (July 1, 1988): 1752–57. http://dx.doi.org/10.1149/1.2096113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kher, Shreyas S., and James T. Spencer. "CHEMICAL VAPOR DEPOSITION OF METAL BORIDES." Journal of Physics and Chemistry of Solids 59, no. 8 (August 1998): 1343–51. http://dx.doi.org/10.1016/s0022-3697(97)00230-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Thiart, J. J., V. Hlavacek, and H. J. Viljoen. "Chemical vapor deposition and morphology problems." Thin Solid Films 365, no. 2 (April 2000): 275–93. http://dx.doi.org/10.1016/s0040-6090(99)01053-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bales, G. S., A. C. Redfield, and A. Zangwill. "Growth Dynamics of Chemical Vapor Deposition." Physical Review Letters 62, no. 7 (February 13, 1989): 776–79. http://dx.doi.org/10.1103/physrevlett.62.776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nakano, M., H. Sakaue, H. Kawamoto, A. Nagata, M. Hirose, and Y. Horiike. "Digital chemical vapor deposition of SiO2." Applied Physics Letters 57, no. 11 (September 10, 1990): 1096–98. http://dx.doi.org/10.1063/1.104284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kajikawa, Yuya. "Roughness evolution during chemical vapor deposition." Materials Chemistry and Physics 112, no. 2 (December 2008): 311–18. http://dx.doi.org/10.1016/j.matchemphys.2008.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gladfelter, Wayne L. "Selective metalization by chemical vapor deposition." Chemistry of Materials 5, no. 10 (October 1993): 1372–88. http://dx.doi.org/10.1021/cm00034a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hyman, E., K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin. "Plasma enhanced chemical vapor deposition modeling." Surface and Coatings Technology 49, no. 1-3 (December 1991): 387–93. http://dx.doi.org/10.1016/0257-8972(91)90088-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography