Journal articles on the topic 'Chemical patterning'

To see the other types of publications on this topic, follow the link: Chemical patterning.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chemical patterning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kuznetsov, A., K. Puchnin, and V. Grudtsov. "Methods of surface chemical patterning." Nanoindustry Russia 70, no. 8 (2016): 110–17. http://dx.doi.org/10.22184/1993-8578.2016.70.8.110.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guan, Yuduo, Bin Ai, Zengyao Wang, Chong Chen, Wei Zhang, Yu Wang, and Gang Zhang. "In Situ Chemical Patterning Technique." Advanced Functional Materials 32, no. 2 (October 7, 2021): 2107945. http://dx.doi.org/10.1002/adfm.202107945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ogaki, Ryosuke, Morgan Alexander, and Peter Kingshott. "Chemical patterning in biointerface science." Materials Today 13, no. 4 (April 2010): 22–35. http://dx.doi.org/10.1016/s1369-7021(10)70057-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JACOBY, MITCH. "NANOSCALE PATTERNING." Chemical & Engineering News 82, no. 46 (November 15, 2004): 8. http://dx.doi.org/10.1021/cen-v082n046.p008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodríguez González, Miriam C., Alessandra Leonhardt, Hartmut Stadler, Samuel Eyley, Wim Thielemans, Stefan De Gendt, Kunal S. Mali, and Steven De Feyter. "Multicomponent Covalent Chemical Patterning of Graphene." ACS Nano 15, no. 6 (May 28, 2021): 10618–27. http://dx.doi.org/10.1021/acsnano.1c03373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dupuis, A., J. Léopoldès, D. G. Bucknall, and J. M. Yeomans. "Control of drop positioning using chemical patterning." Applied Physics Letters 87, no. 2 (July 11, 2005): 024103. http://dx.doi.org/10.1063/1.1984098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liao, W. S., S. Cheunkar, H. H. Cao, H. R. Bednar, P. S. Weiss, and A. M. Andrews. "Subtractive Patterning via Chemical Lift-Off Lithography." Science 337, no. 6101 (September 20, 2012): 1517–21. http://dx.doi.org/10.1126/science.1221774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schift, H., L. J. Heyderman, C. Padeste, and J. Gobrecht. "Chemical nano-patterning using hot embossing lithography." Microelectronic Engineering 61-62 (July 2002): 423–28. http://dx.doi.org/10.1016/s0167-9317(02)00513-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wosnick, Jordan H., and Molly S. Shoichet. "Three-dimensional Chemical Patterning of Transparent Hydrogels." Chemistry of Materials 20, no. 1 (January 2008): 55–60. http://dx.doi.org/10.1021/cm071158m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mourzina, Yulia, Dmitry Kaliaguine, Petra Schulte, and Andreas Offenhäusser. "Patterning chemical stimulation of reconstructed neuronal networks." Analytica Chimica Acta 575, no. 2 (August 2006): 281–89. http://dx.doi.org/10.1016/j.aca.2006.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

JACOBY, MITCH. "UNLIKELY PARTNERS IN PATTERNING." Chemical & Engineering News 82, no. 18 (May 3, 2004): 6. http://dx.doi.org/10.1021/cen-v082n018.p006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yu, Ling, Qiong Chen, Yun Li Tian, An Xiu Gao, Yuan Li, Man Li, and Chang Ming Li. "One-post patterning of multiple protein gradients using a low-cost flash foam stamp." Chemical Communications 51, no. 99 (2015): 17588–91. http://dx.doi.org/10.1039/c5cc07096a.

Full text
Abstract:
Versatile chemical and biological inks were printed using a cost-effective flash foam stamp (FFS) for one-post patterning of multiple protein gradients, demonstrating an accessible solution for resource-limited laboratories conducting molecular patterning experiments.
APA, Harvard, Vancouver, ISO, and other styles
13

Pezzagna, S., P. Vennéguès, N. Grandjean, A. D. Wieck, and J. Massies. "Submicron periodic poling and chemical patterning of GaN." Applied Physics Letters 87, no. 6 (August 8, 2005): 062106. http://dx.doi.org/10.1063/1.2009839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Martinez, R. V., N. S. Losilla, J. Martinez, M. Tello, and R. Garcia. "Sequential and parallel patterning by local chemical nanolithography." Nanotechnology 18, no. 8 (January 18, 2007): 084021. http://dx.doi.org/10.1088/0957-4484/18/8/084021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ng, Hock M., Wolfgang Parz, Nils G. Weimann, and Aref Chowdhury. "Patterning GaN Microstructures by Polarity-Selective Chemical Etching." Japanese Journal of Applied Physics 42, Part 2, No. 12A (December 2003): L1405—L1407. http://dx.doi.org/10.1143/jjap.42.l1405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rao, R., J. E. Bradby, and J. S. Williams. "Patterning of silicon by indentation and chemical etching." Applied Physics Letters 91, no. 12 (September 17, 2007): 123113. http://dx.doi.org/10.1063/1.2779111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bratton, Daniel, Ramakrishnan Ayothi, Hai Deng, Heidi B. Cao, and Christopher K. Ober. "Diazonaphthoquinone Molecular Glass Photoresists: Patterning without Chemical Amplification." Chemistry of Materials 19, no. 15 (July 2007): 3780–86. http://dx.doi.org/10.1021/cm062967t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Craighead, H. G., C. D. James, and A. M. P. Turner. "Chemical and topographical patterning for directed cell attachment." Current Opinion in Solid State and Materials Science 5, no. 2-3 (April 2001): 177–84. http://dx.doi.org/10.1016/s1359-0286(01)00005-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Varagnolo, S., V. Schiocchet, D. Ferraro, M. Pierno, G. Mistura, M. Sbragaglia, A. Gupta, and G. Amati. "Tuning Drop Motion by Chemical Patterning of Surfaces." Langmuir 30, no. 9 (February 27, 2014): 2401–9. http://dx.doi.org/10.1021/la404502g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bardea, Amos, and Ron Naaman. "Submicrometer Chemical Patterning with High Throughput Using Magnetolithography." Langmuir 25, no. 10 (May 19, 2009): 5451–54. http://dx.doi.org/10.1021/la900601w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nathan Hohman, J., Moonhee Kim, Jeffrey A. Lawrence, Patrick D. McClanahan, and Paul S. Weiss. "High-fidelity chemical patterning on oxide-free germanium." Journal of Physics: Condensed Matter 24, no. 16 (March 30, 2012): 164214. http://dx.doi.org/10.1088/0953-8984/24/16/164214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Delacour, C., G. Bugnicourt, N. M. Dempsey, F. Dumas-Bouchiat, and C. Villard. "Combined magnetic and chemical patterning for neural architectures." Journal of Physics D: Applied Physics 47, no. 42 (September 24, 2014): 425403. http://dx.doi.org/10.1088/0022-3727/47/42/425403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hata, Mitsuhiro, Jung-Hwan Hah, Hyun-Woo Kim, Man-Hyoung Ryoo, Sang-Jun Choi, Sang-Gyun Woo, and Han-Ku Cho. "Chemical shrinkage material: Nanoscale patterning through interpolymer complex." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 2 (2006): 795. http://dx.doi.org/10.1116/1.2184323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wu, G., M. D. Paz, S. Chiussi, J. Serra, P. González, Y. J. Wang, and B. Leon. "Excimer laser chemical ammonia patterning on PET film." Journal of Materials Science: Materials in Medicine 20, no. 2 (October 14, 2008): 597–606. http://dx.doi.org/10.1007/s10856-008-3600-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ceylan, Hakan, Immihan Ceren Yasa, and Metin Sitti. "3D Chemical Patterning of Micromaterials for Encoded Functionality." Advanced Materials 29, no. 9 (December 22, 2016): 1605072. http://dx.doi.org/10.1002/adma.201605072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Z., H. Nan, M. Sun, and X. He. "Simultaneous topographic and chemical patterning via imprinting defined nano-reactors." RSC Advances 6, no. 99 (2016): 96538–44. http://dx.doi.org/10.1039/c6ra22169f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sogabe, E., Kazuhito Ohashi, N. Lu, M. Fujiwara, T. Onishi, and Shinya Tsukamoto. "Machining Characteristics of Cylindrical Blasting and Application to Micro Patterning." Advanced Materials Research 325 (August 2011): 570–75. http://dx.doi.org/10.4028/www.scientific.net/amr.325.570.

Full text
Abstract:
Micro patterning on cylindrical surface, e.g. dynamic pressure bearings, is mainly carried out by chemical etching. However, there exist environmental problems in the waste etchant processing and safety ones in works using toxic chemical liquids. On the other hands, blasting is expected as one of micro patterning methods and comes into use for not only surface modification but also machining of hard and brittle materials. The purpose of this study is to develop the micro blasting technique for cylindrical parts. Therefore, machining characteristics in blasting of rotating workpieces are experimentally investigated, analyzing the stock removal and the surface roughness. In addition, the patterning of micro herringbone grooves are carried out on spindle surfaces based on the obtained characteristics.
APA, Harvard, Vancouver, ISO, and other styles
28

Altieri, Nicholas D., Jack Kun-Chieh Chen, and Jane P. Chang. "Controlling surface chemical states for selective patterning of CoFeB." Journal of Vacuum Science & Technology A 37, no. 1 (January 2019): 011303. http://dx.doi.org/10.1116/1.5063662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Risk, W. P., and S. D. Lau. "Periodic electric field poling of KTiOPO4 using chemical patterning." Applied Physics Letters 69, no. 26 (December 23, 1996): 3999–4001. http://dx.doi.org/10.1063/1.117850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sekiguchi, A., K. Pasztor, N. Shimo, and H. Masuhara. "Micrometer patterning of phthalocyanines by selective chemical vapor deposition." Applied Physics Letters 59, no. 19 (November 4, 1991): 2466–68. http://dx.doi.org/10.1063/1.105997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marson, S., R. A. Dorey, Q. Zhang, R. W. Whatmore, A. Hardy, and J. Mullens. "Direct patterning of photosensitive chemical solution deposition PZT layers." Journal of the European Ceramic Society 24, no. 6 (January 2004): 1925–28. http://dx.doi.org/10.1016/s0955-2219(03)00543-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Schwartz, Jeffrey J., J. Nathan Hohman, Elizabeth I. Morin, and Paul S. Weiss. "Molecular Flux Dependence of Chemical Patterning by Microcontact Printing." ACS Applied Materials & Interfaces 5, no. 20 (October 14, 2013): 10310–16. http://dx.doi.org/10.1021/am403259q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Berejnov, Viatcheslav, and Robert E. Thorne. "Enhancing drop stability in protein crystallization by chemical patterning." Acta Crystallographica Section D Biological Crystallography 61, no. 12 (November 19, 2005): 1563–67. http://dx.doi.org/10.1107/s0907444905028866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lussi, Jost W., Roger Michel, Ilya Reviakine, Didier Falconnet, Andreas Goessl, Gabor Csucs, Jeffrey A. Hubbell, and Marcus Textor. "A novel generic platform for chemical patterning of surfaces." Progress in Surface Science 76, no. 3-5 (October 2004): 55–69. http://dx.doi.org/10.1016/j.progsurf.2004.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hiura, Y., Y. Morishige, and S. Kishida. "Laser chemical vapor deposition direct patterning of insulating film." Journal of Applied Physics 69, no. 3 (February 1991): 1744–47. http://dx.doi.org/10.1063/1.347221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kramer, Marcus A., Richard L. Gieseck, Benjamin Andrews, and Albena Ivanisevic. "Spore-Terminated Cantilevers for Chemical Patterning on Complex Architectures." Journal of the American Chemical Society 133, no. 25 (June 29, 2011): 9627–29. http://dx.doi.org/10.1021/ja201331j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Yi-He, Xiao-Dong Li, and Dong-Pyo Kim. "Chemical development of preceramic polyvinylsilazane photoresist for ceramic patterning." Journal of Electroceramics 23, no. 2-4 (September 27, 2007): 133–36. http://dx.doi.org/10.1007/s10832-007-9331-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Yi-He, Kuk-Ro Yoon, Xiao-Dong Li, and Dong-Pyo Kim. "Chemical development of preceramic polyvinylsilazane photoresist for ceramic patterning." Journal of Electroceramics 23, no. 2-4 (December 4, 2007): 576. http://dx.doi.org/10.1007/s10832-007-9359-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Namatsu, Hideo, Masatoshi Oda, Atsushi Yokoo, Makoto Fukuda, Koichi Irisa, Shigeyuki Tsurumi, and Kazuhiko Komatsu. "Chemical nanoimprint lithography for step-and-repeat Si patterning." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 2321. http://dx.doi.org/10.1116/1.2806970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Noda, Kentaro, and Isao Shimoyama. "Micro patterning of ion exchange membrane for chemical sensing." Proceedings of the Symposium on Micro-Nano Science and Technology 2018.9 (2018): 30am3PN9. http://dx.doi.org/10.1299/jsmemnm.2018.9.30am3pn9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Beck, Margaret E. "Midden formation and intrasite chemical patterning in Kalinga, Philippines." Geoarchaeology 22, no. 4 (2007): 453–75. http://dx.doi.org/10.1002/gea.20161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cheng, Qian, Kyriakos Komvopoulos, and Song Li. "Surface chemical patterning for long-term single-cell culture." Journal of Biomedical Materials Research Part A 96A, no. 3 (January 4, 2011): 507–12. http://dx.doi.org/10.1002/jbm.a.32992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cheng, Qian, Song Li, and Kyriakos Komvopoulos. "Plasma-assisted surface chemical patterning for single-cell culture." Biomaterials 30, no. 25 (September 2009): 4203–10. http://dx.doi.org/10.1016/j.biomaterials.2009.04.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sung, In-Ha, and Dae-Eun Kim. "Nano-scale patterning by mechano-chemical scanning probe lithography." Applied Surface Science 239, no. 2 (January 2005): 209–21. http://dx.doi.org/10.1016/j.apsusc.2004.05.275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Manna, Uttam, Adam H. Broderick, and David M. Lynn. "Chemical Patterning and Physical Refinement of Reactive Superhydrophobic Surfaces." Advanced Materials 24, no. 31 (June 28, 2012): 4291–95. http://dx.doi.org/10.1002/adma.201200903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Holloway, David M. "The role of chemical dynamics in plant morphogenesis1." Biochemical Society Transactions 38, no. 2 (March 22, 2010): 645–50. http://dx.doi.org/10.1042/bst0380645.

Full text
Abstract:
In biological development, the generation of shape is preceded by the spatial localization of growth factors. Localization, and how it is maintained or changed during the process of growth, determines the shapes produced. Mathematical models have been developed to investigate the chemical, mechanical and transport properties involved in plant morphogenesis. These synthesize biochemical and biophysical data, revealing underlying principles, especially the importance of dynamics in generating form. Chemical kinetics has been used to understand the constraints on reaction and transport rates to produce localized concentration patterns. This approach is well developed for understanding de novo pattern formation, pattern spacing and transitions from one pattern to another. For plants, growth is continual, and a key use of the theory is in understanding the feedback between patterning and growth, especially for morphogenetic events which break symmetry, such as tip branching. Within the context of morphogenetic modelling in general, the present review gives a brief history of chemical patterning research and its particular application to shape generation in plant development.
APA, Harvard, Vancouver, ISO, and other styles
47

Sinha, Arvind, Swapan Kumar Das, V. Rao, and P. Ramachandrarao. "Patterning of copper particles on polymeric surface." Journal of Materials Research 16, no. 5 (May 2001): 1354–57. http://dx.doi.org/10.1557/jmr.2001.0189.

Full text
Abstract:
In situ synthesis of fine copper particles (>200 nm) has been carried out using borohydride reduction in preorganized gel of poly(vinyl alcohol). The copper ions were chelated by polymer matrix at room temperature thorough physical entrapment along with a weak chemical complexation. The process is akin to biomimetic route and demonstrates a high order of control over nucleation, growth, and morphologies as well as orientation of the end product. The organized arrays of copper sulfate precipitate and copper particles replicate the conformation of organic matrix and form patterned structures similar to one observed in stationary chemical waves.
APA, Harvard, Vancouver, ISO, and other styles
48

DAGANI, RON. "Simpler method for organic pixel patterning." Chemical & Engineering News 75, no. 18 (May 5, 1997): 56–57. http://dx.doi.org/10.1021/cen-v075n018.p056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yu, Yi Yin, Alfi Rodiansyah, Jaydip Sawant, and Kyu Chang Park. "Patterning of Silicon Substrate with Self-Assembled Monolayers Using Vertically Aligned Carbon Nanotube Electron Sources." Nanomaterials 12, no. 24 (December 11, 2022): 4420. http://dx.doi.org/10.3390/nano12244420.

Full text
Abstract:
We introduce a novel patterning technique based on e-beam lithography using vertically aligned carbon nanotube (VACNT) emitters with self-assembled monolayers (SAMs). A 20 μm line width of silicon wafer patterning was successfully demonstrated using octadecyl trichlorosilane (OTS) as a photoresist. To investigate surface modification by the irradiated electrons from the emitters, both contact angle measurement and energy dispersive X-ray (EDX) analysis were conducted. The patterning mechanism of the electron beam irradiated on OTS-coated substrate by our cold cathode electron beam (C-beam) was demonstrated by the analyzed results. The effect of current density and exposure time on the OTS patterning was studied and optimized for the Si wafer patterning in terms of the electronic properties of the VACNTs. The authors expect the new technique to contribute to the diverse applications to microelectromechanical (MEMS) technologies owing to the advantages of facile operation and precise dose control capability based on field electron emission current from the VACNT emitter arrays.
APA, Harvard, Vancouver, ISO, and other styles
50

Panzarasa, Guido, and Guido Soliveri. "Photocatalytic Lithography." Applied Sciences 9, no. 7 (March 27, 2019): 1266. http://dx.doi.org/10.3390/app9071266.

Full text
Abstract:
Patterning, the controlled formation of ordered surface features with different physico-chemical properties, is a cornerstone of contemporary micro- and nanofabrication. In this context, lithographic approaches owe their wide success to their versatility and their relative ease of implementation and scalability. Conventional photolithographic methods require several steps and the use of polymeric photoresists for the development of the desired pattern, all factors which can be deleterious, especially for sensitive substrates. Efficient patterning of surfaces, with resolution down to the nanometer scale, can be achieved by means of photocatalytic lithography. This approach is based on the use of photocatalysts to achieve the selective chemical modification or degradation of self-assembled monolayers, polymers, and metals. A wide range of photoactive compounds, from semiconducting oxides to porphyrins, have been demonstrated to be suitable photocatalysts. The goal of the present review is to provide a comprehensive state-of-the-art photocatalytic lithography, ranging from approaches based on semiconducting oxides to singlet oxygen-based lithography. Special attention will be dedicated to the results obtained for the patterning of polymer brushes, the sculpturing of metal nanoparticle arrays, and the patterning of graphene-based structures.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography