Academic literature on the topic 'Chemical reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chemical reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chemical reaction"
DE LACY COSTELLO, B. P. J., I. JAHAN, A. ADAMATZKY, and N. M. RATCLIFFE. "CHEMICAL TESSELLATIONS." International Journal of Bifurcation and Chaos 19, no. 02 (February 2009): 619–22. http://dx.doi.org/10.1142/s0218127409023238.
Full textBlurock, Edward S. "Reaction: System for Modeling Chemical Reactions." Journal of Chemical Information and Modeling 35, no. 3 (May 1, 1995): 607–16. http://dx.doi.org/10.1021/ci00025a032.
Full textKikuchi, Shin, Hiroyuki Ohshima, and Kenro Hashimoto. "ICONE19-43782 Reaction Path Analysis of Sodium-Water Reaction Phenomena in support of Chemical Reaction Model Development." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_304.
Full textSieniutycz, Stanisław. "A Fermat-like Principle for Chemical Reactions in Heterogeneous Systems." Open Systems & Information Dynamics 09, no. 03 (September 2002): 257–72. http://dx.doi.org/10.1023/a:1019708629128.
Full textMarris, Emma. "Chemical reaction." Nature 437, no. 7060 (October 2005): 807–9. http://dx.doi.org/10.1038/437807a.
Full textChallen, John. "Chemical Reaction." Electric and Hybrid Vehicle Technology International 2021, no. 3 (November 2021): 46–50. http://dx.doi.org/10.12968/s1467-5560(22)60257-4.
Full textSchwaller, Philippe, Benjamin Hoover, Jean-Louis Reymond, Hendrik Strobelt, and Teodoro Laino. "Extraction of organic chemistry grammar from unsupervised learning of chemical reactions." Science Advances 7, no. 15 (April 2021): eabe4166. http://dx.doi.org/10.1126/sciadv.abe4166.
Full textWu, Jun-Lin, Zhi-Hui Li, Ao-Ping Peng, Xing-Cai Pi, and Xin-Yu Jiang. "Utility computable modeling of a Boltzmann model equation for bimolecular chemical reactions and numerical application." Physics of Fluids 34, no. 4 (April 2022): 046111. http://dx.doi.org/10.1063/5.0088440.
Full textDunning, Thom H., Elfi Kraka, and Robert A. Eades. "Insights into the mechanisms of chemical reactions. Reaction paths for chemical reactions." Faraday Discussions of the Chemical Society 84 (1987): 427. http://dx.doi.org/10.1039/dc9878400427.
Full textLazaridis, Filippos, Aditya Savara, and Panos Argyrakis. "Reaction efficiency effects on binary chemical reactions." Journal of Chemical Physics 141, no. 10 (September 14, 2014): 104103. http://dx.doi.org/10.1063/1.4894791.
Full textDissertations / Theses on the topic "Chemical reaction"
Steele, Aaron J. "Collective behavior in chemical systems." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5386.
Full textTitle from document title page. Document formatted into pages; contains vii, 126 p. : ill. (some col.) + video files. Includes supplementary video files in a zip file. Includes abstract. Includes bibliographical references.
Degrand, Elisabeth. "Evolving Chemical Reaction Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257491.
Full textEtt mål med syntetisk biologi är att genomföra användbara funktioner med biokemiska reaktioner, antingen genom omprogrammering av levande celler eller programmering av artificiella vesiklar. I detta perspektiv anser vi Chemical Reaction Networks (CRNs) som ett programmeringsspråk. Det senaste arbetet har visat att kontinuerliga CRNs med dynamik som beskrivs av vanliga differentialekvationer är Turingkompletta. Det betyder att en funktion över de realla talen som kan beräknas av en Turing-maskin i godtycklig precision, kan beräknas av en CRN över en ändlig uppsättning molekylära arter. Beviset använder en algoritm som, givet en beräkningsbar funktion som presenteras som lösningen av ett PIVP (Polynomial Initial Values Problem), genererar en ändlig CRN för att implementera den. I de genererade CRN:erna spelar molekylkoncentrationerna rollen som informationsbärare, på samma sätt som proteiner i celler. I detta examensarbete undersöker vi ett tillvägagångssätt baserat på en evolutionär algoritm för att bygga en kontinuerlig CRN som approximerar en verklig funktion med en ändlig uppsättning av värden för funktionen. Tanken är att använda parallell genetisk algoritm i två nivåer. En första algoritm används för att utveckla nätets struktur, medan den andra möjliggör att optimera parametrarna för CRN:erna vid varje steg. Vi jämför de CRN som genereras av vår metod på olika funktioner. De CRN som hittas av evolutionen ger ofta bra resultat med ganska oväntade lösningar.
Knight, Daniel William. "Reactor behavior and its relation to chemical reaction network structure." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1438274630.
Full textDu, Yimian. "Bifurcation analysis in chemical reaction network." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511282.
Full textHayes, Michael Y. "Theoretical studies of chemical reaction dynamics." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3273678.
Full textRitchie, Grant A. D. "Laser studies of chemical reaction dynamics." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325785.
Full textEnglish, Philip J. "Automated discovery of chemical reaction networks." Thesis, University of Newcastle Upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500929.
Full textDomijan, Mirela. "Mathematical aspects of chemical reaction networks." Thesis, University of Warwick, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495019.
Full textXu, Jin, and 徐进. "A study of chemical reaction optimization." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48199242.
Full textpublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Galagali, Nikhil. "Bayesian inference of chemical reaction networks." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104253.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 189-198).
The development of chemical reaction models aids system design and optimization, along with fundamental understanding, in areas including combustion, catalysis, electrochemistry, and biology. A systematic approach to building reaction network models uses available data not only to estimate unknown parameters, but to also learn the model structure. Bayesian inference provides a natural approach for this data-driven construction of models. Traditional Bayesian model inference methodology is based on evaluating a multidimensional integral for each model. This approach is often infeasible for reaction network inference, as the number of plausible models can be very large. An alternative approach based on model-space sampling can enable large-scale network inference, but its efficient implementation presents many challenges. In this thesis, we present new computational methods that make large-scale nonlinear network inference tractable. Firstly, we exploit the network-based interactions of species to design improved "between-model" proposals for Markov chain Monte Carlo (MCMC). We then introduce a sensitivity-based determination of move types which, when combined with the network-aware proposals, yields further sampling efficiency. These algorithms are tested on example problems with up to 1000 plausible models. We find that our new algorithms yield significant gains in sampling performance, with almost two orders of magnitude reduction in the variance of posterior estimates. We also show that by casting network inference as a fixed-dimensional problem with point-mass priors, we can adapt existing adaptive MCMC methods for network inference. We apply this novel framework to the inference of reaction models for catalytic reforming of methane from a set of ~/~ 32000 possible models and real experimental data. We find that the use of adaptive MCMC makes large-scale inference of reaction networks feasible without the often extensive manual tuning that is required with conventional approaches. Finally, we present an approximation-based method that allows sampling over very large model spaces whose exploration remains prohibitively expensive with ex-act sampling methods. We run an MCMC algorithm over model indicators and for each visited model approximate the model evidence via Laplace's method. Limited and sparse available data tend to produce multi-modal posteriors over the model indicators. To perform inference in this setting, we develop a population-based approximate model inference MCMC algorithm. Numerical tests on problems with around 109 models demonstrate the superiority of our population-based algorithm over single-chain MCMC approaches.
by Nikhil Galagali.
Ph. D.
Books on the topic "Chemical reaction"
A, Mashelkar R., Kumar R, and Indian Academy of Sciences, eds. Reactions and reaction engineering. Bangalore: Indian Academy of Sciences, 1987.
Find full textBaxter, Roberta. Chemical reaction. Detroit, MI: Kidhaven Press, 2005.
Find full textCaroline, Anderson. Chemical Reaction. Toronto: Harlequin, 2003.
Find full text1931-, Tominaga Hiroo, and Tamaki Masakazu, eds. Chemical reaction and reactor design. Chichester, England: J. Wiley, 1997.
Find full textJ, Carberry James, and Varma Arvind, eds. Chemical reaction and reactor engineering. New York: M. Dekker, 1987.
Find full textTapio, Salmi, Mikkola Jyri-Pekka, and Wärnå Johan. Chemical Reaction Engineering and Reactor Technology. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315200118.
Full textJyri-Pekka, Mikkola, and Warna P, eds. Chemical reaction engineering and reactor technology. Boca Raton: Taylor & Francis, 2009.
Find full textAncheyta, Jorge. Chemical Reaction Kinetics. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119226666.
Full textJohn, Barton, Rogers Richard, and Institution of Chemical Engineers (Great Britain), eds. Chemical reaction hazards: A guide. Rugby, Warwickshire, UK: Institution of Chemical Engineers, 1993.
Find full textWarnatz, Jürgen, and Willi Jäger, eds. Complex Chemical Reaction Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83224-6.
Full textBook chapters on the topic "Chemical reaction"
Liu, Zhen. "Chemico: Chemical Reaction." In Multiphysics in Porous Materials, 173–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2_16.
Full textNilsson, Lars-Olof, Miguel-Ángel Climent, and Oliver Weichold. "Chemical Reaction." In Methods of Measuring Moisture in Building Materials and Structures, 43–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74231-1_6.
Full textDiersch, Hans-Jörg G. "Chemical Reaction." In FEFLOW, 167–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38739-5_5.
Full textTapio, Salmi, Mikkola Jyri-Pekka, and Wärnå Johan. "Chemical Reaction Engineering." In Chemical Reaction Engineering and Reactor Technology, 402–10. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315200118-11.
Full textHerges, Rainer. "Reaction Planning (Computer Aided Reaction Design)." In Chemical Structures, 385–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73975-0_40.
Full textHimadri, Roy Giratali. "Chemical Kinetics." In Reaction Engineering Principles, 25–94. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315367781-3.
Full textSchmal, Martin, and José Carlos Pinto. "Chemical equilibrium." In Chemical Reaction Engineering, 27–36. 2nd ed. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003046608-2.
Full textRamaswamy, Ramakrishna. "Chaos in Chemical Dynamics." In Reaction Dynamics, 101–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09683-3_4.
Full textWincek, John C. "Chemical Reaction Safety." In Handbook of Loss Prevention Engineering, 637–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650644.ch24.
Full textCarreón-Calderón, Bernardo, Verónica Uribe-Vargas, and Juan Pablo Aguayo. "Chemical Reaction Equilibrium." In Thermophysical Properties of Heavy Petroleum Fluids, 273–306. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58831-1_7.
Full textConference papers on the topic "Chemical reaction"
Kao, W., J. P. Singh, F. Y. Yueh, and R. L. Cook. "Study of the High Temperature Multiplex HCℓ CARS Spectrum." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.wc5.
Full textCho, Yong Ju, Naren Ramakrishnan, and Yang Cao. "Reconstructing chemical reaction networks." In the 14th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1401890.1401912.
Full textCardelli, Luca, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin. "Comparing Chemical Reaction Networks." In LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2933575.2935318.
Full textZhong, Ming, Siru Ouyang, Minhao Jiang, Vivian Hu, Yizhu Jiao, Xuan Wang, and Jiawei Han. "ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision." In Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.findings-acl.767.
Full textKumar, Ashutosh, and Robin Marlar Rajendran. "Expediting Chemical Enhanced Oil Recovery Processes with Prediction of Chemical Reaction Yield Using Machine Learning." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211832-ms.
Full textCasey, Abigail, and Gregory E. Triplett. "Microfluidic reaction design for real time chemical reactions monitoring." In Frontiers in Biological Detection: From Nanosensors to Systems XIII, edited by Benjamin L. Miller, Sharon M. Weiss, and Amos Danielli. SPIE, 2021. http://dx.doi.org/10.1117/12.2575995.
Full textSierra Murillo, Jose Daniel. "Chemical laser based on polyatomic chemical reaction dynamics." In XXIII International Symposium on High Power Laser Systems and Applications, edited by Tomáš Mocek. SPIE, 2022. http://dx.doi.org/10.1117/12.2653041.
Full textDoty, David. "Timing in chemical reaction networks." In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973402.57.
Full textKama Huang, Tao Hong, Xingpeng Liu, and Huacheng Zhu. "Microwave propagation in chemical reaction." In 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2016. http://dx.doi.org/10.1109/icmmt.2016.7761757.
Full textChaves, M., and E. D. Sontag. "Observers for chemical reaction networks." In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076512.
Full textReports on the topic "Chemical reaction"
Aris, R., and R. W. Carr. Continuous chemical reaction chromatography. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7070042.
Full textPowers, T. B. Chemical reaction in a DCRT. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/663145.
Full textEvelyn M. Goldfield. Chemical Reaction Dynamics in Nanoscle Environments. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/891931.
Full textCarr, R. W. Continuous chemical reaction chromatography. Final report. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/510307.
Full textKeshavamurthy, Srihari. Semiclassical methods in chemical reaction dynamics. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/91884.
Full textLager, Daniel, Lia Kouchachvili, and Xavier Daguenet. TCM measuring procedures and testing under application conditions. IEA SHC Task 58, May 2021. http://dx.doi.org/10.18777/ieashc-task58-2021-0004.
Full textNelson Butuk. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/902508.
Full textNelson Butuk. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/881862.
Full textFlynn, G. Laser enhanced chemical reaction studies. Technical progress report. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10159752.
Full textZiaul Huque. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/947008.
Full text