Academic literature on the topic 'Chemical industry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chemical industry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chemical industry":

1

T, Ligori Aruldass, and Arun Karthik V. M. "Chemical Safety in Textile Industry." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1402–5. http://dx.doi.org/10.31142/ijtsrd23135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brady, Francis. "Chemicals: Membranes meet chemical industry requirements." Filtration + Separation 49, no. 3 (May 2012): 26–29. http://dx.doi.org/10.1016/s0015-1882(12)70143-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peters, A. T. "China chemical industry 1985/86. World chemical industry yearbook." Dyes and Pigments 8, no. 6 (1987): 483–84. http://dx.doi.org/10.1016/0143-7208(87)85040-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakurai, H. "Chemical Fiber Industry." Sangyo Igaku 31, no. 7 (1989): 535–36. http://dx.doi.org/10.1539/joh1959.31.535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horsfall, R. S. "Modern Chemical Industry." Journal of the Society of Dyers and Colourists 43, no. 5 (October 22, 2008): 154–57. http://dx.doi.org/10.1111/j.1478-4408.1927.tb01431.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alzamora Rumazo, C., A. Pryor, F. Ocampo Mendoza, J. Campos Villareal, J. M. Robledo, and E. Rodríguez Mercado. "Cleaner production in the chemical industry." Water Science and Technology 42, no. 5-6 (September 1, 2000): 1–7. http://dx.doi.org/10.2166/wst.2000.0487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A cleaner production demonstration study was developed in 1998 for the chemical industry by the Mexican Center for Cleaner Production with the support of the United States Agency for International Development (USAID). The project's objective was to develop cleaner production assessments for chemical plants by identifying and evaluating process and energy cleaner production opportunities for technical feasibility, economic benefit and environmental impact. Four plants in the chemical industry groups of inorganic and organic chemicals and plastic materials and synthetic resins were involved. The main results are: (1) a reduction of solid toxic residues in the organic chemicals plant of 3,474 kg/year with after-tax savings of US$ 318,304/year; (2) an increase in plant capacity of 56%, and 10% reduction in VOCs emissions in the plasticizers and epoxidated soybean oil plant with after-tax savings of US$ 2,356,000/year; (3) a reduction of 31,150 kg/year of ethylene oxide emissions with after-tax savings of US$ 17,750/year in the polyethylene glycol plant and (4) a reduction of CO2 emissions of 9.21% with after-tax savings of US$ 44,281/year in the inorganic chemicals plant. The principal areas for improvement in the chemical industry are process control and instrumentation, process design, maintenance programs and providing adequate utilities for the plants.
7

Kowalik, Tomasz, Dominik Logoń, Marek Maj, Jarosław Rybak, Aleksandra Ubysz, and Anna Wojtowicz. "Chemical hazards in construction industry." E3S Web of Conferences 97 (2019): 03032. http://dx.doi.org/10.1051/e3sconf/20199703032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Rapid technological progress in construction requires that more and more attention should be paid to human security issues. Threats occur both at the stage of building facilities and during their use. Some impacts are easy to identify during construction stage like shocks and vibrations, others are hidden from sight and direct sensing like the harmful effect of chemicals. In addition to accidents that happen on construction sites, there are still objective threats, which may occur throughout the lifetime of the facility. In addition to clearly perceptible ones such as earthquakes, hurricanes, fires, there are hidden threats as well: bacteriological contamination, radiation or chemical interactions that occur in time. This article points to the most common chemical hazards. Examples of chemical threats occurring in construction at the stages of design, construction and use of buildings will be given below.
8

Poliakoff, Martyn, and Peter Licence. "Reinventing the chemical industry." Nature 419, no. 6910 (October 31, 2002): 880. http://dx.doi.org/10.1038/419880a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

STORCK, WILLIAM J. STORCK. "HIRL: CHEMICAL INDUSTRY CHAMPION." Chemical & Engineering News 75, no. 41 (October 13, 1997): 10–12. http://dx.doi.org/10.1021/cen-v075n041.p010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

THAYER, ANN M. "2001 CHEMICAL INDUSTRY REVIEW." Chemical & Engineering News 79, no. 52 (December 24, 2001): 13–21. http://dx.doi.org/10.1021/cen-v079n052.p013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chemical industry":

1

Baldauf, Paul D. "Chemical industry security voluntary or mandatory approach?" Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FBaldauf.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.A. in Security Studies (Homeland Security and Defense))--Naval Postgraduate School, March 2007.
Thesis Advisor(s): Thomas J. Mackin, Nadav Morag. "March 2007." Includes bibliographical references (p. 75-79). Also available in print.
2

Silfvergrip, Linnaea. "Chemical transparency." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-124817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The use of chemicals in the textile industry is increasingly recognized as a problem and a matter of public concern. A proper EU policy on the subject is still missing. However, as testified by the number of self-organized communities and activist campaigns emerging around this theme, a demand for higher transparency is rising from the base of society. A kit made of a new label graphic; a hyperspectral camera and a mobile app have been design as a possible strategy to allow fashion companies to better meet the needs of their consumers. This final configuration opens up for a reflection about design practice, trust and transparency.
3

Ozalp, Nesrin. "Energy, material and emissions flow models of the U.S. chemical industry /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pokora, Martin. "REACH a jeho dopady na firmy." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-10441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The structure of the thesis is divided into seven parts. The first one deals with introduction into new REACH regulation. The second part evaluates actual chemical policy and reasons for transition to REACH. Moreover this part also describes REACH and its goals and plans. The third chapter evaluates anticipated costs of REACH implementation in the European Union. The fourth part describes chemical industry in the European Union, its determination, structure and classification. The fifth part deals with anticipated benefits of REACH on chemical industry in the EU in general, while sixth chapter determines how REACH would affect directly companies in chemical industry. Situation of such affected companies in the Czech republic is described as an example in the last chapter.
5

Gao, Ying. "Knowledge management in chemical process industry." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/842919/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Information and knowledge are among the major resources in chemical process enterprise. Effective knowledge sharing and decision coordination are important to collaborative product development and integrated manufacturing. The integration of knowledge management in chemical process industry can provide the enterprise an environment for knowledge sharing and coordinate decision-marking, it can also help the enterprise to realize the best value of its knowledge assets and make businesses more competitive and profitable. In this work, an Ontology-based knowledge management system is proposed for knowledge integration and decision support in chemical process industry. Information technology, artificial intelligence and chemical engineering domain technology are integrated into a unified system to support knowledge integration, cooperate manufacturing, enterprise management and information service in chemical process industry. The system infrastructure includes Ontologies, knowledge repository, information retrieving agent, knowledge discovery tools and user interface. Ontology plays an important role in the knowledge management system for knowledge integration, knowledge sharing and reuse. Ontology classifies the knowledge base, integrates sources of knowledge into the knowledge repository, supervise database and user interface construction, and severs as a backbone of the knowledge management system development. A flexible and systematic approach for ontology development and implementation is established in this work to support ontology creation and application in the knowledge management system. Knowledge retrieving services are developed in the knowledge management system to extract information and knowledge from various data sources. Information retrieving agents retrieve information from the knowledge repository according to the user's requirement, and provide cleaned information through information filtering. Ontology-based information retrieving approach is utilized in this work. Data mining technique is applied to extract the implicit and potentially useful information, and also predict trends by mining the historic data. Knowledge management in chemical process industry consists of a set of practices aimed at monitoring the process operation and providing decision support for the engineers and managers. However, currently available computer-aided systems for chemical process engineering are normally isolated, which make it difficult for data and information exchange and decision support. Multi-agent system is utilized in this work to coordinate these tasks and incorporate the disparate information resources. Process simulation, rule- base decision support, artificial intelligence such as artificial neural network (ANN) are integrated in this system for process analysis, data processing, process monitoring and diagnosis, process performance prediction and operation suggestion. A multi-agent system developed on the basis of JADE (Java Agent Development Framework) is integrated in the knowledge management system, in which software agents are designed to perform the tasks of process monitoring, process performance prediction, manufacturing management and information service. With a common communication language and shared ontologies, agents can communicate and cooperate with each other to exchange and share information, and achieve timely decisions in dealing with various enterprise scenarios. The implementation of knowledge management system will provide well-organized information for technical monitoring in chemical process industry, and enable the knowledge integration and sharing among researchers, engineers and managers. The application of the knowledge management system in chemical process industry can also help the engineers to coordinate in manufacturing execution, and provide decision support based on up-to-date information and knowledge.
6

Das, Supriyo. "European chemical industry and its innovation policy with focus on large chemical companies." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/308665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La indústria química és un dels sectors productius on major i més àmpliament s'apliquen recursos d'I + D de totes les economies avançades. A més, la indústria química europea abasteix virtualment a tots els sectors de l'economia i representa un 17,8% de les vendes totals de productes químics en el món. Aquesta tesi doctoral ofereix una visió general del panorama industrial químic europeu així com de l'escenari canviant de la indústria química a nivell mundial. La investigació es centra en l'anàlisi de les dinou empreses químiques europees principals per oferir una idea sobre els problemes actuals als què s'enfronta el sector a Europa, especialment després de tenir lloc la crisi econòmica i mostrant com Europa i les pròpies empreses de referència estan invertint en I + D com a forma de superar els reptes actuals. La investigació mostra que la despesa en I + D al sector químic ha estat igual en els últims anys i és encara el major inversor de totes les activitats d'I + D. En termes d'inversió en I + D, BASF és l'empresa que ha realitzat més inversió, seguida de Bayer i Syngenta; encara que si s'analitza la intensitat de la inversió ha estat més gran en Syngenta i Bayer. BASF i Bayer són les empreses líders en l'aplicació de patents així com en el nombre de patents concedides. La qualitat de la recerca en el cas de les empreses químiques és molt alta. La majoria de les grans empreses europees realitzen la seva primera aplicació de patents a Europa, comparades amb la d’altres localitzacions geogràfiques. Totes les empreses químiques més importants estan utilitzant Merger & Acquisition (M & A) per accedir a la innovació. La col·laboració empresa-universitat és també una forma de generar innovació en la indústria química a Europa. La investigació també mostra que la regulació REACH està tenint un efecte negatiu en l'àrea d'innovació en la indústria química europea. Els clústers químics i la distribució geogràfica de les empreses químiques juguen igualment un paper significatiu en la generació de la innovació.
La industria química es uno de los sectores productivos donde mayor y más ampliamente se aplican recursos de I+D en todas las economías avanzadas. Además, la industria química europea abastece virtualmente a todos los sectores de la economía y representa un 17,8% de las ventas totales de productos químicos en el mundo. Esta tesis doctoral ofrece una visión general del panorama industrial químico europeo así como del escenario cambiante de la industria química a nivel mundial. La investigación se centra en el análisis de las diecinueve empresas químicas principales europeas para ofrecer una idea sobre los problemas actuales a los que se enfrenta el sector en Europa, especialmente después de tener lugar la crisis económica y mostrando cómo Europa y las propias empresas de referencia están invirtiendo en I+D como forma de superar los retos actuales. La investigación muestra que el gasto en I+D en el sector químico ha permanecido igual en los últimos años y es aún el mayor inversor de todas las actividades de I+D. En términos de inversión en I+D, BASF es la empresa que ha realizado mayor inversión, seguida de Bayer y Syngenta; aunque si se analiza la intensidad de la inversión ha sido mayor en Syngenta y Bayer. BASF y Bayer son las empresas líderes en la aplicación de patentes así como en el número de patentes concedidas. La calidad de la investigación en el caso de las empresas químicas es muy alta. La mayoría de las grandes empresas europeas realizan su primera aplicación de patentes en Europa, comparadas con otras localizaciones geográficas. Todas las empresas químicas más importantes están utilizando Merger & Acquisition (M&A) para tener acceso a la innovación. La colaboración empresa-universidad es también una forma de generar innovación en la industria química en Europa. La investigación también muestra que la regulación REACH está teniendo un efecto negativo en el área de innovación en la industria química europea. Los clústeres químicos y la distribución geográfica de las empresas químicas juegan igualmente un rol significativo en la generación de la innovación.
The chemical industry is one of the largest and most R&D- intensive manufacturing sectors in all advanced economies and European chemical industry supplies virtually all sectors of the economy and accounts for 17.8 % of the total chemical sales in the world. This thesis gives an overview of the European chemical industry and the changing scenario of the world chemical industry. The study focusses on the top nineteen chemical companies of this region. It gives an idea about the current problems this industry is facing in Europe especially after the economic crisis and shows how the region and the top companies are investing in R&D to bring innovation to overcome the current challenges. It shows that the R&D spending in this industry in absolute term has remained similar over the years and it is still globally the largest investor for the R&D activities. In terms of R&D Investment, BASF has been making the largest investment followed by Bayer and Syngenta while the R&D intensity is highest for Syngenta and Bayer. BASF and Bayer are the leader in patent application and number of granted patent. The quality of research in case of most chemical companies is very high. Most of the large European company makes their first patent application in Europe compared to other Geographical location. All the large chemical companies are using Merger & Acquisition (M&A) to gain access to innovation. Industry-academia collaboration is a way to generate innovation in chemical industry in Europe. The study also shows that REACH regulation is having a negative impact on innovation in European chemical industry. Chemical clusters and geographical distribution of the chemical companies play a significant role in generating innovation.
7

Alves, Junior José Victor. "Development & Strategy in the Chemical industry." Paris 13, 2011. http://scbd-sto.univ-paris13.fr/secure/ederasme_th_2011_alves.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La question principale que dispose cette thèse est relative à la restructuration du secteur et des entreprises chimiques à cause des nouvelles frontières stratégiques, notamment concurrentielles, technologiques, financières et institutionnelles. L’objectif principal c’est de comprendre et caractériser les comportements hétérogènes des firmes chimiques, les en classent en groupes distincts. La première prémisse de cette thèse est que l'apprentissage cumulatif scientifique ou les DPI (droits de propriété intellectuelle) ne sont plus les principaux obstacles aux nouveaux entrants dans le secteur; elles ont été additionnées à la suprématie des finances, certifications HQES (santé, qualité, environnement, sécurité ) et les valeurs intangibles (la marque, la chaîne d'approvisionnement, réseau, les clusters, la compréhension des clients, le marketing, la responsabilité sociale, la gestion et de main-d'œuvre qualifiée). Le second postulat c’est que l’environnement concurrentiel et technologique a recrée des nouveaux limites stratégiques en partagent les firmes en sous-secteurs comme les sciences hybrides, sciences de la vie, substances de base ou les produits chimiques spécialisés. Cette nouvelle configuration induit les opérations de l'acteur dans leur portefeuille de produits, leurs actifs, production, R&D, F&A, réseau, JV, alliances, licences, connaissances spécifiques et le marketing. L’hypothèse soutenue c’est que les changements dans le secteur chimique évoluent dans un cadre nouveau avec les principaux vecteurs : mondialisation concurrentiel, création de la valeur, restructuration du marché et la réglementation
The principal matter that disposes this thesis is concerning the changes in the chemical firms for “new strategic boundaries”. The main objective is to understand and characterize the heterogeneous chemical companies’ strategies and to classify in distinct groups. The first premise of this thesis is that the accumulative scientific learning or IPR (Intellectual property rights) is not anymore the main barrier to new entrants into the segment; it was replaced by finance supremacy, HESQ (health, environmental, safety and quality) certifications and intangible values (brand, supply chain, network, clusters, customer understanding, marketing, social responsibility, management and skilled labor). Several new players appeared supported by national governments and using licensees or technologies from specialized engineering firms (SEF), raw material suppliers & equipment fabricators to produce locally and replace imported products, furthermore those new players through foreign direct investment( FDI), merger & acquisition (M&A) or joint ventures (JV) expand their operations abroad in direct concurrence with the traditional groups. Second premise is that the latest competitive environment are recreating new strategic firms’ boundaries separated in sub sectors like hybrid science, basic or specialty chemical inducing the main player’s actions in product portfolio , fixed assets, process, R&D , M&A, network, JV, alliances, licenses , knowledge capital and marketing. The thesis concludes that the changes in the chemical sector evolve inside a new framework typify at 4 main axes: value creation, globalization, restructuring and regulation
8

Artyukhov, A. E., Любов Павлівна Ярмак, Любовь Павловна Ярмак, and Liubov Pavlivna Yarmak. "Vortical type granulators in the chemical industry." Thesis, Видавництво СумДУ, 2006. http://essuir.sumdu.edu.ua/handle/123456789/21592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monge, Zaratiegui Iñigo. "Profitability of cogeneration in a chemical industry." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A high demand of both electricity and heat exists in Arizona Chemical (a chemical plant dedicated to the distillation of Crude Tall Oil) for production processes. Due to the rising cost of resources and electricity, more and more companies are trying to decrease the energy expenses to increase their competitiveness in a global market, thus increasing their profit. Some companies look at their energy consumption in order to diminish it or to explore the opportunity to generate their own and cheaper energy. In companies where the production of steam already takes place, cogeneration can be a good solution to palliate the cost of the energy used. This study addresses this issue through three actions such as the characterization of the boiler, a better steam flow measurement grid and the generation of electricity. The first one addresses the state of one of the key parts of steam production, the boiler, through the calculation of its efficiency with two different methods (direct and indirect calculation). These methods require some measurements which were provided afterwards by the company supervisor. This will allow the company to identify the weaknesses of the boiler to be able to improve it in the future. The second one aims to improve the knowledge about the steam system. New flow measurement points were suggested after doing an analysis of the current controlled flows to have a better overview outline of the steam use.The third one studies the generation of electricity with a Rankine cycle. The limitations in the characteristics of the steam were identified and different configurations are proposed in accordance to the restrictions identified. An efficiency of 93% is obtained for the boiler with the direct method and 82.3 % for the indirect one. The difference between them can be explained by the use of datafrom different time frames for both methods. The main contributors to the losses are the ones related to the dry flue gas and the hydrogen in the fuel. In the current status only 40% of the steam flows are identified, a number which is expected to raise with the new measurement points. It was not possible to estimate the effect of the new points due to the desire of the company to not disturb the current production. Due to the fuel price the production of steam for only electricity was not profitable and instead the generation of both electricity and heat from the same steam is proposed. This integrated system is now possible to implement due to its low payback time (2.3 years). This solution can generate 758 kW of electricity and provide the company with 6437 MWh of electricity each year. Then, the effect of the variation of different variables over the performance of the cycle were studied: different electricity prices, steam rate production, fuel cost and the state of the condensate recovery were discussed. The variation of both the condensate recovery and fuel cost did not affect the payback time due to their costs being neutralised by the revenues obtained from them. The variation of the electricity prices and steam production affects the payback but due to the high revenue that is expected it does not hamper the good nature of the investment. The generation of electricity is recommended due to the low payback time obtained. The different variations studied in the system did not change the payback time notably and showed that the investment is highly profitable in all the scenarios considered. The use of two smaller turbines instead of the one chosen (with a maximum rated power of 6 MW while only 758 kW is generated with the proposed solution) should be studied since the turbines would work closer to their maximum efficiency.
10

Neto, Cesar Goncalves. "University industry collaboration in the UK : the case of the chemical industry." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.629075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This study examines the processes of collaboration between universities and industry at the level of the organizations involved. In particular, it considers (1) the influence that certain characteristics of universities and companies have upon their willingness or ability to collaborate with each other; upon their objectives for collaboration; and upon their choices of specific forms of collaboration; (2) the relationship between forms of collaboration and objectives for collaboration; and (3) the process of collaboration and the relative success of such collaborations. Three different research instruments were used; a series of interviews with liaison officers in universities and companies; a survey of companies and universities ( the chemical and allied products industry and chemistry university departments in the UK); and detailed studies of research projects sponsored by companies. Willingness to collaborate, the nature of the objectives and preferences for certain forms of collaboration were found to depend upon overall size and size of R&D in the case of companies. However, the evidence suggests that although different university departments may have different objectives or prefer different forms of collaboration, the wiilingness to collaborate is common to all departments. Three factors emerge as important for the performance of collaborative projects; a good working atmosphere, collaboration in the definition of the project and joint planning. Some factors which have been frequently suggested in the literature (e.g. product 'champion') were not observed. Finally, underestimation of technical difficulties proved to be one of the main reasons for low performance.

Books on the topic "Chemical industry":

1

Pollak, Peter. Fine chemicals: The industry and the business. 2nd ed. Hoboken, N.J: J. Wiley & Sons, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heaton, C. A. The Chemical Industry. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-8541-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heaton, Alan, ed. The Chemical Industry. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1318-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prud'homme, Michel. The chemical industry. Ottawa, Ont: Energy, Mines and Resources Canada, Minerals = Energie, mines et ressources Canada, Minéraux, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buchvarov, Stoyan. Bulgaria's chemical industry. Sofia: Sofia Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Samantha, Miller, and Key Note Publications, eds. The chemical industry. 5th ed. Hampton: Key Note, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Publications, Key Note, ed. The chemical industry. 3rd ed. London: Key Note Publications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Heaton C., ed. The Chemical industry. Glasgow: Blackie, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simon, Howitt, and Key Note Ltd, eds. The Chemical industry. 6th ed. Hampton: Key Note Ltd, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Publications, Key Note, ed. UK chemical industry. Hampton: Key Note Publications, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chemical industry":

1

Setoyama, Tohru. "Chemical Industry." In Energy Technology Roadmaps of Japan, 369–79. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55951-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hughes, Trevor J. "Chemical Industry." In Catastrophic Incidents, 69–83. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003360759-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, Seumas. "Chemical Industry." In Dual Use Science and Technology, Ethics and Weapons of Mass Destruction, 55–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92606-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arora, Ashish, and Alfonso Gambardella. "Chemical Industry." In The New Palgrave Dictionary of Economics, 1538–40. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_2526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arora, Ashish, and Alfonso Gambardella. "Chemical Industry." In The New Palgrave Dictionary of Economics, 1–3. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2526-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacy, Peter, Jessica Long, and Wesley Spindler. "Chemical Industry Profile." In The Circular Economy Handbook, 109–18. London: Palgrave Macmillan UK, 2020. http://dx.doi.org/10.1057/978-1-349-95968-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reinhardt, Carsten, and Anthony S. Travis. "Chemical Theory From Chemical Industry." In Heinrich Caro and the Creation of Modern Chemical Industry, 109–23. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9353-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thornber, Craig. "The pharmaceutical industry." In The Chemical Industry, 272–305. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1318-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Theodore, Louis, and R. Ryan Dupont. "Food Products Industry." In Chemical Process Industries, 285–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003283454-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Theodore, Louis, and R. Ryan Dupont. "Industry-Specific Processes." In Chemical Process Industries, 195–200. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003283454-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chemical industry":

1

Viner, Boris. "Safety- Centered approach to quality of light for petrochemical facilities safety." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Poidl, Jurgen, and Wolfgang Steiger. "Variable speed drives and centrifuges for zone 1 hazardous areas." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marquenie, Joop, Maurice Donners, Hanneke Poot, Willy Steckel, and Bas de Wit. "Adapting the spectral composition of artificial lighting to safeguard the environment." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Angays, Philippe, and Jacques Tastet. "Design of large power plant in oil and gas facilities." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ostrzenski, Jack. "Large-scale petrochemical projects: Modern approach to execution." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paes, Rick, and Mark Throckmorton. "An overview of Canadian oil sand mega projects." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodolfo, Vittori, and Antonello Scaburri. "Proper maintenance for electrical plants in hazardous areas with potentially explosive atmosphere." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khurmy, Mohammad, and Mohammad Ramzan. "Reliability of electrical submersible pumps at oil fields." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuemmlee, Horst, Gunter Siegl, and Peter Woywode. "Influence of elastic foundation structures on the rotor dynamics of drive trains." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Furness, Richard. "The cost of measurement uncertainty." In Chemical Industry. IEEE, 2008. http://dx.doi.org/10.1109/pciceurope.2008.4563531.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chemical industry":

1

Rao, A. V. Rama. Indian Chemical Industry. The Israel Chemical Society, March 2023. http://dx.doi.org/10.51167/acm00035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

none,. Chemical Industry Bandwidth Study. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/1218624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weiner, S. C., M. G. Woodruff, and A. K. Johnson. Developing a chemical industry strategy: State-of-the-industry profile. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10196545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Author, Not Given. Chemical Industry Vision 2020. Annual Report 2004. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/1218618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

A.R. Da Costa, R. Daniels, A. Jariwala, Z. He, A. Morisato, I. Pinnau, and J.G. Wijmans. Olefin Recovery from Chemical Industry Waste Streams. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/821708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arora, Ashish, and Alfonso Gambardella. Implications for Energy Innovation from the chemical industry. Cambridge, MA: National Bureau of Economic Research, January 2010. http://dx.doi.org/10.3386/w15676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tate, J. D., and Trevor Knittel. In Situ Sensors for the Chemical Industry- Final Report. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/885262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caserza, G., T. Bozzoni, G. Porcino, and A. Pasquinucci. Hydrogen fuel cells in chemical industry: The assemini project. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kähler, Ferdinand, Michael Carus, Christopher vom Berg, and Matthias Stratmann. CO₂ Reduction Potential of the Chemical Industry Through CCU. Renewable Carbon Initiative (RCI), May 2022. http://dx.doi.org/10.52548/utrl5869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dijkema, G. P. J., J. Grievink, C. P. Luteijn, and M. P. C. Weijnen. The chemical industry, a novel market NICHE for fuel cells? Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460272.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography